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In this paper we shall give a simple proof of the following result:

THEOREM. There exists an integral non-degenerate (i.e. lying in no hyperplane)
curve of degree d = n in P,, with § real nodes and no other singular point for all 6
less than or equal to the Castelnuovo bound.

Over the complex field, the case n = 2 was solved by Severi and the case n > 3
by Tannenbaum. Tannenbaum used deformation theory to generalize Severi’s

result (cf. [T,], [T.]):

Our method is entirely different: we simplify the nodes of some very simple
Lissajous’s curves with many real nodes, according to the following “elemen-
tary” rule.

SIMPLIFICATION OF NODES. Let % be an affine plane curve of degree d
having only k real nodes Q; in the affine plane. Let E be a vector space of
polynomials of degrees < d. If the conditions P(Q;) =0 are independent on E,
then there is a curve & + G =0 with G e E, having real nodes near Q,,...,Q;
(6 < k) and no other singular points in the affine plane.

A very readable proof of this principle is in [BR] p. 270-273; it uses only the
implicit function theorem.

Let us now define our Lissajous’s curves. Let T, denote the Tchébycheff
polynomial: cos(hu) = T,(cos u).

PROPOSITION 1. If a and b are coprime integers, the affine curve parametrized
by x = Ty(t), y = T (t) is an irreducible curve having (a— 1)(b— 1)/2 real nodes. Its
equation is T,(x) = Ty(y).

Proof. Easy (c.f. [P]). 0

If we take a=d, b=d—1, we get an irreducible curve of degree d with
(d—1)(d—2)/2 real nodes. As an introduction to our method, let us show how the
result follows for n = 2.

COROLLARY. For any é < (d—1)(d—2)/2 there exists an irreducible curve of
degree d with 0 real nodes, and no other singular point in P,(C).



2 D. Pecker

Proof. Let % be an irreducible curve of degree d with (d — 1)(d —2)/2 real nodes
in the affine plane. Let E be the set of real polynomials of degrees <d—3, and F
be the set of real functions defined on the nodes of . We have a linear mapping
E — F between spaces of the same dimension. Let P be in the kernel of this
mapping. If P is not the zero polynomial, the curves P(x, y) = 0 and .# have at
least 2((d — 1)(d —2)/2) intersections, which is absurd by Bézout’s theorem since
d(d—3) < (d—1)(d—2). Consequently the mapping E — F is an isomorphism,
which means that the simplifications of the nodes are independent. We can then
find a polynomial G € E such that the curve #(x, y)+ G(x, y) = 0 has é nodes in
the affine plane. Moreover, it has no singular point at infinity. O

For the general case our construction is based on the following:

PROPOSITION 2. Let a > e and b be integers such that (a—e, b) = 1. There
exists polynomials A(t), B(t), E(t) of degrees a,b and e, such that the curve
(B(¢), A(t)/E(t)) has (b—1)(a+ e—1)/2 real nodes, and no other singular point in the
dffine plane.

Proof. Let ty,...,t, be such that the vertical lines x = T,(t;) are distinct and
each intersects the Lissajous’s curve (T;(t), T, _.(t)) in b real regular points. Then
it is easy to see that the curve (T,(t), T, _ () +n/(t —t,)---(t —t,)) has the required
properties if # is sufficiently small (c.f. [P]). O

We shall also need the fact that the equation of this curve is of degree b in y
and a in x.

We shall now give the proof of the theorem for n > 3.

First some notations. If d > n > 3 are integers:

d—1=mn—1)+¢ with0<e<n—1

d—1=m+1)n—k)+e withO<e<m+1
The Castelnuovo bound C(d, n) is:
Cd, n) =m((n—1)(m—1)+2¢)/2 = m((n—2k+ 1)m+ 1)+ 2¢)/2

We have C(d, n) > 0 and C(d, n) =0 iff d = n. We also have from the last formula
A=n—-2k+1)> —1,if A= —1 then k=(n+2)/2, nis even and n > 4. Since
(m+1)n—k+1)>d—1>mn—1) we get m < nf/(n—2) <2, and then m=1.
The last relation shows then that C(d, n) = 0, in which case the theorem is trivial.
Thus we can always suppose that 1 > 0.

Let b=m+1, a=ib+1+e=d—(k—1)(m+1), we have a > e. By Proposi-
tion 2 we can find an affine curve % parametrized by x = B(t), y = A(t)/E(t),
where the degrees of the polynomials B(t), A(t), E(t) are b, a and e, having exactly
(b—1)(a+e—1)/2=C(d, n) real nodes.
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Consider the image of % in R" < P,(C) by the mapping ¥:y(x,y)=
%,...,x" % y,yx,...,yx*"1). The affine curve Y(¥) is non-degenerate,
of degree d and has C(d, n) real nodes. The places at infinity of Y(.%) are of order
1 and do not intersect each other; thus ¥(.¥) has no singular point at infinity.

Furthermore, the intersection of Y (&) with a hyperplane is given by
substituting y = P, _,(x)/Q, — (x) in the equation of . which gives an equation
of degree generically exactly d in x.

Now we shall see that the simplifications of the nodes of Y(¥) are
independent. Let E be the set of real polynomials generated by the monomials
x*y? with:

{ﬂ<b—1 (*)
Bla—e)+ab+(b—2e<(b—1)a+e—1) (x%)

The dimension of E is the number of solutions of this system. Let h = b— f§; (*x)
is equivalent to: a <e—1+A(h—1)+h/b, 2 < h<b. For a given h, there are
e+ A(h—1) solutions, and finally:

dim(E) = i (e+A(h—1)) = Qe+ Ab)b—1)/2 = (a+e— 1)b—1)/2 = C(d, n)
h=2

Consider the linear mapping E — F, where F is the set of real functions
defined on the nodes of #. Let P be in the kernel of this mapping, and define p(t)
by: p(t) = (E(t))>  2P(B(t), A(t)/E(t)). By () p(t) is a polynomial, by (*#) its degree is
<2C(d, n). But this polynomial has 2C(d, n) distinct roots, which are the values
of the parameter corresponding to the nodes of .#. Therefore P(x, y) is zero on
the whole irreducible curve %, and P(x, y) = K(x, y)Z(x, y). If we look at the
degrees in y, we see that P must be the zero polynomial. Our linear mapping is
therefore an isomorphism, and the simplifications of the nodes of & are
independent. So, we can find a polynomial GeE such that the affine curve
€ (x, y) = Z(x, y)+ G(x, y) = 0 has d real nodes, (%) has also 6 nodes. Moreover,
we see that £ and ¥ have the same point at infinity and the same tangents at
this point: the infinity line and the asymptotes x = T;(t;). Therefore the places at
infinity of Y/(%) as well as those of Y/(¥) are of order one and do not intersect
each other. Thus (%) does not have a singular point at infinity.

Let us determine the degree of the space curve (%). We find the intersection
with a hyperplane by performing the substitution y = P,_,(x)/Q,_(x) in the
equation ¥(x, y) = 0. After reduction to the common denominator (Q, _ ,(x))®, the
monomials of & given an equation of degree generically exactly d in x, and the
monomials of G(x, y) give polynomials in x of degrees a+ A8+ b(k — 1) which is
<d (by (**)).

This finishes the proof of the theorem. O
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REMARKS. The geometric genus of this space curve is C(d, n)—d. So, we get
space curves of arbitrary geometric genus g < C(d, n). In particular, if G is taken
to be a constant polynomial we obtain constructions of irreducible smooth
curves of degree d and maximal genus C(d, n). We can also get simpler equations
for such curves. Let % be the plane curve: (x —x,)---(x — x )T, - (x)— T,(») =17,
then the space curve Y/(%) is smooth of degree d, and genus C(d, n).
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