

COMPOSITIO MATHEMATICA

DANIEL PECKER

Simple constructions of algebraic curves with nodes

Compositio Mathematica, tome 87, n° 1 (1993), p. 1-4

http://www.numdam.org/item?id=CM_1993_87_1_1_0

© Foundation Compositio Mathematica, 1993, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (<http://www.compositio.nl/>) implique l'accord avec les conditions générales d'utilisation (<http://www.numdam.org/conditions>). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

*Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/*

Simple constructions of algebraic curves with nodes

DANIEL PECKER

*Université de Paris 6 (Pierre et Marie Curie), Département de Mathématiques, 4 Place Jussieu,
75252 Paris, Cédex 05*

Received 12 December 1991; accepted 9 June 1992

In this paper we shall give a simple proof of the following result:

THEOREM. *There exists an integral non-degenerate (i.e. lying in no hyperplane) curve of degree $d \geq n$ in \mathbb{P}_n , with δ real nodes and no other singular point for all δ less than or equal to the Castelnuovo bound.*

Over the complex field, the case $n = 2$ was solved by Severi and the case $n \geq 3$ by Tannenbaum. Tannenbaum used deformation theory to generalize Severi's result (c.f. [T₁], [T₂]).

Our method is entirely different: we simplify the nodes of some very simple Lissajous's curves with many real nodes, according to the following "elementary" rule.

SIMPLIFICATION OF NODES. Let \mathcal{L} be an affine plane curve of degree d having only k real nodes Q_i in the affine plane. Let E be a vector space of polynomials of degrees $\leq d$. If the conditions $P(Q_i) = 0$ are independent on E , then there is a curve $\mathcal{L} + G = 0$ with $G \in E$, having real nodes near Q_1, \dots, Q_δ ($\delta \leq k$) and no other singular points in the affine plane.

A very readable proof of this principle is in [BR] p. 270–273; it uses only the implicit function theorem.

Let us now define our Lissajous's curves. Let T_h denote the Tchébycheff polynomial: $\cos(hu) = T_h(\cos u)$.

PROPOSITION 1. *If a and b are coprime integers, the affine curve parametrized by $x = T_b(t)$, $y = T_a(t)$ is an irreducible curve having $(a-1)(b-1)/2$ real nodes. Its equation is $T_a(x) = T_b(y)$.*

Proof. Easy (c.f. [P]). □

If we take $a = d$, $b = d-1$, we get an irreducible curve of degree d with $(d-1)(d-2)/2$ real nodes. As an introduction to our method, let us show how the result follows for $n = 2$.

COROLLARY. *For any $\delta \leq (d-1)(d-2)/2$ there exists an irreducible curve of degree d with δ real nodes, and no other singular point in $\mathbb{P}_2(\mathbb{C})$.*

Proof. Let \mathcal{L} be an irreducible curve of degree d with $(d-1)(d-2)/2$ real nodes in the affine plane. Let E be the set of real polynomials of degrees $\leq d-3$, and F be the set of real functions defined on the nodes of \mathcal{L} . We have a linear mapping $E \rightarrow F$ between spaces of the same dimension. Let P be in the kernel of this mapping. If P is not the zero polynomial, the curves $P(x, y) = 0$ and \mathcal{L} have at least $2((d-1)(d-2)/2)$ intersections, which is absurd by Bézout's theorem since $d(d-3) < (d-1)(d-2)$. Consequently the mapping $E \rightarrow F$ is an isomorphism, which means that the simplifications of the nodes are independent. We can then find a polynomial $G \in E$ such that the curve $\mathcal{L}(x, y) + G(x, y) = 0$ has δ nodes in the affine plane. Moreover, it has no singular point at infinity. \square

For the general case our construction is based on the following:

PROPOSITION 2. *Let $a > e$ and b be integers such that $(a-e, b) = 1$. There exists polynomials $A(t)$, $B(t)$, $E(t)$ of degrees a , b and e , such that the curve $(B(t), A(t)/E(t))$ has $(b-1)(a+e-1)/2$ real nodes, and no other singular point in the affine plane.*

Proof. Let t_1, \dots, t_e be such that the vertical lines $x = T_b(t_i)$ are distinct and each intersects the Lissajous's curve $(T_b(t), T_{a-e}(t))$ in b real regular points. Then it is easy to see that the curve $(T_b(t), T_{a-e}(t) + \eta/(t-t_1) \cdots (t-t_e))$ has the required properties if η is sufficiently small (c.f. [P]). \square

We shall also need the fact that the equation of this curve is of degree b in y and a in x .

We shall now give the proof of the theorem for $n \geq 3$.

First some notations. If $d \geq n \geq 3$ are integers:

$$d-1 = m(n-1) + \varepsilon \quad \text{with } 0 \leq \varepsilon < n-1$$

$$d-1 = (m+1)(n-k) + e \quad \text{with } 0 \leq e < m+1$$

The Castelnuovo bound $C(d, n)$ is:

$$C(d, n) = m((n-1)(m-1) + 2\varepsilon)/2 = m((n-2k+1)(m+1) + 2e)/2$$

We have $C(d, n) \geq 0$ and $C(d, n) = 0$ iff $d = n$. We also have from the last formula $\lambda = (n-2k+1) \geq -1$, if $\lambda = -1$ then $k = (n+2)/2$, n is even and $n \geq 4$. Since $(m+1)(n-k+1) > d-1 \geq m(n-1)$ we get $m < n/(n-2) \leq 2$, and then $m = 1$. The last relation shows then that $C(d, n) = 0$, in which case the theorem is trivial. Thus we can always suppose that $\lambda \geq 0$.

Let $b = m+1$, $a = \lambda b + 1 + e = d - (k-1)(m+1)$, we have $a > e$. By Proposition 2 we can find an affine curve \mathcal{L} parametrized by $x = B(t)$, $y = A(t)/E(t)$, where the degrees of the polynomials $B(t)$, $A(t)$, $E(t)$ are b , a and e , having exactly $(b-1)(a+e-1)/2 = C(d, n)$ real nodes.

Consider the image of \mathcal{L} in $\mathbb{R}^n \subset \mathbb{P}_n(\mathbb{C})$ by the mapping $\psi: \psi(x, y) = (x, \dots, x^{n-k}, y, yx, \dots, yx^{k-1})$. The affine curve $\psi(\mathcal{L})$ is non-degenerate, of degree d and has $C(d, n)$ real nodes. The places at infinity of $\psi(\mathcal{L})$ are of order 1 and do not intersect each other; thus $\psi(\mathcal{L})$ has no singular point at infinity.

Furthermore, the intersection of $\psi(\mathcal{L})$ with a hyperplane is given by substituting $y = P_{n-k}(x)/Q_{k-1}(x)$ in the equation of \mathcal{L} which gives an equation of degree generically exactly d in x .

Now we shall see that the simplifications of the nodes of $\psi(\mathcal{L})$ are independent. Let E be the set of real polynomials generated by the monomials $x^\alpha y^\beta$ with:

$$\begin{cases} \beta < b-1 & (*) \\ \beta(a-e) + \alpha b + (b-2)e < (b-1)(a+e-1) & (**) \end{cases}$$

The dimension of E is the number of solutions of this system. Let $h = b - \beta$; $(**)$ is equivalent to: $\alpha < e - 1 + \lambda(h-1) + h/b$, $2 \leq h \leq b$. For a given h , there are $e + \lambda(h-1)$ solutions, and finally:

$$\dim(E) = \sum_{h=2}^b (e + \lambda(h-1)) = (2e + \lambda b)(b-1)/2 = (a+e-1)(b-1)/2 = C(d, n)$$

Consider the linear mapping $E \rightarrow F$, where F is the set of real functions defined on the nodes of \mathcal{L} . Let P be in the kernel of this mapping, and define $p(t)$ by: $p(t) = (E(t))^{b-2} P(B(t), A(t)/E(t))$. By $(*)$ $p(t)$ is a polynomial, by $(**)$ its degree is $< 2C(d, n)$. But this polynomial has $2C(d, n)$ distinct roots, which are the values of the parameter corresponding to the nodes of \mathcal{L} . Therefore $P(x, y)$ is zero on the whole irreducible curve \mathcal{L} , and $P(x, y) = K(x, y)\mathcal{L}(x, y)$. If we look at the degrees in y , we see that P must be the zero polynomial. Our linear mapping is therefore an isomorphism, and the simplifications of the nodes of \mathcal{L} are independent. So, we can find a polynomial $G \in E$ such that the affine curve $\mathcal{C}(x, y) = \mathcal{L}(x, y) + G(x, y) = 0$ has δ real nodes, $\psi(\mathcal{C})$ has also δ nodes. Moreover, we see that \mathcal{L} and \mathcal{C} have the same point at infinity and the same tangents at this point: the infinity line and the asymptotes $x = T_b(t_i)$. Therefore the places at infinity of $\psi(\mathcal{C})$ as well as those of $\psi(\mathcal{L})$ are of order one and do not intersect each other. Thus $\psi(\mathcal{C})$ does not have a singular point at infinity.

Let us determine the degree of the space curve $\psi(\mathcal{C})$. We find the intersection with a hyperplane by performing the substitution $y = P_{n-k}(x)/Q_{k-1}(x)$ in the equation $\mathcal{C}(x, y) = 0$. After reduction to the common denominator $(Q_{k-1}(x))^b$, the monomials of \mathcal{L} given an equation of degree generically exactly d in x , and the monomials of $G(x, y)$ give polynomials in x of degrees $\alpha + \lambda\beta + b(k-1)$ which is $< d$ (by $(**)$).

This finishes the proof of the theorem. □

REMARKS. The geometric genus of this space curve is $C(d, n) - \delta$. So, we get space curves of arbitrary geometric genus $g \leq C(d, n)$. In particular, if G is taken to be a constant polynomial we obtain *constructions* of irreducible smooth curves of degree d and maximal genus $C(d, n)$. We can also get simpler equations for such curves. Let \mathcal{Y} be the plane curve: $(x - x_1) \cdots (x - x_e)(T_{a-e}(x) - T_b(y)) = \eta$, then the space curve $\psi(\mathcal{Y})$ is smooth of degree d , and genus $C(d, n)$.

References

- [BR] R. Benedetti, J.-J. Risler: Real algebraic and semi-algebraic sets. *Actualités Mathématiques* (1990).
- [P] D. Pecker: Courbes gauches ayant beaucoup de points multiples réels, to appear.
- [S] E. I. Shustin: Real Plane Algebraic Curves with Many Singularities. *Preprint Samara State University*, 1991.
- [T₁] A. Tannenbaum: Families of algebraic curves with nodes, *Compositio Mathematica* 41 (1980), 107–126.
- [T₂] A. Tannenbaum: On the geometric genera of projective curves, *Math. Ann.* 240(3) (1979), 213–221.