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Introduction

This paper characterizes topological spaces admitting the structure of a smooth
manifold with boundary as precisely those finite dimensional spaces admitting a
(metrically) complete inner metric of bounded curvature. The boundary points
are characterized in terms of geodesic completeness; in consequence, the Hopf-
Rinow Theorem is completely generalized to the class of topological manifolds
(without boundary) with inner metric of bounded curvature. Since an inner
metric can be derived from a Riemannian metric, an inner metric of bounded
curvature is easy to obtain for a smooth manifold with boundary. Most of this
paper is devoted to proving the converse statement, by studying the local
geometric and topological properties which result from both upper and lower
metric curvature bounds.

An inner metric space (X, d) is a metric space X with distance d such that for all
x, y E X, d(x, y) is the infimum of the lengths of curves a joining x and y in X.
Inner metric spaces appear naturally in the study of Gromov-Hausdorff ([G])
convergence of Riemannian manifolds (e.g., [F], [FY], [GLP], [GP1], [GP2],
[GPW], [GW], [P]): A limit of Riemannian spaces inherits an inner metric
structure and, depending on the nature of the spaces converging to it, various
other geometric properties. These properties and their topological implications
are treated here abstractly, supporting the point of view that much of what is
true for limits of Riemannian spaces is directly a result of the geometry they
possess, not the (presumably) more special fact that they are limits.
Such an approach can be fruitful. The main result of [N] is that if X is an

inner metric space which (1) is geodesically complete, (2) has curvature locally
bounded below, and (3) has curvature locally bounded above, then X has the
structure of a smooth manifold with cl,ex Riemannian metric. Using simple
’metric’ arguments, on can show (cf. [P2]) that limits of Riemannian manifolds
in the class treated by [GW] and [P] satisfy (1), (2), and (3), thus obtaining a
’metric’ proof of the Convergence Theorem. More generally one can argue that
limits of Riemannian manifolds with diameters bounded above, and curvature
and injectivity radius bounded below, are smooth manifolds with at least
continuous Riemannian metric ([Pl], [P2]).
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In larger precompact classes of Riemannian manifolds (e.g., with a lower
bound on sectional curvatuare and upper bound on diameter, but either without
a lower volume bound, to allow ’collapsing,’ or without an upper curvature
bound ([GP1], [GPW])), limit spaces generally only satisfy (2). Of particular
interest are limits in the latter class, which are known to be generalized
manifolds ([GPW]), and conjectured to be manifolds. We have treated two less
general cases: In the present paper we show that spaces satisfying (2) and (3) are
manifolds with boundary, and in [Pl] we show that those satisfying (1) and (2)
are manifolds. Excluding the case in [N], there exist non-manifolds satisfying
any other subset of the above three conditions.

The failure of geodesic completeness is treated in this paper by introducing the
notion of ’geodesic terminal’ to mean a point at which some geodesic ’stops’ (a
’geodesic’ is an arclength parameterized curve which is locally distance minimiz-
ing). Such points do not, of course, exist in the Riemannian case, but in limits of
Riemannian spaces geodesic terminals can even occur in the interior of a
manifold with inner metric (2.5). For the remainder of this paper, the single word
1complete’ will refer to metric completeness (as distinct from geodesic
completeness).
The main results of this paper are given below. For the definition of

’independent’, see the beginning of Chapter 3.

THEOREM A. Let X be a complete, locally compact inner metric space of locally
bounded curvature (above and below). Then the following are equivalent:

(a) X is finite dimensional,
(b) there are at most finitely many independent elements in the space of

directions at some point in X,
(c) the set J of geodesic teminals is nowhere dense, and
(d) X is a manifold with boundary and ôX = J.

Furthermore, if dim X = n  oc then at each point in X the maximum number of
independent elements in the space of directions is n.

COROLLARY B. Let M be a topological manifold and d be an inner metric on M

of locally bounded curvature. Then the following are equivalent:

(a) (M, d) is complete,
(b) (M, d) is geodesically complete,
(c) there exists a point p E M such that each geodesic starting at p is defined on

all of R’, and
(d) every closed, bounded subset of M is compact.

COROLLARY C. A locally compact, infinite dimensional inner metric space of
locally bounded curvature has a dense set of geodesic terminals.
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The ’normal’ coordinates used to prove Theorem A are not in general smooth
at the boundary. However, the boundary can be ’smoothed:’

THEOREM D. A topological space X admits the structure of a smooth manifold
with boundary if an only if X possesses a complete metric of locally bounded
curvature.

1. Metric geometry

’Bounded curvature’ has different meanings in the literature; accordingly, we
sketch here the basic theory used in this paper (simplified and revised from the
more general treatment in [R]), and establish our notation. The only new
concepts in Chapter 1 are those of ’geodesic terminal’ and ’comparison radius’,
defined at the end.

Throughout this paper, curves will always be assumed to be parameterized
proportional to arclength. (X, d) will always denote an inner metric space. If a is
a curve in X from x to y such that l(a) = d(x, y), where l(a) denotes the length of
a, then a is called a minimal curve. A geodesic is a curve y which is locally
minimal; specifically, if y is defined on an interval I, then for every t~I there
exists an interval J = [t - £5, t + 03B4], 03B4 &#x3E; 0, such that 03B3|J~I is a minimal curve. In
this paper, yxy will always denote a geodesic from x to y. Under the assumptions
of metric completeness and local compactness, every pair of points in X can be
joined by at least one minimal curve, and every closed and bounded subset of X
is compact.

In all curvature discussions in this paper, the value of K - 1/1 will be taken to
be oo if K  0. A triple (a; b, c) in X is a set of three points a, b, c ~ X such that
a ~ b and a ~ c. For any K, let SK denote the (complete) dimension two, simply
connected Riemannian space form of constant curvature K. If (a; b, c is a triple
such that d(a, b) + d(b, c) + d(c, a)  2n/ fi, then there is a uniquely deter-
mined (up to congruence in SK ) triangle TK(a; b, c) in SK having sides of length
d(a, b), d(b, c), and d(c, a). Let aK (a; b, c) denote the angle corresponding to a in
TK(a; b, c).

DEFINITION 1.1. An open set U in X is said to be a region of curvature  K
(resp.  K) if for every triple (a: b, c) in U,

(a) (a; b, c) has a representative in SK, and
(b) if a ~ b and a ~ c and yab, Yac are minimal curves, then the distance

between any points x on yab and y on 03B3ac is  (resp. » the distance
between the corresponding points x’ and y’ in TK(a; b, c).

THEOREM 1.2. Let U be a region of curvature K in X. Then
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exists, and is independent of both K and the parameterizations of the curves;
this number is called the angle between 7,,,b and Yao denoted a(Yab, Yac).

(b) The triangle inequality holds for angles.
(c) If 7,,b and c lie in U, then for all x on Yab strictly between a and b,

03B1(03B3xa,03B3xc) + 7,,b) = n.
(d) If 03B3ab and c lie in U, x is on Yab strictly between a and b, and d(c, x) = d(c, 03B3ab),

then cx(Yxa, Yxc) = 03B1(03B3xc, 03B3xb) = n/2.

In a region of curvature bounded above, conditions (a) and (b) still hold, but
(c) and (d) fail in general (2.3).

LEMMA 1.3. Let Yab, Yac be minimal curves in a region of curvature bounded
below. Then for any positive constants Cl, C2,

A space X is said to have curvature locally bounded below (resp. above) if each
x E X is contained in a region of curvature bounded below (resp. above) by some
number K possibly dependent on x. X is said simply to have locally bounded
curvature if X has curvature locally bounded above and below. If X has

curvature locally bounded below, two geodesics have angle 0 if and only if they
coincide on their maximal domain of definition. The angle is therefore a bona
fide metric on the space Sp of all unit geodesics of maximal domain starting at a
point p E X, called the space of directions at p.
A point x E X is called a branch point if there exist distinct points a, b, c

different from x and minimal curves Yab, Yac such that x lies on both Yab and Yac,
the two curves coincide between a and x, and d(a, x) = d(b, x). At the branch
point x, the geodesic Yax ’branches’ to form two distinct geodesics Yab and 7,,,. A
region of curvature  K contains no branch points.
A subset A of X is called strictly convex if every pair of points in A is joined by

a unique minimal curve, and that curve lies entirely in A. If r  n/2ft, and
B(x, r) is compact and contained in a region of curvature  K, then B(x, r/2) is
strictly convex. Hence, in a locally compact space of curvature locally bounded
above, every point is contained in a strictly convex neighborhood.

In a region U of curvature  K (resp.  K), the following equivalent
conditions hold, whenever the given geodesics exist in U:

A1. If (a; b, c) is a triple in U such that b :0 c, then a(Yab, 03B3ac)  (resp ) 03B1K(a; b, c).

A2. If (a; b, c) is a triple such that b :0 c, and ABC denotes the uniquely determined
triangle in SK with AB = d(a, b), AC = d(a, c), angle a(Yab, 03B3ac) at A, and side BC of
minimal length, then d(b, c)  (resp. ) BC.

An inner metric space X is geodesically complete if every geodesic in X has a
unit parameterization defined on all of R.
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DEFINITION 1.4. A point XEX is called the terminal of a geodesic yax if 7,,x
cannot be extended beyond x (as a geodesic). More generally, a point is called a

geodesic terminal if it is the terminal of some geodesic.

In the metrically complete case, geodesic completeness is equivalent to the
absence of geodesic terminals; it is therefore both simple and convenient to have
a notion of geodesic completeness for an arbitrary open set:

DEFINITION 1.5. If X is a complete inner metric space, an open set U ~ X is
said to be geodesically complete if U has no geodesic terminals.

DEFINITION 1.6. If x lies in a region of curvature  K, the upper comparison
radius for K at x is defined to be

If x is not contained a region of curvature  K, then cK(x) is defined to be 0. A
point x is called a singularity if c’(x) = 0 for all K.
The inequality cK(x)  cK(y) - d(x, y) holds for all x, y~X, and shows that c’

is either everywhere infinite or a continuous map from X into the non-negative
reals; if c’ is positive on X, X is said to have curvature  K. Finally, cK(X) will
denote infxcx c’(x), the upper comparison radius of X.

By reversing the inequalities in the above definitions, one can similarly define,
for any K, the lower comparison radius CK(X) (with CK(X) = infxc-x cK(x», and
curvature  K for the whole space X.

2. Examples

EXAMPLE 2.1. If M is a Riemannian manifold, then the distance induced by
the Riemannian metric is by definition an inner metric. If the sectional curvature
k on M satisfies k  U, then cU(x) &#x3E; 0 for all x; if k  L, then by Toponogov’s
Theorem, cL(M) = oo ([K]). Toponogov’s Theorem can be generalized to

geodesically complete inner metric spaces of curvature locally  k ([Pl]), but it
is not known if there exist more general inner metric spaces having curvature
 L and cL(X)  oo. Such spaces could not, for example, be constructed as
limits of spaces for which global comparisons hold ([P2]).

EXAMPLE 2.2. If X is an arbitrary metric space and Y c X is finitely path
connected (every x, y E Y can be joined by a rectifiable curve in Y), the induced
inner metric dI(x, y) on Y is the infimum of the lengths (in the metric of X) of all
curves connecting x and y in Y If ’close’ points in the original metric can be
connected by ’short’ curves in Y, the induced inner metric is topologically
equivalent to the usual induced metric, but in general, dj(x, y)  d(x, y). In
particular, every finitely path connected metric space has an inner metric. If N is
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a Riemannian submanifold of a Riemannian manifold M, the induced inner
metric is simply the usual distance associated with the induced Riemannian
metric on N.

EXAMPLE 2.3. In R3, let X be the union of the (x, y)-plane with the z-axis, and
let d be the induced inner metric from R3. Then X is geodesically complete,
c°(X) = oo (so X is strictly convex), and co(x) &#x3E; 0 except at the origin (which is a
branch point). This example illustrates that the local euclidean structure of an
otherwise ’nice’ space is easily destroyed by a single point at which curvature is
not bounded below. Note that the angle between the z-axis and any geodesic in
the plane through the origin is 03C0.

EXAMPLE 2.4. Let X be an n-sphere (n  2), with an open ‘cap’ sliced off along
some latitudinal ’circle’ above the equator. Then the boundary circle becomes a
’new’ geodesic in the induced inner metric, and every point on it is a branch
point and a geodesic terminal. The lower curvature bound of the original sphere
has been destroyed. The original upper curvature bound also no longer holds.

If the slice is made along or below the equator, the remaining closed disk is
strictly convex and retains the constant curvature of the sphere, and points on
the equator all become geodesic terminals.

EXAMPLE 2.5. Let Xi be a flat cone with the apex smoothly rounded off at
some positive distance 03B5i from the end, with ei ~ 0, and the wide end smoothly
capped (to make the space a compact Riemannian manifold). Then the limit X of
these spaces is a cone (with the wide end rounded off), which has curvature
bounded above and below by 0 around, but excluding, the apex. The apex is a
singularity and a geodesic terminal, since it is always shorter to pass around the
cone than through the apex. Corollary B shows that such isolated, ’interior’
terminals do not occur when the curvature is locally bounded.

EXAMPLE 2.6. Let X be the convex hull of infinitely many independent vectors
{v1, v2,...} in R~, where 11 vi = 2 (if the vi are orthogonal, X is simply the
Hilbert Cube). X is compact, and since X is a convex subset of R~, the induced
inner metric on X is flat (i.e., of curvature bounded above and below by 0). The
’faces’ of this infinite parallelpiped form a dense set of geodesic terminals. If the
angle between vi and the span of {v1,...,vi-1} tends to 0, then X will have a
compact, but infinite dimensional space of directions at the origin. This shows
that condition (b) of Theorem A cannot be weakened to ’the space of directions
at one point in X is precompact’.

3. Finite dimensional spaces of locally bounded curvature

If X is a space of curvature locally bounded below and there exists a point x~X
with at most two directions, it is easy to show that X is homeomorphic to an
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interval or a circle. Some of the lemmas below fail for this trivial case, and to

avoid special exceptions in the statements, the direction space at each point will
be assumed, when necessary, to have at least three elements.

DEFINITION 3.1. Let X be a space of curvature locally bounded below. The
tangent space Tp at a point p E X is the metric space obtained from Sp x R + by
identifying all points of the form (y, 0) (and denoting the resulting point by 0)
with the following metric, where the class of (y, t) in the identification space is
denoted t·03B3:

For each y E Sp, let T(y) = sup{s: y(s) is definedj; that is, y terminates at y(T(y))
if T(y)  oo, and has no terminal if T(y) = oo. T will be called the terminal map
on Sp. The exponential map is defined by expp(s -y) = y(s), for all s  T(y). Expp is,
by A2 (resp. Al), continuous (resp. open) on the intersection of its domain of
definition with any B(O, r) such that expp(B(O, r)) is contained in a region of
curvature  K (resp.  K). Furthermore, expp is a radial isometry, and preserves
the angle between radial geodesics (i.e., starting at p). If X is complete and has
locally bounded curvature, then any sequence of geodesics whose directions are
Cauchy and whose lengths have a positive lower bound has a limit which is
again a geodesic; in this case expp is continuous on its domain of definition, and
T: Sp ~ R ~ oo is upper semicontinuous.
The following theorem is proved in [P1]. A weaker version, which requires an

upper curvature bound, can be found in [Be] or [PD]. A proof of this weaker
version is also indicated at the end of the proof of Proposition 3.7.

THEOREM 3.2. Let X be a complete, locally compact inner metric space. If
B(p, r) is a strictly convex, geodesically complete region of curvature bounded
below, then Tp is isometric to R"for some n, and expp|B(0,r) is a homeomorphism.

Without geodesic completeness, the situation is somewhat less simple. In
particular, finite dimensionality is not guaranteed by local compactness, nor is
the direction space always compact. Suppose X is a complete, locally compact
inner metric space of locally bounded curvature. Let SP be the metric completion
of Sp; then elements of the metric completion Tp of Tp can clearly be written in
the form t00FF, where 03B3~Sp, t~R+, and Oy = 0. For any )1, 2, 03B33 E Sp, 2 is said to
be between 03B31 and 73 if 03B1(03B31, 03B33) a(y 1, 72) + 03B1(03B32, 03B33). For any distinct 03B31, 03B32 ~ Sp,
the span sp{03B31, 03B32} ~ Tp of 03B31, 03B32 is the set of all t03B3 such that one of 03B31, 03B32, 03B3 is
between the other two. In general, given distinct 03B31,..., k e Sp, k &#x3E; 1, the span of
03B31,..., k is the smallest subset sp{03B31,..., 03B3k} ~ containing - k such that
if oc y e sp{c1,..., 03B3k}, then sp{03B1, 03B3} c sp{03B31,...,03B3k}. The elements 03B31,03B32,... are
said to be independent if 03B3j+1 does not lie in sp{03B31,...,03B3j} for any j. The notions
of angle (not as a metric!) and betweeness can be generalized to the space Tp in
the obvious way; e.g., for tl, ... , tk &#x3E; 0, sp{t103B31,..., tk03B3k} = sp{03B31,..., 03B3k}.
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NOTATION. For 3.3-3.7 and 3.9, let B = B( p, r) be a strictly convex region of
curvature  k and  K in a locally compact, complete inner metric space X.

LEMMA 3.3. Let {03B3i} and {~i} be Cauchy sequences in Sp. Given any positive
si ~ 0 and ti ~ 0 such that si  T(yi ) and ti  T(~i), if di = d(03B3i(si), ~i(ti)), then

Proof. By Al we have, for large i, 03B1k(p; 03B3i(si), fli(td)  a(yi, ~i) 
aK( p; 03B3i(si), ~i(ti)), and combining this with the Cosine Laws (cf. Section 36, [R])
we have

LEMMA 3.4. For every ~1, ~2 E Sp and a~[0, 03B1(~1,~2)], there exists some 03B6~Sp
between ~1,~2 such that 03B1(03B6,~1) = a. Furthermore, if 03B1(~1,~2)  03C0, 03B6 is unique.

Proof. Since Sp is dense in Sp, for the existence part of the lemma it suffices to
show the following: Given minimal curves ypb and 03B3pc with a = 03B1(03B3pb, ypj, then
for each 03B5 &#x3E; 0 there exists a minimal curve y starting at p such that

|03B1(03B3pb, Y) - a/2|  e, and a(ypc, y) - a/2|  B.

Suppose first that a  n. For all i = 1,2,3,...let bi denote 03B3pb(2-1), ci denote
03B3pc(2-1), ai : [0,1] ~ B be minimal from bi to ci, and di be the midpoint of ai .
Since a  n, d(bi, ci)  d( p, bi) + d( p, c,) for large i, which implies p ~ di and the
minimal curve yi from p to di is nonconstant.

Let P1, P2, P3, P4 be points in the plane such that d(P1,P2) = d(P1, P3)
= 1, 03B1(P1P2, P1P3) = a, P4 lies on P2P3, and 03B1(P1P2, P1P4) = a/2. A2 implies
liminfi~~ 2i·L(03B3i)  d(P1, P4), and the definition of angle implies
limi~~ 2’’L((x,) = d(P2,P3). By Al and elementary Euclidean geometry,

Similarly, limsupi~~ 03B1(03B1pc, 03B3i)  a/2, and existence for a  7r follows from

a(apa, yi) + a(apc, 03B3i)  a.
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If a = 03C0, choose a minimal curve y’ in a third direction. If a(y’, 03B1pa) = 03C0/2, then
we are finished. Otherwise, we can use the above special case repeatedly to
obtain the desired minimal curves.

To prove uniqueness, suppose a  x, and assume that, contrary to unique-
ness, there exists a 03B4 &#x3E; 0 and, for k = 1, 2, sequences {03B3ik} of minimal curves
starting at p such that

with a(Y, 1, yi2) &#x3E; £5 for all i. Let ti  min{T(03B3ik)} with ti ~ 0 and si = ti/cos(a/2).
Let ~i, 03B61i, 03B62i be the minimal curves in B( p, r) from 03B3pb(si) to Ypc(sd, 03B31i(ti), and
03B32i(ti), respectively. The assumptions on the yki and A2 (applied with both
curvature bounds) imply that

Choosing a representative of (03B3pb(si); 03B3ki(ti), 03B3pc(si)) in SK and applying AI
proves that limi~~ 03B1(~i, 03B6ki) = 0. From the triangle inequality it follows that

limi~~ 03B1(03B61i, (2i) = 0. Let Z11, Z2i be unit minimal curves in Sk, with common
endpoint y and other endpoints zli and Z2i, respectively, such that

I(Zli) = l(03B61i), l(Z2i) = l(12il’ and 03B1(Z1i, Z2i) = 03B1(03B61i, 03B62i). Then

From limi~~ d(yli(ti), 03B32i(ti))/ti = 0 and Al we obtain limi~~ a(Yli, 03B32i) = 0, a
contradiction. 0

The proof of the following lemma is essentially the same as the proof of the
uniqueness part of Lemma 3.4 (the case 03B1(~1,~3) = 03C0 below follows from the
absence of branch points).

LEMMA 3.6. Let 03B31,..., 03B34 E Sp be distinct and, setting aij = 03B1(03B3i, 03B3j), suppose
Otl 2 + a23 = a13  n. Then there exist unit vectors Vi E R3 such that a(vi, vj) = aij,
and a choice of V4 any two of v1, V2, V3 determines the remaining vi.

Proof. Letting a = 03B113, we need only consider the case 03B112 = OC23 = a/2.
There exist Xi~R3B0 such that X1,X2, and X3 are colinear, with
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a(OX 1, 0X2) = a/2, a(OX 2, 0X3) = a/2, a(OX 1, 0X4) = 03B114, and 03B1(0X3, 0X4)
= a34. Choose YijE Sp such that 03B3ij ~ 03B3i, i = 1,...,4, and positive tj ~ 0 such
that Sij = ~tj·Xi~  T(03B3ij). Let 03B2jik:[0,1] ~ B be minimal from xi; = 03B3ij(sij) to
Xkj = 03B3kj(skj), and let 03B1’2j be the unique minimal curve from p to x’2j = 03B2j13(1/2).
To prove the first part of the lemma, it suffices, by Lemma 3.3, to show that

limj~~ 03B1(03B1’2j, 03B14j) = 03B1(0X2, OX4); i.e., limj~~ d(x’2j, x4j)/tj = X2X4. Lemma 3.3
and Lemma 1.3 imply that

and it follows from curvature  k (Al) and the definition of angle (applied
in Sk) that liminfj~~ 03B1(03B2j13,03B2j14)  03B1(X1X3,X1X4). Curvature  K similarly
applied shows liminfj~~ d(x’2j, x4j)/tj  d(X2, X4). On the other hand,
limsupj~~ d(x’2j,x4j)/tj  d(X2,X4) can be proved in the same way, using the
opposite the curvature bounds.
The last part of the lemma is elementary linear algebra. D

PROPOSITION 3.7. If 03B31,...,03B3m~Sp are independent, then sp{03B31,...,03B3m} is
isometric to the closure of an open convex radial cone in Rm.

Proof. Using Lemmas 3.4 and 3.5, one can now easily map sp{03B31,03B32}
isometrically onto the closure C2 of a convex open cone in R2, taking each
{t·03B3:t~R+} isometrically onto a radial ray. Note that if 03B31 and 00FF2 lie in Sp and
have extensions past p as geodesics, then the image of this map is all of R2.
Suppose such a map ~ has been inductively constructed from sp{03B31,..., 03B3k}

onto the closure Ck of a convex open cone in IRk. In Rk+1 there exists some unit
vector vk+1 such that 03B1(03B31,03B31+1) = 03B1(vi, vk+1) for all 1  i  k. Note that if

03B3 e sp{03B1, 03B3k+1} for some a e sp{03B31,..., 03B3k} n Sp, then a is the unique such element
of sp{03B31,...,03B3k} ~ Sp. For if 03B3~sp{03B1’,03B3k+1}, with 03B1 ~ 03B1’, 03B3k+1 ~ sp{03B1,03B1}, and
hence 03B3k+1 e sp{03B31,..., yk}, a contradiction.
One can now extend ~ to the union C of the spans sp{03B1, 03B3k+1} for all

03B1~sp{03B31,...,03B3k} to an injective map onto the closure of a convex open radial
cone in Rk+1, which is an isometry on each sp{03B1,03B3k+1}. This extension is

actually an isometry: Given 03B2~sp{03B1,03B3k+1}, with 03B1~sp{03B31,...,03B3k}, and

03B6~sp{03B31,...,03B3k} ~ Sp, apply Lemma 3.6 to 03B6, 03B2, 03B3k+1, 03B1, with v1 = ~(03B6),
V3 = ~(03B3k+1), and v4 = ~(03B1). The unique unit vector v2 ~ Rk+1 determined by
these choices is the only unit vector in IRk+ 1 to satisfy a(vl, v2) = 03B1(03B6,03B2) and
03B1(v2,v3) = 03B1(03B2,03B3k+1). and so must coincide with ~(03B2); i.e., 03B1(03B2,03B1) =
03B1(v2, v4) = 03B1(~(03B2), ~(03B1)). Now suppose 03B2 and 03B6 are arbitrary elements of C. Then
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03B6~sp{03B3k+1, 03B1}, with 03B1~sp{03B31,...,03B3k}. The above special case shows that

03B1(03B2, 03B1) = 03B1(~(03B2), 9(c-c», and repeating the argument shows 03B1(03B2, 03B6) = 03B1(~(03B2), ~(03B6)).
In a similar fashion, the map cp can now be extended to an isometry on the

union C’ of the all sp{03B2, 0 with 03B2,03B6~C. One need only show that if

~ E sp{03B2, 03B6} n sp{03B2’, 03B6’}, then the extensions defined using the two différent spans
coincide; but this follows from Lemma 3.6 as in the above argument. If 03B3 ~ C’ is
strictly between any two elements of C’, then the fact that C is the closure of a
convex open cone implies that cp(y) is contained an open Euclidean subset

contained in ~(C’). In addition, for any element p. E C’ there are arbitrarily close
elements strictly between and some other element; in otherwords, the interior
points of ~(C’) are dense in ~(C’). Since ~(C’) is a convex cone by construction,
C’ satisfies the requirements of the inductive step.

Finally, C’ = sp()1, ... , 03B3k+ 1}. This follows from the fact that, since ~(C) has
non-empty interior, every element of !Rk+ lies in the span of some two elements
of ~(C). Suppose ~ E sp{03B2, 0, with 03B2, 03B6 ~ C’ n Sp. As before 9 can be extended as
an isometry to C’ ~ sp{03B2, 0. But then 9(l) lies in the span of some ~(03B1),
9(-) E ~(C). Since 9 is an isometry, - lies in sp{03B1, -71 and so ij E C’. This completes
the inductive step.
Note that if, in addition, Ck = Rk, 03B3k+1 E Tp, and 03B3k+1 has a continuation past

p, then Ck+1 = Rk+ 1. Theorem 3.2, with the additional assumption of an upper
curvature bound on B( p, r), can now be proved: If U is geodesically complete,
each geodesic starting at p is defined for at least length r, and so local

compactness implies Sp is compact, and 7p = Tp. Finally, compactness of Sp
implies that Tp is spanned by at most finitely many elements, so Tp = Rn for some
n. D

The space sp{03B31,..., 7. 1 will now be identified with its image in Euclidean
space. For example, given any 03B1, 03B2~Sp and se [0, 1], s·a + (1 - s)·03B2
will denote the unique element of Sp between a and fi- such that

03B1(03B1,(s·03B1+(1 - s)·03B2)) = s·03B1(03B1,03B2).
It is not obvious at this stage that, if Sp contains m independent elements,

Tp (and let alone expp 1 (B( p, r))!) contains an open subset of Rm (e.g.,
sp{03B31,...,03B3m}/Tp could be dense in sp{03B31,..., 03B3m}).

DEFINITION 3.8. Let x ~ X. Then a subset A c X is said to be transverse to x if

each minimal geodesic starting at x intersects A in at most one point.
Note that if, in the above definition, x and A both lie in a strictly convex set C,

one need only consider minimal curves that lie in C.

LEMMA 3.9. Suppose 71, ... 03B3m~Sp are independent. Then for every e &#x3E; o there

exists a subset Ce of Sp homeomorphic to an open subset of sm-l that is E-close to
Sp{03B31,...,03B3m} ~ Sp, such that the map T has a positive lower bound on Ce.
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Proof. Recall that subsets X and Y of a metric space are e-close (in the
Hausdorff sense) if X is in an e-neighborhood of Y, and vice versa.
The case m = 1 follows from the fact that Sp is dense in Sp. For m = 2, choose

al, a2 E Sp such that for all se [0, 1],

Let 03B2t: [0,1] ~ B be the minimal curve from al (t) to 03B12(t), t  min{T(03B11), T(03B12)},
and let ’s,t be unit minimal from p to 03B2t(s). From the proof of Lemma 3.4, for
each s E [0, 1] there exists a maximal 03B4(s) E [0, r] such that for all t  b(s),

For any fixed t, as s ~ s’, Cs,t -+ CS,l’ so £5: [0, 1] ~ (0, r] is continuous, with a

positive maximum. Hence for any fixed positive T  03B4(s), {03B6s, T: s ~ (0, 1)} satisfies
the requirements for C~.
Now suppose m &#x3E; 2. For any k, set

and suppose, as we have already shown for k = 2, there exist homeomorphisms
gi: Cm-1 ~ B whose images are transverse to p, with the following property. For
any a E Cm-1, let 03B1ia be the unit minimal curve from p to (pi (a) in B and Ba be the
unit vector on the radial line from 0 to a. Then 03B1(03B1ia, 03B2a) is uniformly small for all
a~Cm-1 and sufficiently large i. In particular, for large i, the interior of

{03B3~SpP03B3(s)~~1(Cm-1), s &#x3E; 01 satisfies the requirements for Cc.
Let Pi E Sp be such that 03B1(03B2i, 03B3m)  lli and T = min{T(03B2i), llil. For any

a, b~Cm-1, there exists an I &#x3E; 0 such that for all i  I, 03B2i(Ti) is transverse to

{~i(a), ~i(b)}. If otherwise, there would exist ik ~ oo and minimal curves from
03B2ik(Tik) through both CPik(a) and CPik(b). But then by Lemma 3.3, m would lie in
sp{lim ~i(a), limçoi(b)l, and hence in sp{03B31,...,03B3m-1}, a contradiction.

Furthermore, the choice of minimal such I is an upper semicontinuous function
of Cm - 1 x Cm - 1 into the positive integers, since if aj - a and bj ~ b, then for any
i, the limit of minimal curves from 03B2i(Ti) through both ~i(aj) and ~i(bj) is a
minimal curve from 03B2i(Ti) through both ~i(a) and (p,(b).
One can therefore choose I &#x3E; 0 such that for all i &#x3E; l, qJi( Cm - 1) is transverse

to 03B2i(Ti), and çoi can be extended to a homeomorphism on Cm by letting
~i(t103B31 + ··· + t.7m) = y(tm), where y is the geodesic from

~i(t103B31 + ... + tm-103B3m-1) to 03B2i(Ti). By Lemma 3.3, for any a E Cm and e &#x3E; 0,
there is a K &#x3E; 0 such that for all i &#x3E; K, 03B1(03B1ia, fia)  e. As in the above argument,
the choice of a minimal such K for each a E Cm is upper semicontinuous; in other
words, 03B1(03B11a, fia) is uniformly small for large i. Finally, ~i(Cm) is transverse to p
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for large enough i, by an argument similar to the proof in the above paragraph,
and this completes the proof of the inductive step. D

PROOF OF 7HEOREM A. (a) ~ (b). Suppose dim X = n  oo. For any p~X,
let B(p, r) be a strictly convex region of curvature  k and  K, and 03B31,..., 03B3m be
independent elements of Sp. Choose e small enough that the set C03B5 of Lemma 3.9
is non-empty. Then expp is (a homeomorphism) defined on It - y: y E Ce, t  El,
which is an open radial cone in Rm; i.e., B(p, r) contains a subset of dimension m,
and so m  n.

(b) ~ (c). Suppose S. is spanned by independent elements 03B31,..., n and let

B(p, r) be a region of curvature  k and  K. By Proposition 3.7 Sp is isometric
to the closure of an open subset of Sn-1 and Tp is the closure of an open cone in
Rn.

For all i, let Ci be from Lemma 3.9 for 03B31,...,03B3n and 03B5 = 2-1, and let

C = expp{t· y: y E Ci for some i, 0  t  min{T(03B3),r}}. Since each Ci is open in
SP and expp is surjective, each set expp{t·03B3:03B3~Ci0  t  min{T(03B3), r}}, and
hence C, is open in X. In fact, C is an open dense subset of B( p, r) homeomorphic
to an open subset of Rn . For any z E C and small p &#x3E; 0, B(z, p) is homeomorphic
to an open subset of Rn and B(z, p) is a compact, n-dimensional inner metric
space of curvature  k and  K. By the step (a) ~ (b) proved above, Sz is the
span of some independent 0(1,..., 03B1m, m  n. Now exp,-’(B(z, p)) is open in 7§
and homeomorphic to an open subset of Rn, so in fact m = n, and 7§ = 7§ = Rn.
In other words, Sz = Sn -1 and z is not a geodesic terminal. All geodesic
terminals in B(p, r) therefore lie in B( p, r)BC, a nowhere dense set.

Let Y be the subset of all points y E X such that for some p &#x3E; 0, the geodesic
terminals in B( y, p) are nowhere dense. Y is obviously open, non-empty by the
above argument, and also closed: Let w~Y, and suppose B(w, p) is a strictly
convex region of curvature  K and  k. There exists in B(w, p/2) a point y E Y
and hence a point z which is contained in a geodesically complete open ball; i.e.,
by Theorem 3.2, Sz = Sz is spanned by finitely many independent elements. But
then by the preceding paragraph the geodesic terminals in the ball B(z, p/2),
which is a strictly convex region of curvature  K and  k, are nowhere dense.
It follows that w E Y and Y = X. Finally, since the set J of geodesic terminals is
nowhere dense in a region of every point, 1 is nowhere dense in all of X.

(c) ~ (d). We will show first that X is a manifold with boundary; by invariance
of domain we need only show that every x c- X has a neighborhood homeomor-
phic to a neighborhood of a Euclidean upper half-space (whose dimension might
a priori depend on x). Choose a strictly convex region B(x, 3r) of curvature  K
and  k containing x, and a point p E B(x, r)BJ. Since J is nowhere dense, there
exists a geodesically complete ball B(p, p) c B(x, 3r). By Theorem 3.2, Tp = Tp is
isometric to Rn for some n, and expp|B(0,03C1) is a homeomorphism. For all

q E B = B(p, r), let yq denote the unique minimal curve from p to q.
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We will show that if x is a terminal of a geodesic in B starting at p, then x is a
boundary point, and if x is not such a terminal, it is an interior point. As argued
previously, the map T: Sp ~ R + is upper semicontinuous; at any v E S. such that
expp(tv) E B for all t ~ [0, T(v)], T is lower semicontinuous (and hence con-
tinuous), as the following claim shows.

CLAIM 3.10. If for some v~Sp and c &#x3E; 0, expp(tv) E B for all t~[0,c], then
liminfw-.v T(w)  c.

Proof. Let y = exp(cv). Note that Ty = sp{03B31,..., 7.1 for some 03B31, ..., Yn. In
fact, Lemma 3.9 implies that if Sy contains m independent elements,, B contains a
closed subset C of dimension m. Since expp 1 (C) n B(0, r) is a closed m-

dimensional subset of the (closed) domain of definition of expp in B(0, r), m  n.
Since p E B(y, r) c B(x, 3r) we can apply the same argument to obtain the reverse
inequality for an independent set spanning Ty.

Let U = expy 1 (B( p, 03C1)); then by Invariance of Domain U is open in Ty c Rn.
Let S(c + e) denote the intersection of Ty with the (n - l)-sphere in Rn centered
at 0 in of radius c + e. For some small e, S(c + e) n U contains an (n - 1)-disk éQ
such that (c + 03B5) · v lies in the interior of D. Let S denote the (n - l)-sphere in Ty
which is the union of D with all radial lines from ~D to 0.

The set Z = exp-1p(expy(S)) is a topological (n - 1)-sphere containing cv such
that for all t ~ [0, c), tv lies in the n-dimensional ball bounded by Z. In particular,
if a(v, w) is small, then the radial line through w must intersect Z near cv. In other
words, exp,(tw) is defined for t not much smaller tha- - This completes the
proof of the claim.
Suppose now that x is a terminal of the minimal curve yx . Let

D = {w~Tp:w = T(v)· v, v E Sp, and oc(exp(tw), yx))  eN, where e is chosen, using
the continuity of T, small enough that exp(tw) E Jt: for all w E D and t E [0, 1]. The
continuity of Tshows furthermore that D is a topological (n - l)-ball, and that
D’ = {tw:w~D and te(0, ~w~]} is homeomorphic to a boundary ball in n-
dimensional half-space. Finally, exp(D’) is an open subset containing x; for if x’ is
sufficiently close to x, then 03B1(03B3x,03B3x’)  03B5 and d(x’, p) &#x3E; r/3. By definition, the
terminal of yp, lies in exp(D), and so x’ ~ exp(D’).

If x is not a terminal of yx, then Claim 3.10 shows that nearby points are also
not terminals, and so the exponential map provides a neighborhood of x
homeomorphic to an open subset of Euclidean space.
X has now been shown to be a manifold with boundary, and ôX = f7’, where

1’ is the set of terminals x with the following property: in some strictly convex
region Vof curvature bounded above and below containing x, there is a minimal
curve ypx, with p ~ VBJ. Since ôX is closed, the proof of the theorem will be
complete if it is shown that each point z ~ J is z = lim zi, with zi E 1’. Choose a
region Vcontaining z with curvature bounded above and below, and pick q ~ V
so that z is a terminal of a minimal curve y starting at q. Now choose points
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qi - q such that qi E VBJ, and let yi denote the unique geodesic starting from qi,
with maximal domain of definition. Then as in the proof of the upper semi-
continuity of the map T, as i ~ oo, the geodesics must have terminals z;, and
zi ~ z.

(d) ~ (a) is, of course, a classical result.
The last statement of the theorem follows from the proofs of (a) ~ (b) and

(c) - (d). D

The only part of Corollary B which cannot be proved as in the classical Hopf-
Rinow Theorem is (a) ~ (b), which is immediate from Theorem A.

Proof of Corollary C. If the geodesic terminals S- in a space X are not dense,
then their complement contains an open ball B(p, r) ; but such a ball is by
definition geodesically complete, and hence by Theorem 3.2 Sp contains at
most finitely many independent elements. Theorem A now implies X is finite
dimensional. D

Any finite dimensional space can be embedded in Euclidean space, and so
completeness and finite dimensionality together imply local compactness.
Theorem A therefore implies that any finite dimensional space X with a

complete metric of locally bounded curvature is a topological manifold with
boundary. More generally, since the induced inner metric on a convex subset C
of X is the same the original metric of C (as a subset of X), the following
corollary holds (in the Riemannian case this was proved by Cheeger and
Gromoll, cf. [CE], Chapter 8).

COROLLARY 3.11. If X is a finite dimensional, complete inner metric space of
locally bounded curvature, then every closed, convex subset of X is a manifold with
boundary.

In general the boundary of a space of bounded curvature need not be smooth
in the "normal" coordinates of the type constructed in Theorem A: A square in
the plane with the induced inner metric is flat, but in no choice of normal
coordinates is the boundary smooth.

LEMMA 3.12. Let X be a finite dimensional complete inner metric space of
locally bounded curvature. Then aX is transverse to every interior point.

Proof. We need only prove the following: For interior point p~X and y E Sp,
if x~ ôX is the first boundary point along y from p (since ôX is closed there is
such a point), then y terminates at x. Since x is the first boundary point on y, we
can choose an interior point q on y and a strictly convex region B(q, r) of
curvature bounded above and below containing x. If y were defined beyond x,
then Claim 3.10 would imply that expp 1 is a homeomorphism on an open set
containing x; that is, x is contained in a Euclidean neighborhood, and so is not a
boundary point. This contradiction completes the proof. E
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DEFINITION 3.13. Suppose B = B( p, r) is a strictly convex region of curvature
bounded above and below, and A, A’ c B are transverse to p. Then A and A’ are
said to be r-equivalent in B if there is a (possibly not continuous) bijection
~: A ~ A’ such that a and ~(a) lie on the same radial geodesic from p. The radial
distance 03B4r(A, A’) is defined to be the supremum of the distances d(a, ~(a)).

LEMMA 3.14. Let U = B(p, r) and V = B(q, s) be strictly convex regions of
curvature bounded above and below. Suppose A is a compact subset of U n V such
that A is transverse to both p and q. Then there exists an e &#x3E; 0 such that if
A’ c U n Vis r-equivalent to A in U and 03B4r(A, A’)  e, then A’ is transverse to q.

Proof. The set C = {03B3~Sp: y(t) E A for some t} is compact. If y(s), a(t) E A, there
exists some à &#x3E; 0 such that for all 03B6~(-03B4, 03B4), {03B3(s + 03B6), a(t + C)j is transverse to
q. For if otherwise, one could find ti ~ 0 with geodesics 03B2i to q starting at q
passing through both y(s + ti) and a(t + ti). But lim Pi would be a minimal curve
in V starting at q and passing through both y(s) and ot(t), a contradiction. A
similar argument shows that the function which assigns to each element of C x C
the infimum of all such 03B4 is lower semicontinuous, and therefore has a positive
minimum on C x C; this minimum is the desired e. D

Proof of Theorem D. Suppose X is a smooth manifold with boundary. Endow
the interior of X with a Riemannian metric which is a product metric near the
boundary. Extend the metric (distance) to all of X by continuity. Then X is
isometrically embedded as a convex subset of the Riemannian manifold f
obtained by adding a small open collar (with the product metric) to X along the
boundary. In particular, all angle comparisons in X can be carried out in X,
which has locally bounded sectional curvature, and hence locally bounded
curvature in the present sense.

Conversely, suppose X is finite dimensional with a complete inner metric of
locally bounded curvature. For simplicity, assume X is compact, and let

{Bi(xi, ri)l, 1  i  k, be a cover of X by balls with the following properties: (1)
Bi is contained in a strictly convex region of curvature bounded above and
below, (2) xi E int X for all i, (3) there exist coordinates (Bi, 03C8i) having CI overlap
on the complement of the boundary of X (cf. [Be]). The terminal map
Tl : Sx1 ~ (0, oo] was shown to be continuous on T-11 ((0, r,]) in the proof of
Theorem A. U1 = T-11((0,r1)) is an open subset of the unit sphere Sx i
homeomorphic to Wl = Bi n ax via the map ~1(v) = expx1 ° T1(v) · v. One can
choose a smooth map ii : U1 ~ (0, r) having a continuous extension equal to T1
on SXl B U 1 such that, on U1, 03C41  Tl and! 1 approximates Tl near enough that
the following holds: Let D1 = {03B3(03C41(03B3)):03B3~U1}, that is, D 1 is obtained by
’pushing’ Wl inward along radial geodesics starting at x 1 by the amount T1 - 03C41.
D1 is r-equivalent to Wl, and so by Lemma 3.14, if! 1 is chosen close enough to
Tl, D 1 n B, is still transverse to xi for all i such that D 1 n Bi :0 0. The set
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is homeomorphic to X and has smooth boundary in Bl. Let Bi be an open
subset of B1 such that B? c B1 and {B’1, B2,...,Bk} covers X. Let T2 be the
’terminal’ map for Xl, i.e., for each y E Sx2, T2(y) = t provided 03B3(t)~~X1, and
T2(y) = oo if no such t exists. Since ~X1 n B2 is transverse to x2, T2 is well-

defined and continuous. U2 = T2 1((0, r2)) is an open subset of the unit sphere
Sx2 homeomorphic to W2 = B2 ~ ~X1 via the map 9 2(V) = expX20 T2(v) - v.
The overlap between B, and B2 is Cl on their interiors, and

~X1 ~ B1 ~ B2 ~ int B1 ~ int B2; this implies that T2 is smooth on

y = ~-12(~X1 n Bi n B2). Setting Y’ = ~-12(~X1 n Bi n B2), one can now

choose a smooth approximation 1"1 of Tl on U2 which agrees with Tl on Y’, and
so that the new manifold with boundary, X2, constructed as above, has
boundary whose intersection with any Bi is transverse to xi, and has smooth
coordinates (i.e. the restrictions of 03C8i) in B’1 ~ B2. This inductive procedure can
be continued for a finite number of steps to obtain a manifold with boundary Xk
contained in, and homeomorphic to, X, such that the restrictions of {03C8i} are Cl
coordinates for Xk .

In the noncompact case, one can use the above procedure to ’smooth out’
B(p, 2) for some point p. On can then cover B(p, 3) by B(p, 1.5) and a finite
number of open sets which do not intersect B(p, 1). A Cl structure can now be
constructed on B(p, 3) which agrees with a the previous smooth structure on
B(p, 1). This process can now be continued for a countable number of steps to
put a C 1 structure on all of X. D
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