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Introduction

This paper characterizes topological spaces admitting the structure of a smooth
manifold with boundary as precisely those finite dimensional spaces admitting a
(metrically) complete inner metric of bounded curvature. The boundary points
are characterized in terms of geodesic completeness; in consequence, the Hopf-
Rinow Theorem is completely generalized to the class of topological manifolds
(without boundary) with inner metric of bounded curvature. Since an inner
metric can be derived from a Riemannian metric, an inner metric of bounded
curvature is easy to obtain for a smooth manifold with boundary. Most of this
paper is devoted to proving the converse statement, by studying the local
geometric and topological properties which result from both upper and lower
metric curvature bounds.

An inner metric space (X, d) is a metric space X with distance d such that for all
x, ye X, d(x, y) is the infimum of the lengths of curves « joining x and y in X.
Inner metric spaces appear naturally in the study of Gromov—Hausdorff ([G])
convergence of Riemannian manifolds (e.g., [F], [FY], [GLP], [GP1], [GP2],
[GPW], [GW], [P]): A limit of Riemannian spaces inherits an inner metric
structure and, depending on the nature of the spaces converging to it, various
other geometric properties. These properties and their topological implications
are treated here abstractly, supporting the point of view that much of what is
true for limits of Riemannian spaces is directly a result of the geometry they
possess, not the (presumably) more special fact that they are limits.

Such an approach can be fruitful. The main result of [N] is that if X is an
inner metric space which (1) is geodesically complete, (2) has curvature locally
bounded below, and (3) has curvature locally bounded above, then X has the
structure of a smooth manifold with ¢!** Riemannian metric. Using simple
‘metric’ arguments, on can show (cf. [P2]) that limits of Riemannian manifolds
in the class treated by [GW] and [P] satisfy (1), (2), and (3), thus obtaining a
‘metric’ proof of the Convergence Theorem. More generally one can argue that
limits of Riemannian manifolds with diameters bounded above, and curvature
and injectivity radius bounded below, are smooth manifolds with at least
continuous Riemannian metric ([P1], [P2)]).
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In larger precompact classes of Riemannian manifolds (e.g., with a lower
bound on sectional curvatuare and upper bound on diameter, but either without
a lower volume bound, to allow ‘collapsing,” or without an upper curvature
bound ([GP1], [GPW1])), limit spaces generally only satisfy (2). Of particular
interest are limits in the latter class, which are known to be generalized
manifolds ((GPW]), and conjectured to be manifolds. We have treated two less
general cases: In the present paper we show that spaces satisfying (2) and (3) are
manifolds with boundary, and in [P1] we show that those satisfying (1) and (2)
are manifolds. Excluding the case in [N], there exist non-manifolds satisfying
any other subset of the above three conditions.

The failure of geodesic completeness is treated in this paper by introducing the
notion of ‘geodesic terminal’ to mean a point at which some geodesic ‘stops’ (a
‘geodesic’ is an arclength parameterized curve which is locally distance minimiz-
ing). Such points do not, of course, exist in the Riemannian case, but in limits of
Riemannian spaces geodesic terminals can even occur in the interior of a
manifold with inner metric (2.5). For the remainder of this paper, the single word
‘complete’ will refer to metric completeness (as distinct from geodesic
completeness).

The main results of this paper are given below. For the definition of
‘independent’, see the beginning of Chapter 3.

THEOREM A. Let X be a complete, locally compact inner metric space of locally
bounded curvature (above and below). Then the following are equivalent:

(a) X is finite dimensional,

(b) there are at most finitely many independent elements in the space of
directions at some point in X,

(c) the set T of geodesic teminals is nowhere dense, and

(d) X is a manifold with boundary and 0X = 7.

Furthermore, if dim X = n < oo then at each point in X the maximum number of
independent elements in the space of directions is n.

COROLLARY B. Let M be a topological manifold and d be an inner metric on M
of locally bounded curvature. Then the following are equivalent:

(@) (M, d) is complete,

(b) (M, d) is geodesically complete,

(c) there exists a point pe M such that each geodesic starting at p is defined on
all of R*, and

(d) every closed, bounded subset of M is compact.

COROLLARY C. A locally compact, infinite dimensional inner metric space of
locally bounded curvature has a dense set of geodesic terminals.
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The ‘normal’ coordinates used to prove Theorem A are not in general smooth
at the boundary. However, the boundary can be ‘smoothed:’

THEOREM D. 4 topological space X admits the structure of a smooth manifold
with boundary if an only if X possesses a complete metric of locally bounded
curvature.

1. Metric geometry

‘Bounded curvature’ has different meanings in the literature; accordingly, we
sketch here the basic theory used in this paper (simplified and revised from the
more general treatment in [R]), and establish our notation. The only new
concepts in Chapter 1 are those of ‘geodesic terminal’ and ‘comparison radius’,
defined at the end.

Throughout this paper, curves will always be assumed to be parameterized
proportional to arclength. (X, d) will always denote an inner metric space. If « is
a curve in X from x to y such that l(a) = d(x, y), where l(«) denotes the length of
o, then a is called a minimal curve. A geodesic is a curve y which is locally
minimal; specifically, if y is defined on an interval I, then for every tel there
exists an interval J = [t — 6, t + J], & > 0, such that y|;; is a minimal curve. In
this paper, y,, will always denote a geodesic from x to y. Under the assumptions
of metric completeness and local compactness, every pair of points in X can be
joined by at least one minimal curve, and every closed and bounded subset of X
is compact.

In all curvature discussions in this paper, the value of K /2 will be taken to
be oo if K < 0. A triple (a; b, c¢) in X is a set of three points a, b, c€ X such that
a # band a # c. For any K, let Sk denote the (complete) dimension two, simply
connected Riemannian space form of constant curvature K. If (a; b, ¢ is a triple
such that d(a, b) + d(b, ¢) + d(c, a) < 27/ \/k_ , then there is a uniquely deter-
mined (up to congruence in Sg) triangle Tx(a; b, ¢) in Sk having sides of length
d(a, b), d(b, ¢), and d(c, a). Let ag(a; b, c) denote the angle corresponding to a in
Tx(a; b, c).

DEFINITION 1.1. An open set U in X is said to be a region of curvature <K
(resp. = K) if for every triple (a: b, ¢) in U,

(a) (a; b, ) has a representative in Sg, and

(b) if a # b and a # ¢ and y,, y,. are minimal curves, then the distance
between any points x on y,, and y on 7y, is < (resp. =) the distance
between the corresponding points x’ and y’ in Ty(a; b, ¢).

THEOREM 1.2. Let U be a region of curvature >K in X. Then

@) If v and y, lie in U, then for any number K, limyg ;0 g (5 Va5 (S), Vac (1))
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exists, and is independent of both K and the parameterizations of the curves;
this number is called the angle between y,, and v,., denoted o}y, Vac)-

(b) The triangle inequality holds for angles.

(©) If yap and c lie in U, then for all x on y,, strictly between a and b,
UVxas Vxe) + UVxe> Vxp) = T

(d) Ify,, and c liein U, x is on y,, strictly between a and b, and d(c, x) = d(c, 7,),

then a(an’ yxc) = a(ch, 'yxb) = 717/2

In a region of curvature bounded above, conditions (a) and (b) still hold, but
(c) and (d) fail in general (2.3).

LEMMA 1.3. Let y,, 7, be minimal curves in a region of curvature bounded
below. Then for any positive constants ¢, C,,

!1_{13 d(yab(clt)7 yac(CZ(t))/t = (C% + C% -2 Cy°C2°COS a('yab, '}"ac))llz'

A space X is said to have curvature locally bounded below (resp. above) if each
x € X is contained in a region of curvature bounded below (resp. above) by some
number K possibly dependent on x. X is said simply to have locally bounded
curvature if X has curvature locally bounded above and below. If X has
curvature locally bounded below, two geodesics have angle 0 if and only if they
coincide on their maximal domain of definition. The angle is therefore a bona
fide metric on the space S, of all unit geodesics of maximal domain starting at a
point pe X, called the space of directions at p.

A point xe X is called a branch point if there exist distinct points a, b, ¢
different from x and minimal curves y,,, 7,. such that x lies on both y,, and v,
the two curves coincide between a and x, and d(a, x) = d(b, x). At the branch
point x, the geodesic y,, ‘branches’ to form two distinct geodesics y,, and y,.. A
region of curvature > K contains no branch points.

A subset A of X is called strictly convex if every pair of points in 4 is joined by
a unique minimal curve, and that curve lies entirely in 4. If r < n/2\/E , and
B(x, r) is compact and contained in a region of curvature < K, then B(x, r/2) is
strictly convex. Hence, in a locally compact space of curvature locally bounded
above, every point is contained in a strictly convex neighborhood.

In a region U of curvature <K (resp. > K), the following equivalent
conditions hold, whenever the given geodesics exist in U:

Al. If(a; b, c)is atriple in U such that b # c, then oy, V) < (resp =)ox(a; b, c).

A2. If(a; b, ¢) is a triple such that b # c, and ABC denotes the uniquely determined
triangle in Sg with AB = d(a, b), AC = d(a, c), angle iy 5, V..) at A, and side BC of
minimal length, then d(b, c) = (resp. <) BC.

An inner metric space X is geodesically complete if every geodesic in X has a
unit parameterization defined on all of R.
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DEFINITION 1.4. A point xe X is called the terminal of a geodesic y,, if 7,
cannot be extended beyond x (as a geodesic). More generally, a point is called a
geodesic terminal if it is the terminal of some geodesic.

In the metrically complete case, geodesic completeness is equivalent to the
absence of geodesic terminals; it is therefore both simple and convenient to have
a notion of geodesic completeness for an arbitrary open set:

DEFINITION 1.5. If X is a complete inner metric space, an open set U < X is
said to be geodesically complete if U has no geodesic terminals.

DEFINITION 1.6. If x lies in a region of curvature < K, the upper comparison
radius for K at x is defined to be

c¥(x) = sup{r: B(x, r) is a region of curvature < K}.

If x is not contained a region of curvature <K, then cX(x)is defined to be 0. A
point x is called a singularity if cX(x) = 0 for all K.

The inequality cX(x) > cX(y) — d(x, y) holds for all x, y e X, and shows that cX
is either everywhere infinite or a continuous map from X into the non-negative
reals; if c¢X is positive on X, X is said to have curvature < K. Finally, cX(X) will
denote inf,_, cX(x), the upper comparison radius of X.

By reversing the inequalities in the above definitions, one can similarly define,
for any K, the lower comparison radius cx(x) (with cx(X) = inf,x ck(x)), and
curvature > K for the whole space X.

2. Examples

EXAMPLE 2.1. If M is a Riemannian manifold, then the distance induced by
the Riemannian metric is by definition an inner metric. If the sectional curvature
k on M satisfies k < U, then cY(x) > 0 for all x; if k > L, then by Toponogov’s
Theorem, ¢, (M) = oo ([K]). Toponogov’s Theorem can be generalized to
geodesically complete inner metric spaces of curvature locally >k ([P1]), but it
is not known if there exist more general inner metric spaces having curvature
=L and ¢;(X) < o0. Such spaces could not, for example, be constructed as
limits of spaces for which global comparisons hold ([P2]).

EXAMPLE 2.2. If X is an arbitrary metric space and Y < X is finitely path
connected (every x, ye Y can be joined by a rectifiable curve in Y), the induced
inner metric d;(x, y) on Y is the infimum of the lengths (in the metric of X) of all
curves connecting x and y in Y. If ‘close’ points in the original metric can be
connected by ‘short’ curves in Y, the induced inner metric is topologically
equivalent to the usual induced metric, but in general, d,(x, y) > d(x, y). In
particular, every finitely path connected metric space has an inner metric. If N is



342 C. Plaut

a Riemannian submanifold of a Riemannian manifold M, the induced inner
metric is simply the usual distance associated with the induced Riemannian
metric on N.

EXAMPLE 2.3. In R3, let X be the union of the (x, y)-plane with the z-axis, and
let d be the induced inner metric from R3. Then X is geodesically complete,
c%(X) = oo (so X is strictly convex), and co(x) > 0 except at the origin (which is a
branch point). This example illustrates that the local euclidean structure of an
otherwise ‘nice’ space is easily destroyed by a single point at which curvature is
not bounded below. Note that the angle between the z-axis and any geodesic in
the plane through the origin is 7.

EXAMPLE 2.4. Let X be an n-sphere (n > 2), with an open ‘cap’ sliced off along
some latitudinal ‘circle’ above the equator. Then the boundary circle becomes a
‘new’ geodesic in the induced inner metric, and every point on it is a branch
point and a geodesic terminal. The lower curvature bound of the original sphere
has been destroyed. The original upper curvature bound also no longer holds.

If the slice is made along or below the equator, the remaining closed disk is
strictly convex and retains the constant curvature of the sphere, and points on
the equator all become geodesic terminals.

EXAMPLE 2.5. Let X; be a flat cone with the apex smoothly rounded off at
some positive distance ¢; from the end, with ¢; —» 0, and the wide end smoothly
capped (to make the space a compact Riemannian manifold). Then the limit X of
these spaces is a cone (with the wide end rounded off), which has curvature
bounded above and below by 0 around, but excluding, the apex. The apex is a
singularity and a geodesic terminal, since it is always shorter to pass around the
cone than through the apex. Corollary B shows that such isolated, ‘interior’
terminals do not occur when the curvature is locally bounded.

EXAMPLE 2.6. Let X be the convex hull of infinitely many independent vectors
{vy,,,...} in R®, where |lv;|| = 27" (if the v; are orthogonal, X is simply the
Hilbert Cube). X is compact, and since X is a convex subset of R®, the induced
inner metric on X is flat (i.e., of curvature bounded above and below by 0). The
‘faces’ of this infinite parallelpiped form a dense set of geodesic terminals. If the
angle between v; and the span of {v,,...,v;_,} tends to O, then X will have a
compact, but infinite dimensional space of directions at the origin. This shows
that condition (b) of Theorem A cannot be weakened to ‘the space of directions
at one point in X is precompact’.

3. Finite dimensional spaces of locally bounded curvature

If X is a space of curvature locally bounded below and there exists a point xe X
with at most two directions, it is easy to show that X is homeomorphic to an
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interval or a circle. Some of the lemmas below fail for this trivial case, and to
avoid special exceptions in the statements, the direction space at each point will
be assumed, when necessary, to have at least three elements.

DEFINITION 3.1. Let X be a space of curvature locally bounded below. The
tangent space T, at a point pe X is the metric space obtained from §,x R* by
identifying all points of the form (y, 0) (and denoting the resulting point by 0)
with the following metric, where the class of (y, ) in the identification space is
denoted ¢ -y:

3y, s-B) = (t* + s> — 2st-cosafy, B))*/?

ForeachyeS,, let T(y) = sup{s: y(s) is defined}; that is, y terminates at y(T(y))
if T(y) < oo, and has no terminal if T(y) = oo. T will be called the terminal map
on S,. The exponential map is defined by exp ,(s-y) = (s), for all s < T(y). Exp,, is,
by A2 (resp. Al), continuous (resp. open) on the intersection of its domain of
definition with any B(0,r) such that exp,(B(0,r)) is contained in a region of
curvature > K (resp. < K). Furthermore, exp,, is a radial isometry, and preserves
the angle between radial geodesics (i.e., starting at p). If X is complete and has
locally bounded curvature, then any sequence of geodesics whose directions are
Cauchy and whose lengths have a positive lower bound has a limit which is
again a geodesic; in this case exp,, is continuous on its domain of definition, and
T:S,— RuU oo is upper semicontinuous.

The following theorem is proved in [P1]. A weaker version, which requires an
upper curvature bound, can be found in [Be] or [PD]. A proof of this weaker
version is also indicated at the end of the proof of Proposition 3.7.

THEOREM 3.2. Let X be a complete, locally compact inner metric space. If
B(p,r) is a strictly convex, geodesically complete region of curvature bounded
below, then T, is isometric to R" for some n, and e€xp,|p,, is a homeomorphism.

Without geodesic completeness, the situation is somewhat less simple. In
particular, finite dimensionality is not guaranteed by local compactness, nor is
the direction space always compact. Suppose X is a complete, locally compact
inner metric space of locally bounded curvature. Let §, » be the metric completion
of S,; then elements of the metric completion T, of T, can clearly be written in
the form ¢y, where 7€ S, te R*, and 07 = 0. For any 7,,%,,7;€5,,7, is said to
be between y, and y; if (¥, ¥3) = a1, 7,) + ¥,, ¥3). For any distinct 3,, 7, € §p,
the span sp{3,,7,} < T, of 7,7, is the set of all t such that one of J,,7,, 7 is
between the other two. In general, given distinct 7, ..., 3, €S, »» k > 1, the span of
71 .-, 7k is the smallest subset sp{y,,...,%.} < T, containing 7, ..., %, such that
if & 7€esp{cy,..., 7}, then sp{a 3} = sp{y;,..., % }. The elements y,,7,,...are
said to be independent if ;.. , does not lie in sp{,,...,7;} for any j. The notions
of angle (not as a metric!) and betweeness can be generalized to the space T, in
the obvious way; e.g., for t;,...,8 > 0, sp{t;7y,..., T} = sP{F1,---» i}
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NOTATION. For 3.3-3.7 and 3.9, let B = B(p, r) be a strictly convex region of
curvature >k and <K in a locally compact, complete inner metric space X.

LEMMA 3.3. Let {y;} and {n;} be Cauchy sequences in S,. Given any positive
s; = 0 and t; — 0 such that s; < T(y;) and t; < T(n;), if d; = d(y(s;), n:(t,)), then

lim o(y;, #;) = Jim cos '[(s? + & — d})2-s 1]

Proof. By Al we have, for large i, ou(p;7i(s:), mi(t:)) < oyinmi) <
ak(p; 7:(s:), n:(t;)), and combining this with the Cosine Laws (cf. Section 36, [R])
we have

liin_}glf o (p; yils:), mi(t:) = liirl}glf ag(p; vi(si), mi(t:))
= 11}210 ofyi, 1;)
> lilil},so})lp o (p; vi(s:), mi(t:))

= ligr_l}sgp ag(p; 7i(s:), mi(t:))- O
LEMMA 34. For every ij,,7i,€S, and a€[0, o(fj, 1,)], there exists some (€5,
between 1,7, such that o((, 7,) = a. Furthermore, if a(},, 7,) < m,{ is unique.
Proof. Since §, is dense in S »» for the existence part of the lemma it suffices to
show the following: Given minimal curves y,, and y,, with a = a(y,;, 7,.), then
for each ¢ > 0 there exists a minimal curve y starting at p such that

Ia(ypb> y) - a/2| <§ and a(?pﬁ y) - a/2I e

Suppose first that a < 7. For all i = 1,2,3,...let b; denote 7,,(27"), ¢; denote
Ype(271), @;: [0, 1] » B be minimal from b; to c;, and d; be the midpoint of «;.
Since a < &, d(b;, ¢;) < d(p, b;) + d(p, ¢;) for large i, which implies p # d; and the
minimal curve y; from p to d; is nonconstant.

Let Py, P,,P;, P, be points in the plane such that d(P,, P,) = d(P,, P3)
= 1,dP,P,,P,P;) = a, P, lies on P,P;, and «(P,P,, P,P,) = a/2. A2 implies
liminf,, , 2'- L(y;) > d(P,,P,), and the definition of angle implies
lim,, , 2"+ L(&;) = d(P,, P5). By Al and elementary Euclidean geometry,

limsup o5, 7;) < limsup a(p; b;, d;)
= limsup ao(p; b, d;)

< a/2.

Similarly, limsup;.,, a(x,.,7;) < a/2, and existence for a <z follows from
a(apaa y:) + a(“pc) yl) 2 a.
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If a = =, choose a minimal curve y’ in a third direction. If a(y’, «,,) = 7/2, then
we are finished. Otherwise, we can use the above special case repeatedly to
obtain the desired minimal curves.

To prove uniqueness, suppose a < w, and assume that, contrary to unique-
ness, there exists a 6 > 0 and, for k = 1,2, sequences {y;,} of minimal curves
starting at p such that

|0ty s Vik) — /2] < 27 |V pes Vi) — @/2] <277,

with a(y;y, 7:,) > 6 for all i. Let t; < min{T(y;)} with ¢, > 0 and s; = t;/cos(a/2).
Let n;, {1:, {5; be the minimal curves in B(p, ) from y,,(s;) to y,.(s;), y(t;), and
y2i(t;), respectively. The assumptions on the y,; and A2 (applied with both
curvature bounds) imply that

}11: LAy ps(s:), Vi) + dyii(ts), vpe(s:)1/t: = lim A pp(8:)s Vpe(s:))/1i

Choosing a representative of (y,(s;); 7xi(ti), 7p(s:)) in Sg and applying Al
proves that lim;_, , o(n;, {x;) = 0. From the triangle inequality it follows that
lim;_, , {,;, {5;) = 0. Let Z,;, Z,; be unit minimal curves in S;, with common
endpoint y and other endpoints z;; and z,;, respectively, such that
UZ;) = UL1i), UZ2:) = UC2:), and A(Zy;, Z5;) = ad{y;, (2i)- Then

0= ,ll.lg d(zy;, 22:)/U(Z )
2 Hm d(yy;(:), 72:(t))/ 1 1)

> cot(a/2)- lllfg d(yyi(t:)s v2:(t))/ti

From lim;_, ,, d(y,(t;), y2:(t:))/t; = 0 and A1 we obtain lim;_, , a(yy;, 72:) = 0, a
contradiction. O

The proof of the following lemma is essentially the same as the proof of the
uniqueness part of Lemma 3.4 (the case a(#,,73;) = = below follows from the
absence of branch points).

LEMMA 3.5. If iy, 715, i3, 714 €S, and 7, is between 7, and 73, and between 7, and
fla> With a(ij1, 113) = iy, N4), then 3 = 7,
LEMMA 3.6. Let )‘)1,...,?465_,, be distinct and, setting o;; = o(y;,7;), suppose
a2 + Gy3 = 033 < 7. Then there exist unit vectors v;€ R® such that a(v;, v;) = a;,
and a choice of v, any two of v,,v,, v5 determines the remaining v;.

Proof. Letting a = a,5, we need only consider the case ay, = a,3; = a/2.
There exist X;eR3\0 such that X,, X, and X; are colinear, with
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«0X,,0X,) = a/2,a(0X,,0X3) = a/2,((0X,,0X,) = 4, and o(0X;,0X,)
= a34. Choose y;;€ S, such that y;; - y;, i =1,...,4, and positive ¢; » 0 such
that s;; = ||t;- X;|| < T(y;). Let B}:[0,1] - B be minimal from x;; = V:i(s;;) to
Xij = Vij(Sx;), and let o; be the unique minimal curve from p to x5; = B3(1/2).
To prove the first part of the lemma, it suffices, by Lemma 3.3, to show that
lim;, , a(ats;, aq;) = 20X ,, 0X,); ie., lim;, , d(x5;, x4;)/t; = X, X4 Lemma 3.3
and Lemma 1.3 imply that

]11}'510 dix,;, x35)/t; = d(X,, X3),
lim d(xy . xa)/t; = d(Xy, Xa),

Jan:) d(X3j, X4j)/tj = d(X39 X4)’

and it follows from curvature >k (Al) and the definition of angle (applied
in S*) that liminf,_, , oa(B]3, f{4) = (X, X3, X, X,). Curvature <K similarly
applied shows liminf;, , d(x};, x,;)/t; = d(X,, X,;). On the other hand,
limsup;_, ,, d(x5;, x4;)/t; < d(X,, X,) can be proved in the same way, using the
opposite the curvature bounds.

The last part of the lemma is elementary linear algebra. O

PROPOSITION 3.7. If 3,,...,7,€S, are independent, then sp{3,,...,7n} is
isometric to the closure of an open convex radial cone in R™.

Proof. Using Lemmas 3.4 and 3.5, one can now easily map sp{7;,7,}
isometrically onto the closure C* of a convex open cone in R? taking each
{t-7:te R} isometrically onto a radial ray. Note that if 5, and 7, lie in S, and
have extensions past p as geodesics, then the image of this map is all of R2.

Suppose such a map ¢ has been inductively constructed from sp{y,,..., 7}
onto the closure C* of a convex open cone in R, In R¥*! there exists some unit
vector v, such that a(y,7,+,) = a(v;, vg+,) for all 1 <i < k. Note that if
7 €Sp{&, Ty +1} for some aesp{y,,..., 7} N S,, then & is the unique such element
of sp{7y,..., 5} N S,. For if yesp{a, P41}, with & # &,%,,,esp{a, &'}, and
hence 7, 4, €sp{Ji,..., 7}, a contradiction.

One can now extend ¢ to the union C of the spans sp{a,¥.+,} for all
aesp{¥y,..., 7k} to an injective map onto the closure of a convex open radial
cone in R**!, which is an isometry on each sp{® J,}. This extension is
actually an isometry: Given Besp{® J;+,}, With &esp{J;,..., %},
{esp(ir,.... 7} N5, apply Lemma 36 to B kssd with v, = <p(£),
U3 = @(Px+1), and v, = @(@). The unique unit vector v,€R**! determined by
these choices is the only unit vector in R**! to satisfy a(v,, v,) = «({, f) and
vy, v3) = B, Fi+1), and so must coincide with ¢@(f); ie., «f, &) =
(v, v4) = (@(B), p(a)). Now suppose B and  are arbitrary elements of C. Then
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{esp{Pi+1,a}, with aesp{y;,...,7}. The above special case shows that
(B, &) = a(p(B), (@), and repeating the argument shows a(B, ) = a(¢(f), ¢(0).

In a similar fashion, the map ¢ can now be extended to an isometry on the
union C' of the all sp{B,{} with B,{eC. One need only show that if
iesp{B,} nsp{B,{}, then the extensions defined using the two different spans
coincide; but this follows from Lemma 3.6 as in the above argument. If e C' is
strictly between any two elements of C’, then the fact that C is the closure of a
convex open cone implies that ¢(y) is contained an open Euclidean subset
contained in ¢(C’). In addition, for any element jie C’ there are arbitrarily close
elements strictly between it and some other element; in otherwords, the interior
points of ¢(C’) are dense in ¢(C’). Since ¢(C’) is a convex cone by construction,
C' satisfies the requirements of the inductive step.

Finally, C' = sp{}y,.-., 7x+1}- This follows from the fact that, since ¢(C) has
non-empty interior, every element of R**! lies in the span of some two elements
of @(C). Suppose 7j € sp{B, {}, with B,{e C' 1 S,. As before ¢ can be extended as
an isometry to C'uUsp{B,{}. But then ¢(ij) lies in the span of some ¢(&),
(7)€ ¢(C). Since ¢ is an isometry, 7 lies in sp{a, 7} and so # € C'. This completes
the inductive step.

Note that if, in addition, C* = R¥, y,,, € T, and 7, , has a continuation past
p, then C¥*1 = R**! Theorem 3.2, with the additional assumption of an upper
curvature bound on B(p, r), can now be proved: If U is geodesically complete,
each geodesic starting at p is defined for at least length r, and so local
compactness implies S, is compact, and T, = T,. Finally, compactness of S,
implies that T, is spanned by at most finitely many elements, so 7, = R" for some
n. O

The space sp{y;,..., 7.} Will now be identified with its image in Euclidean
space. For example, given any a, feS, and se[0,1], s-a+(1—s)f
will denote the unique element of S, between & and f such that
@ (s & + (1 — ) p) = s a(@, p).

It is not obvious at this stage that, if S, contains m independent elements,
T, (and let alone exp, '(B(p,r))!) contains an open subset of R™ (e.g,
SP{71>-..»7m}\T, could be dense in sp{F;,..., Tm}).

DEFINITION 3.8. Let x € X. Then a subset 4 = X is said to be transverse to x if
each minimal geodesic starting at x intersects 4 in at most one point.

Note that if, in the above definition, x and 4 both liec in a strictly convex set C,
one need only consider minimal curves that lie in C.

LEMMA 3.9. Suppose ¥, ..., m€S, are independent. Then for every ¢ > o there
exists a subset C, of S, homeomorphic to an open subset of S™~ ! that is e-close to
SP{P1s-+-sPm} N Sy, such that the map T has a positive lower bound on C,.
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Proof. Recall that subsets X and Y of a metric space are ¢-close (in the
Hausdorff sense) if X is in an e-neighborhood of Y, and vice versa.

The case m = 1 follows from the fact that S, is dense in S_p. For m = 2, choose
ay, 0, €S, such that for all se[0, 1],

s oy + (1 —s8)aysy +(1—5)7p,) <e/2

Let B,: [0, 1] — B be the minimal curve from o, (t) to a,(¢), t < min{T(a,), T(x,)},
and let {;, be unit minimal from p to f,(s). From the proof of Lemma 3.4, for
each se[0, 1] there exists a maximal d(s) € [0, r] such that for all ¢t < d(s),

ol Sty + (1 —5)-ay) < e/2

For any fixed t, as s > 5, {5, = {;,, so : [0,1] — (0,r] is continuous, with a
positive maximum. Hence for any fixed positive T < (s), {{,.7: s€(0, 1)} satisfies
the requirements for C..

Now suppose m > 2. For any k, set

Ci={th1 + - +thty + + =1},

and suppose, as we have already shown for k = 2, there exist homeomorphisms
¢;: C,,—; — B whose images are transverse to p, with the following property. For
any aeC,,_,, let o be the unit minimal curve from p to ¢,(a) in B and B, be the
unit vector on the radial line from 0 to a. Then a(e}, B,) is uniformly small for all
aeC,_, and sufficiently large i. In particular, for large i, the interior of
{reS,:v(s)€ 9,(C,—,), s > 0} satisfies the requirements for C..

Let B;eS, be such that a(f;,9,) < 1/i and T, = min{T(B,), 1/i}. For any
a,beC,,_,, there exists an I > 0 such that for all i > I, §;(T;) is transverse to
{@i(a), p;i(b)}. If otherwise, there would exist i, — co and minimal curves from
B:.(T;,) through both ¢, (a) and ¢, (b). But then by Lemma 3.3, 3,, would lie in
sp{lim ¢;(a), lim ¢;(b)}, and hence in sp{},...,Pm—1}» @ contradiction.
Furthermore, the choice of minimal such I is an upper semicontinuous function
of C,,_ x C,,_ into the positive integers, since if a; — a and b; — b, then for any
i, the limit of minimal curves from B;(T;) through both ¢;(a;) and ¢;(b;) is a
minimal curve from f;(T;) through both ¢;(a) and ¢;(b).

One can therefore choose I > 0 such that for all i > I, ¢,(C,,_,) is transverse
to Bi(T;), and ¢; can be extended to a homeomorphism on C, by letting
@it 7, + - + tPm) = ¥(tn), where y is  the geodesic from
Qit19; + - + ty_1¥m—1) to B«(T;). By Lemma 3.3, for any aeC,, and & > 0,
there is a K > 0 such that for all i > K, «(a}, B,) < &. As in the above argument,
the choice of a minimal such K for each a e C,, is upper semicontinuous; in other
words, a(a}, B,) is uniformly small for large i. Finally, ¢;(C,,) is transverse to p
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for large enough i, by an argument similar to the proof in the above paragraph,
and this completes the proof of the inductive step. ]

PROOF OF THEOREM A. (a) = (b). Suppose dim X = n < co. For any pe X,
let B(p, r) be a strictly convex region of curvature < kand > K, and y,,..., %, be
independent elements of »- Choose ¢ small enough that the set C, of Lemma 3.9
is non-empty. Then exp, is (a homeomorphism) defined on {t-y:yeC,, t <&},
which is an open radial cone in R™; i.e., B(p, r) contains a subset of dimension m,
and so m < n.

(b) = (c). Suppose §p is spanned by independent elements y,,...,7, and let
B(p, r) be a region of curvature >k and < K. By Proposition 3.7 S, » is isometric
to the closure of an open subset of S"~ ! and T, is the closure of an open cone in
R",

For all i, let C; be from Lemma 3.9 for J,,...,%, and ¢ =271, and let
C = exp,{t-y:yeC, for some i,0 < t < min{T(y),r}}. Since each C; is open in
S, and exp, is surjective, each set exp,{t-y:7€C;0 <t <min{T(y), r}}, and
hence C, is open in X. In fact, C is an open dense subset of B(p, r) homeomorphic
to an open subset of R". For any ze C and small p > 0, B(z, p) is homeomorphic
to an open subset of R" and B(z, p) is a compact, n-dimensional inner metric
space of curvature >k and < K. By the step (a) = (b) proved above, S, is the
span of some independent aj, ..., &,, m < n. Now exp, !(B(z, p)) is open in T,
and homeomorphic to an open subset of R”, soinfact m =n,and T, = T, = R".
In other words, S, = S""! and z is not a geodesic terminal. All geodesic
terminals in B(p, r) therefore lie in B(p, r)\C, a nowhere dense set.

Let Y be the subset of all points y € X such that for some p > 0, the geodesic
terminals in B(y, p) are nowhere dense. Y is obviously open, non-empty by the
above argument, and also closed: Let we Y, and suppose B(w, p) is a strictly
convex region of curvature <K and >k. There exists in B(w, p/2) a point ye Y
and hence a point z which is contained in a geodesically complete open ball; i.e.,
by Theorem 3.2, S, = S, is spanned by finitely many independent elements. But
then by the preceding paragraph the geodesic terminals in the ball B(z, p/2),
which is a strictly convex region of curvature < K and > k, are nowhere dense.
It follows that we Y and Y = X. Finally, since the set 7 of geodesic terminals is
nowhere dense in a region of every point, 4 is nowhere dense in all of X.

(¢) = (d). We will show first that X is a manifold with boundary; by invariance
of domain we need only show that every x € X has a neighborhood homeomor-
phic to a neighborhood of a Euclidean upper half-space (whose dimension might
a priori depend on x). Choose a strictly convex region B(x, 3r) of curvature < K
and > k containing x, and a point pe B(x, )\ . Since J is nowhere dense, there
exists a geodesically complete ball B(p, p) = B(x, 3r). By Theorem 3.2, T, = T,is
isometric to R" for some n, and exp,|po,, is a homeomorphism. For all
qe B = B(p,r), let y, denote the unique minimal curve from p to q.
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We will show that if x is a terminal of a geodesic in B starting at p, then x is a
boundary point, and if x is not such a terminal, it is an interior point. As argued
previously, the map T: S, — R* is upper semicontinuous; at any ve S, such that
exp,(tv)e B for all te[0, T(v)], T is lower semicontinuous (and hence con-
tinuous), as the following claim shows.

CLAIM 3.10. If for some veS, and ¢ > 0, exp,(tv)e B for all te[0,c], then
liminf,,_,, T(w) > c.

Proof. Let y = exp(cv). Note that T, = sp{,,...,7,} for some 7,,...,%,. In
fact, Lemma 3.9 implies that if S_'y contains m independent elements, B contains a
closed subset C of dimension m. Since exp,'(C)nB(0,r) is a closed m-
dimensional subset of the (closed) domain of definition of exp, in B(0,7),m < n.
Since p € B(y, r) = B(x, 3r) we can apply the same argument to obtain the reverse
inequality for an independent set spanning T,.

Let U = exp, ' (B(p, p)); then by Invariance of Domain U is open in T, = R".
Let S(c + ¢) denote the intersection of T, with the (n — 1)-sphere in R" centered
at 0 in of radius ¢ + &. For some small ¢, S(¢ + ¢) n U contains an (n — 1)-disk 2
such that (¢ + ¢) v lies in the interior of Z. Let S denote the (n — 1)-sphere in T,
which is the union of £ with all radial lines from 02 to 0.

The set Z = exp, ' (exp,(S)) is a topological (n — 1)-sphere containing cv such
that for all t € [0, ¢), tv lies in the n-dimensional ball bounded by Z. In particular,
if a(v, w) is small, then the radial line through w must intersect Z near cv. In other
words, exp,(tw) is defined for ¢ not much smaller thar - This completes the
proof of the claim.

Suppose now that x is a terminal of the minimal curve y,. Let
D ={weT,:w=T(v) v,veS,, and alexp(tw), y,)) < eN, where ¢ is chosen, using
the continuity of T, small enough that exp(tw)e V; for all we D and t e [0, 1]. The
continuity of T'shows furthermore that D is a topological (n — 1)-ball, and that
D' = {tw:weD and te(0, |w|]} is homeomorphic to a boundary ball in n-
dimensional half-space. Finally, exp(D’) is an open subset containing x; for if x’ is
sufficiently close to x, then o(y,,y,.) < ¢ and d(x', p) > r/3. By definition, the
terminal of y,, lies in exp(D), and so x’eexp(D’).

If x is not a terminal of y,, then Claim 3.10 shows that nearby points are also
not terminals, and so the exponential map provides a neighborhood of x
homeomorphic to an open subset of Euclidean space.

X has now been shown to be a manifold with boundary, and 60X = 9, where
"' is the set of terminals x with the following property: in some strictly convex
region Vof curvature bounded above and below containing x, there is a minimal
curve y,,, with pe V\7. Since 0X is closed, the proof of the theorem will be
complete if it is shown that each point ze J is z = lim z;, with z;e 7. Choose a
region Vcontaining z with curvature bounded above and below, and pick ge V
so that z is a terminal of a minimal curve y starting at g. Now choose points
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q; — g such that g;e V\ 7, and let y; denote the unique geodesic starting from g;,
with maximal domain of definition. Then as in the proof of the upper semi-
continuity of the map T, as i —» oo, the geodesics must have terminals z;, and
zZ; >z,

(d) = (a) is, of course, a classical result.

The last statement of the theorem follows from the proofs of (a) = (b) and
(€)= (). O

The only part of Corollary B which cannot be proved as in the classical Hopf-
Rinow Theorem is (a) = (b), which is immediate from Theorem A.

Proof of Corollary C. If the geodesic terminals J in a space X are not dense,
then their complement contains an open ball B(p,r);, but such a ball is by
definition geodesically complete, and hence by Theorem 3.2 S, contains at
most finitely many independent elements. Theorem A now implies X is finite
dimensional. O

Any finite dimensional space can be embedded in Euclidean space, and so
completeness and finite dimensionality together imply local compactness.
Theorem A therefore implies that any finite dimensional space X with a
complete metric of locally bounded curvature is a topological manifold with
boundary. More generally, since the induced inner metric on a convex subset C
of X is the same the original metric of C (as a subset of X), the following
corollary holds (in the Riemannian case this was proved by Cheeger and
Gromoll, cf. [CE], Chapter 8).

COROLLARY 3.11. If X is a finite dimensional, complete inner metric space of
locally bounded curvature, then every closed, convex subset of X is a manifold with
boundary.

In general the boundary of a space of bounded curvature need not be smooth
in the “normal” coordinates of the type constructed in Theorem A: A square in
the plane with the induced inner metric is flat, but in no choice of normal
coordinates is the boundary smooth.

LEMMA 3.12. Let X be a finite dimensional complete inner metric space of
locally bounded curvature. Then 0X is transverse to every interior point.

Proof. We need only prove the following: For interior point pe X and yeS§,,
if xe dX is the first boundary point along y from p (since 0X is closed there is
such a point), then y terminates at x. Since x is the first boundary point on y, we
can choose an interior point ¢ on y and a strictly convex region B(q,r) of
curvature bounded above and below containing x. If y were defined beyond x,
then Claim 3.10 would imply that exp, ' is a homeomorphism on an open set
containing x; that is, x is contained in a Euclidean neighborhood, and so is not a
boundary point. This contradiction completes the proof. O
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DEFINITION 3.13. Suppose B = B(p, r) is a strictly convex region of curvature
bounded above and below, and 4, A’ = B are transverse to p. Then 4 and 4’ are
said to be r-equivalent in B if there is a (possibly not continuous) bijection
¢@: A — A’ such that a and ¢(a) lie on the same radial geodesic from p. The radial
distance 6,(4, A') is defined to be the supremum of the distances d(a, ¢(a)).

LEMMA 3.14. Let U = B(p,r) and V = B(q, s) be strictly convex regions of
curvature bounded above and below. Suppose A is a compact subset of U N V such
that A is transverse to both p and q. Then there exists an ¢ > 0 such that if
A’ = U n Vis r-equivalent to A in U and 6,(A, A’) < ¢, then A’ is transverse to q.

Proof. Theset C = {yeS,: y(t)€ A for some t} is compact. If y(s), o(t) € A, there
exists some J > 0 such that for all { €(—4, 9), {y(s + {), «t + ()} is transverse to
g. For if otherwise, one could find ¢, » 0 with geodesics f§; to g starting at g
passing through both y(s + t;) and a(t + ¢;). But lim 8; would be a minimal curve
in V starting at q and passing through both y(s) and «(t), a contradiction. A
similar argument shows that the function which assigns to each element of C x C
the infimum of all such § is lower semicontinuous, and therefore has a positive
minimum on C x C; this minimum is the desired &. O

Proof of Theorem D. Suppose X is a smooth manifold with boundary. Endow
the interior of X with a Riemannian metric which is a product metric near the
boundary. Extend the metric (distance) to all of X by continuity. Then X is
isometrically embedded as a convex subset of the Riemannian manifold X
obtained by adding a small open collar (with the product metric) to X along the
boundary. In particular, all angle comparisons in X can be carried out in X,
which has locally bounded sectional curvature, and hence locally bounded
curvature in the present sense.

Conversely, suppose X is finite dimensional with a complete inner metric of
locally bounded curvature. For simplicity, assume X is compact, and let
{Bi(x;,1;)}, 1 < i<k, beacover of X by balls with the following properties: (1)
B, is contained in a strictly convex region of curvature bounded above and
below, (2) x; €int X for all i, (3) there exist coordinates (B;, ;) having C* overlap
on the complement of the boundary of X (cf. [Be]). The terminal map
T,:S,, = (0, 00] was shown to be continuous on T !((0,7,]) in the proof of
Theorem A. U, = T{!((0,r,) is an open subset of the unit sphere S,,
homeomorphic to W, = B; n 0X via the map ¢,(v) = exp,, ° T;(v)-v. One can
choose a smooth map 7,: U, — (0, r) having a continuous extension equal to T;
on S, \U; such that, on U,,7; < T; and 7, approximates T; near enough that
the following holds: Let D; = {y(z,()):yeU,}, that is, D, is obtained by
‘pushing’ W, inward along radial geodesics starting at x; by the amount T; — t,.
D, is r-equivalent to W,, and so by Lemma 3.14, if 7, is chosen close enough to
Ty, D, N B; is still transverse to x; for all i such that D, n B; # . The set

[ Xy =X\{y0):t>1,00), 7€ Ul}:_,.’}
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is homeomorphic to X and has smooth boundary in B,. Let B} be an open
subset of B, such that B B, and {Bj, B,, ..., B;} covers X. Let T, be the
‘terminal’ map for X, ie., for each yeS,,, T,(y) =t provided y(t)e 0X,, and
T,(y) = oo if no such t exists. Since 0X,; N B, is transverse to x,, T, is well-
defined and continuous. U, = T; }((0,r,)) is an open subset of the unit sphere
S, homeomorphic to W, = B,ndX; via the map @,(v) = exp,,° T,(v) 0.
The overlap between B, and B, is C' on their interiors, and
0X, "B, "B, cintB; nint B,; this implies that 7, is smooth on
Y = ¢;(0X,nB;nB,). Setting Y' = ¢;'(0X,nB;NB,), one can now
choose a smooth approximation 7, of T, on U, which agrees with T, on Y’, and
so that the new manifold with boundary, X,, constructed as above, has
boundary whose intersection with any B; is transverse to x;, and has smooth
coordinates (i.e. the restrictions of ;) in B} U B,. This inductive procedure can
be continued for a finite number of steps to obtain a manifold with boundary X,
contained in, and homeomorphic to, X, such that the restrictions of {i,} are C*
coordinates for X,.

In the noncompact case, one can use the above procedure to ‘smooth out’
B(p, 2) for some point p. On can then cover B(p,3) by B(p, 1.5) and a finite
number of open sets which do not intersect B(p, 1). A C* structure can now be
constructed on B(p, 3) which agrees with a the previous smooth structure on
B(p, 1). This process can now be continued for a countable number of steps to
put a C! structure on all of X. O
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