@article{CM_1993__88_1_1_0,
author = {Evertse, J. H. and Gy\"ory, K.},
title = {Lower bounds for resultants, {I}},
journal = {Compositio Mathematica},
pages = {1--23},
year = {1993},
publisher = {Kluwer Academic Publishers},
volume = {88},
number = {1},
mrnumber = {1234974},
zbl = {0780.11016},
language = {en},
url = {https://www.numdam.org/item/CM_1993__88_1_1_0/}
}
Evertse, J. H.; Györy, K. Lower bounds for resultants, I. Compositio Mathematica, Tome 88 (1993) no. 1, pp. 1-23. https://www.numdam.org/item/CM_1993__88_1_1_0/
[1] and , Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. 25 (1972) 385-394. | Zbl | MR
[2] , On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584. | Zbl | MR
[3] , On sums of S-units and linear recurrences, Compositio Math. 53 (1984) 225-244. | Zbl | MR | Numdam
[4] and , Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math. 399 (1989) 60-80. | Zbl | MR
[5] and , Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991) 169-204. | Zbl | MR | Numdam
[6] and , On S-unit equations in two unknowns, Invent. Math. 92 (1988), 461-477. | Zbl | MR
[7] , Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23 (1973) 419-426. | Zbl | MR
[8] , On polynomials with integer coefficients and given discriminant, V, p-adic generalizations, Acta Math. Acad. Sci. Hungar. 32 (1978), 175-190. | Zbl | MR
[9] , On arithmetic graphs associated with integral domains, in: A Tribute to Paul Erdös (eds. A. Baker, B. Bollobás, A. Hajnal), pp. 207-222. Cambridge University Press, 1990. | Zbl | MR
[10] , On the number of pairs of polynomials with given resultant or given semi-resultant, to appear. | Zbl | MR
[11] , Equations diophantiennes exponentielles, Invent. Math. 78 (1984) 299-327. | Zbl | MR
[12] , The p-adic Thue-Siegel-Roth-Schmidt theorem, Archiv der Math. 29 (1977) 267-270. | Zbl | MR
[13] , Inequalities for resultants and for decomposable forms, in: Diophantine Approximation and its Applications (ed. C. F. Osgood), pp. 235-253, Academic Press, New York, 1973. | Zbl | MR
[14] , Diophantine Approximation, Lecture Notes in Math. 785, Springer-Verlag, 1980. | Zbl | MR
[15] , On approximations of algebraic numbers by algebraic numbers of bounded degree, in: Proc. Symp. Pure Math. 20 (1969 Number Theory Institute; ed. D. J. Lewis), pp. 213-247, Amer. Math. Soc., Providence, 1971. | Zbl | MR






