@article{CM_1992__82_3_245_0,
author = {Schlickewei, Hans Peter},
title = {The quantitative subspace theorem for number fields},
journal = {Compositio Mathematica},
pages = {245--273},
year = {1992},
publisher = {Kluwer Academic Publishers},
volume = {82},
number = {3},
mrnumber = {1163217},
zbl = {0751.11033},
language = {en},
url = {https://www.numdam.org/item/CM_1992__82_3_245_0/}
}
Schlickewei, Hans Peter. The quantitative subspace theorem for number fields. Compositio Mathematica, Tome 82 (1992) no. 3, pp. 245-273. https://www.numdam.org/item/CM_1992__82_3_245_0/
[1] and : Some quantitative results related to Roth's theorem, J. Austral. Math. Soc. (series A), 45 (1988), 233-248. | Zbl | MR
[2] and : On Siegel's lemma, Invent. Math. 73 (1983), 11-32. | Zbl | MR
[3] : An introduction to the geometry of numbers, Springer Grundlehren 99 (1959). | Zbl
[4] and : Rational approximation to algebraic numbers, Mathematika 2 (1955), 160-167. | Zbl | MR
[5] : Herbrand-Analysen zweier Beweise des Satzes von Roth; polynomiale Anzahlschranken, J. of Symb. Logic 54 (1989), 234-263. | Zbl | MR
[6] : Zur Approximation algebraischer Zahlen I. (Über den gröBten Primteiler binärer Formen), Math. Ann. 107 (1933), 691-730. | Zbl | MR | JFM
[7] : Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20. | Zbl | MR
[8] : On products of special linear forms with algebraic coefficients, Acta Arith. 31 (1976), 389-398. | Zbl | MR
[9] : The p-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. 29 (1977), 267-270. | Zbl | MR
[10] : The number of subspaces occurring in the p-adic subspace theorem in diophantine approximation, J. Reine Angew. Math. 406 (1990), 44-108. | Zbl | MR | EuDML
[11] : An explicit upper bound for the number of solutions of the S-unit equation, J. Reine Angew. Math. 406 (1990), 109-120. | Zbl | MR | EuDML
[12] : Linear equations in integers with bounded sum of digits, J. Number Th. 35 (1990), 335-344. | Zbl | MR
[13] : Norm form equations, Annals of Math. 96 (1972), 526-551. | Zbl | MR
[14] : Diophantine approximation, Springer Lecture Notes in Math. 785 (1980). | Zbl | MR
[15] : Simultaneous approximation to algebraic numbers by elements of a number field, Monatsh. Math. 79 (1975), 55-66. | Zbl | MR | EuDML
[16] : The subspace theorem in diophantine approximations, Comp. Math. 69 (1989), 121-173. | Numdam | Zbl | MR | EuDML
[17] : The number of solutions of norm form equations, Trans. Amer. Math. Soc. 317 (1990), 197-227. | Zbl | MR
[18] : Lower bounds for height functions, Duke Math. J. 51 (1984), 395-403. | Zbl | MR






