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Sei P(X, Y)e Z[ X, Y] ein homogenes irreduzibeles Polynom vom Grad d. Thue
bewies 1909, daB die Gleichung P(X, Y) = h bei festem heZ nur endlich viele
Losungen (x, y)€ Z* mit (x, y) = 1 hat, falls d > 3 ist. Die Losungsanzahl dieser
Gleichung wurde 1983 von Evertse [2] abgeschitzt. Die dabei erhaltene
Schranke wurde 1987 von Bombieri und W. M. Schmidt [1] verbessert: Es gibt
eine universelle Konstante K, so daB diese Losungsanzahl <Kd'*! ist, wobei ¢
die Anzahl der Primfaktoren von h ist. Es wird vermutet, daB3 der Exponent
t + 1 dabei nicht verbessert werden kann. Nun hat man in der Zahlentheorie oft
Aussagen, in denen Abschitzungen nicht verschirft werden konnen, weil fiir
einige “kleine” Zahlen die Abschdtzung wirklich genau ist (ein typisches Beispiel
ist das Waringsche Problem). Somit k6nnen wir uns auch hier fragen, ob die
Abschitzung der Losungsanzahl der Gleichung P(x, y) = h nicht verbessert
werden kann, wenn wir jetzt nur noch fast alle h € Z betrachten. Dies ist fiir d > 4
moglich (Folgerung 4): Dann haben wir fiir fast alle & hochstens 2d* viele
Losungspaare (x, y), wobei jetzt ¢t die Anzahl der verschiedenen Primfaktoren
von h bedeutet. Eine dhnliche Aussage (“diese Losungsanzahl ist hdchstens
gleich 4d'”) hat vor kurzem Stewart ([6] Theorem 4) unter einer schwicheren
Voraussetzung hergeleitet (Fiir diesen und anderen Hinweisen mochte ich dem
Referenten an dieser Stelle Dank sagen).

Der Beweis dieser Aussage beruht auf einen 3-Werte-Satz (Satz 1). Dieser 146t
sich sowohl funktionentheoretisch als auch zahlentheoretisch formulieren, so
daB auch das Ergebnis iiber die Losungsanzahl der Thue-Gleichung sowohl
funktionentheoretisch (Satz 2) als auch zahlentheoretisch (Satz 3) formulierbar
ist. Der funktionentheoretischen Variante des 3-Werte-Satzes liegt beweistech-
nisch der Satz von Picard-Borel zu Grunde, der zahlentheoretischen Fassung
der dazu analoge Einheitensatz von Evertse-Laurent-van der Poorten-
Schlickewei (siche etwa [3]. Falls dieser Satz effektiv gemacht werden konnte,
ergibe sich auch eine effektive Schranke fiir die GroBe der eventuellen
Ausnahmezahlen & in Folgerung 4).

SATZ 1. (“3-Werte-Satz”). Seien a,, a,, a; drei verschiedene komplexe Zahlen,
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die keine arithmetische Progression bilden (d.h. a; # 3(a; + a,) fiir {i, j, k} = {1, 2,
3}). Dann gilt:

Analytische Version: Sind f, g auf ganz C meromorphe Funktionen und gilt fiir die
(durch alle Null- und Polstellen auf C gebildeten) Divisoren die Gleichheit
Df—a,) =D — a,) fiir 1 <v<3,soistf=g oderf,g konstant.

Zahlentheoretische Version: Sei L ein fester Zahlkérper und S eine feste endliche
Menge von Bewertungen, die alle archimedischen Bewertungen enthalten soll. Fiir
feL* bedeute Dy(f) der Divisor T s4501d ,(f)s. Dann gibt es nur endlich viele
Ausnahmepaare (f, g)e L* mit f # g und D5(f — a,) = Ds(g — a,) fir 1 <v < 3.

Beweis. Zur analytischen Version vergl. [4], zur zahlentheoretischen siche

[5].

SATZ 2. Sei P(X,Y) = alli_, (X + a,Y) ein homogenes Polynome C[X, Y] mit
paarweise verschiedenen a,,...,a,. Sei d > 4. Falls d = 4 ist, mOgen die Zahlen
1/(a, — ay), 1/(az — a,), 1/(a, — a,) keine arithmetische Progression bilden. Mit R
bezeichne den Ring aller auf ganz C holomorphen Funktionen. Ist dann 2(h) ein
Hauptdivisor mit t:= # Trdger 2(h) < oo, so gibt es hichstens 16' viele Paare
(f.9)e R? mit Var f " Varg = & und

2(P(f, 9)) = D(h)

(wenn man die unendlich vielen trivialen Fdille, die aus (f, g) durch Multiplikation
(fe,ge) mit einer Einheit eeR* entstehen, sowie die trivialen Fille
(f,9,h) = (Ae, e, &) mit A, ueC, e, €€ R* nicht beachtet).

Beweis. Ordne die a, so an, daB 1/(a, — a,), 1/(a; — a,), 1/(as — a,) keine
arithmetische Progression bilden (fiir d = 4 geht dies nach Voraussetzung, fiir
d > 5 kann wegen 1/(a, — a,) # 1/(a, — a,) fir v # u dies stets durch Umnume-
rierung erreicht werden, vergl. Beweis von [5] Folgerung 2).

Jetzt teilt fir 1 <v<d der Divisor 2(f + a,g) den Divisor 2(h). Da
2(f + a,g9) und 2(f + a,g) fiir v # u teilerfremd sind und da 2(h) aus t vielen
Tragerelementen besteht, gibt es bei festem v fiir 2(f + a,g) hochstens 2' viele
Moglichkeiten. Somit gibt es fiir die Quadrupel (2(f + a,9)); <»<4 hOchstens
16' viele Moglichkeiten. Wenn wir mehr als 16’ viele modulo Einheiten
verschiedene Paare (f,g)e R? mit 2(P(f,g)) = 2(h) hitten, wiren also zwei
solcher Quadrupel gleich. Das bedeutet also, daBB es zwei modulo Einheiten
verschiedene Paare (f, g,) und (f,, g,) gibe mit

fl + a,91

eR* firl<v<4 (1)
fr+a,9,
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Falls a, = 0 ist, so betrachte fiir 2 <v <4

91/f1 — (—1/a,) _ (fi + a,9)/f2 + a,92)
92/f> — (—1/a,) il 12

Wegen (1) ist fir2<v <4
2:/fi — (—1/a,)) = D92/ f> — (= 1/a,)

Nach der analytischen Version des 3-Werte-Satzes ist dann g,/f; = ¢,/f, oder

g./fi konstant. Wegen Varg,nVarf,=¢ fihrt g,/fi=g,/f, auf

(f1,91) = e(f2,g2)- g1/f1 konstant fithrt wegen Varf;nVarg, = auf

f1,91 € R*, und wir erhalten wieder einen der ausgeschlossenen trivialen Fille.
Falls a, # 0 ist, so ist wegen (1) fir 2 <v <4

Sillfy + a194) — a,/(a, — ay) _ (f1 + a,9)/(f2 + a,92) c R*
follfy + a192) — ay/a, — ay)  (fi + ayg)/(f2 + a192)

Nun bilden auch {a,/(a, — a)}><,<4 keine arithmetische Progression, und die
Aussage folgt wie im Fall a, = 0.

Ubrigens ist die Voraussetzung im Fall d = 4 invariant gegeniiber Permuta-
tionen: Bildet {1/(a, — a;)}»<,<4 e¢ine arithmetische Progression, so auch
{1/(a, — as)}1<v<3- Ist P(X,Y) irreduzibel iiber Q, so hat dann notwendiger-
weise die zugehorige Galois-gruppe hochstens 8 Elemente. Ein Beispiel fiir diese
Situation liefert P(X, Y) = X* + cY*.

SATZ 3. Sei P(X, Y)eZ[X, Y] ein homogenes irreduzibeles Polynom vom
Gradd > 4. Im Fall d =4 mége {1/(a, — ay)}2<o<4 keine arithmetische Pro-
gression bilden, wobei die a, die Nullstellen von P(X, 1) sein sollen. S sei wie in Satz
1. Dann gibt es fiir fast alle Hauptdivisoren Dg(h) bei t:= # Trdiger Dg(h)
héchstens 2d' viele Paare (f,g)e Z* mit ggt(f,g) = 1 und

Ds(P(f, 9)) = Zs(h)

Beweis. Sei L der Zerfillungskorper von P(X, Y). § > § sei eine Menge von
Bewertungen, so daB3 bei P(X, Y) =alll_, (X — a,Y) alle Zahlen q, a,, a, — a,
fiir v # u stets S-Einheiten sind. SchlieBlich soll jede Primzahl p, die in O(L) nicht
in verschiedene Primideale zerfillt, noch eine S-Einheit werden. (Dies geht, weil
es nur endlich viele solcher p gibt). Wegen (f,g) = 1 sind dann (f — a,g) und
(f —a,9) fir v #u im Ring O der S-ganzen Zahlen von L teilerfremd. Sei
hZ = ﬂ§=1 p¥Z. Dabei kann durch Weglassen aller S-Einheiten p; (fiir das
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dadurch abgeidnderte neue h édndert sich der Divisor %(h) nicht) oBdA
angenommen werden, daB stets p,0 # O ist. Fixiere zu jedem i < t ein Primideal
#; <0 mit p;2p,0. Dann ist hO=);()seq o(£)", Wobei G die Galoisgruppe
von L iiber Q bedeutet. Nun gibt es zu jedem i<t ein 0;€G mit
(f — a19)0 < o(f;) (denn sonst wire (f— o '(a))9)0 & f;VoeG, also
(f—a,9)0 & 4; fir 1 <v<d und damit II;_, (f — a,9)0 & 4;). Ist ferner
(f — a19)0 < a,(f) "o, (f), soist (f — o, (a1)9)0 <= 4, fiir we {u, v}; dann muB
wegen der oben erwihnten Teilerfremdheit schon o, '(a;) = 6, Y(a,) sein.
Bezeichnet U die Untergruppe von G, die Q(a,) fest 148t, so ist also o,€0,U.
Damit ist (f — a,9)0 < o;(4;) genau dann, wenn ¢;€0;U ist. Es folgt

t

(f—a90 =) () (@£ @

i=1 oeaiU

Nun gibt es fiir die Nebenklassen o;U fiir festes i < ¢ genau d viele Moglich-
keiten. Damit gibt es bei festem h fiir die rechte Seite von (2) hochstens d* viele
Moglichkeiten. Falls es jetzt mehr als 2d° viele Paare (f, g)e Z? mit (f,9)Z = Z
und Z5(P(f, g9)) = Ds(h) gibt, ist demnach fiir zwei Paare (f},g,) # (/> 92)
schon (f; — a,9,)0 = (f, — a,9,)0. Indem wir darauf die Galoisautomorphis-
men o, anwenden, folgt

(fy — a9 )(fz — a,g))e O* furl<v<4 ?3)

Diese Gleichung (3) entspricht (1) im Beweis von Satz 2. Genau wie dort zeigen
wir mit dem zahlentheorethischen 3-Werte-Satz, dal3 aus der Beziehung (3)
schon f/g, =f,/g, bis auf endlich viele Ausnahmepaare (f,/g,, f>/9,) folgt.
Wegen (f1,91) # £(f2,92) und (f1,9)Z = Z = (f3, 92)Z ist aber fi/g, = f>/9,
nicht moglich. Jedes dieser endlich vielen Ausnahmepaare (f,/g;, f2/9,) fiihrt
wieder auf endlich viele Ausnahmequadrupel (f;, 91,15, g2)- Da diese Ausnahme-
quadrupel von dem jetzt laufenden Zg(h) nicht abhidngen, konnen somit fiir
9Ds(h) nur endlich viele Moglichkeiten auftreten, fiir die die Gleichung
Ds(P(f, g) = Ds(h) mehr als 2d" viele Losungen (f, g) € Z* mit (f,g) = 1 hat.

FOLGERUNG 4. Sei P(X,Y) wie in Satz 3. Dann hat fiir fast alle he Z die
Gleichung |P(X,Y)| = h héchstens 2d* viele Losungen (f, g)eZ? mit (f,g) = 1,
wobei t die Anzahl der verschiedenen Primfaktoren von h bedeutet.

Den “3-Werte-Satz” koénnen wir sowohl in der analytischen als auch in der
zahlentheoretischen Version verschirfen. Damit werden wir an anderer Stelle
zeigen: Es gibt eine durch algebraische Eigenschaften des Polynoms P(X, Y)
definierte Zahl A, so daB fiir fast alle h € Z die Gleichung |P(X, Y)| = h hdchstens
Ad' ™! viele Losungen hat. Da oft A < 2d ist, bekommen wir hier in vielen Fillen
bessere Abschiatzungen als in Folgerung 4. Insbesondere folgt, daB3 bei festem
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aeZ fiir fast alle Primpotenzen h die Gleichung x? + y? = ah hdchstens eine
Losung (x, y) mit ggt(x, y) = 1 und mit x > y > 0 hat.
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