@article{CM_1992__81_2_223_0,
author = {Kurihara, Masato},
title = {Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$},
journal = {Compositio Mathematica},
pages = {223--236},
year = {1992},
publisher = {Kluwer Academic Publishers},
volume = {81},
number = {2},
mrnumber = {1145807},
zbl = {0747.11055},
language = {en},
url = {https://www.numdam.org/item/CM_1992__81_2_223_0/}
}
TY - JOUR
AU - Kurihara, Masato
TI - Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$
JO - Compositio Mathematica
PY - 1992
SP - 223
EP - 236
VL - 81
IS - 2
PB - Kluwer Academic Publishers
UR - https://www.numdam.org/item/CM_1992__81_2_223_0/
LA - en
ID - CM_1992__81_2_223_0
ER -
Kurihara, Masato. Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$. Compositio Mathematica, Tome 81 (1992) no. 2, pp. 223-236. https://www.numdam.org/item/CM_1992__81_2_223_0/
[1] : Polylogarithm and cyclotomic elements, preprint (1990).
[2] and : L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift Vol I, Progress in Math. Vol. 86, Birkhäuser (1990), 333-400. | Zbl | MR
[3] : Anderson-Ihara theory: Gauss sums and circular units, in Algebraic Number Theory (in honor of K. Iwasawa), Adv. Studies in Pure Math. 17 (1989), 55-72. | Zbl | MR
[4] : Le groupe fondamental de la droite projective moins trois points, in Galois groups over Q, Publ. MSRI, no. 16, Springer-Verlag (1989), 79-298. | Zbl | MR
[5] and : Algebraic and etale K-theory, Trans, AMS 292(1) (1985), 247-280. | Zbl | MR
[6] : On the Jacobian variety of some algebraic curves, Comp. Math. 42 (1981), 345-359. | Zbl | MR | Numdam
[7] : Profinite braid groups, Galois representations and complex multiplications, Ann. Math. 123 (1986), 43-106. | Zbl | MR
[8] , , and : On some properties of the universal power series for Jacobi sums, Adv. Studies in Pure Math. 12 (1987), 65-86. | Zbl | MR
[9] : A class number formula for cyclotomic fields, Ann. Math. 76 (1962), 171-179. | Zbl | MR
[10] : Euler systems, to appear in The Grothendieck Festschrift Vol. II. | Zbl | MR
[11] and : On the torsion in K4(Z) and K5(Z) with Addendum by C. Soulé, Duke Math. 45 (1978), 101-132. | Zbl
[12] :Values of zeta functions, étale cohomology, and algebraic K-theory, in Lect. Notes in Math. 342, Springer-Verlag (1973), 489-501. | Zbl | MR
[13] : Letter from Quillen to Milnor on Im(π iO→πsi→KiZ), July 26, 1972, in Lecture Notes in Math. 551, Springer-Verlag (1976), 182-188. | Zbl
[14] : The main conjecture: Appendix to Cyclotomic Fields (Combined Second Edition) by , Graduate Texts in Math. Vol. 121, Springer-Verlag (1990). | Zbl | MR
[15] : K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), 251-295. | Zbl | MR
[16] : On higher p-adic regulators, in Lecture Notes in Math. 854, Springer-Verlag (1981), 372-401. | Zbl | MR
[17] : Éléments cyclotomiques en K-thérie, Astérisque 147-148 (1987), 225-257. | Zbl | MR | Numdam
[18] : Stability in Algebraic K-theory, in Lect. Notes in Math. 966, Springer-Verlag (1982), 304-333. | Zbl | MR
[19] : Relations between K2 and Galois cohomology, Invent. Math. 36 (1976), 257-274. | Zbl | MR
[20] : A property of cyclotomic integers and its relation to Fermat's last theorem, Ann. Math. 26 (1924-25), 217-232. | JFM
[21] : Introduction to Cyclotomic Fields, Graduate Texts in Math. Vol. 83, Springer-Verlag (1980). | Zbl | MR
[22] : The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990), 493-540. | Zbl | MR





