@article{CM_1991__80_3_257_0,
author = {Altmann, Klaus},
title = {Equisingular deformations below the {Newton} boundary},
journal = {Compositio Mathematica},
pages = {257--283},
year = {1991},
publisher = {Kluwer Academic Publishers},
volume = {80},
number = {3},
mrnumber = {1134256},
zbl = {0751.14022},
language = {en},
url = {https://www.numdam.org/item/CM_1991__80_3_257_0/}
}
Altmann, Klaus. Equisingular deformations below the Newton boundary. Compositio Mathematica, Tome 80 (1991) no. 3, pp. 257-283. https://www.numdam.org/item/CM_1991__80_3_257_0/
[A1] : Equisingular deformations of isolated 2-dimensional hypersurface singularities. Invent. Math. 88, 619-634 (1987). | Zbl | MR
[Ha] : Algebraic geometry. Graduate Texts in Mathematics, vol. 52. Berlin, Heidelberg, New York: Springer 1977. | Zbl | MR
[Ka] : Equimultiplicity of deformations of constant Milnor number. In: Proceedings of the Conference on Algebraic Geometry, Berlin 1985. Teubner-Texte zur Mathematik, vol. 92, Leipzig: Teubner 1986. | Zbl | MR
[O] : On the Resolution of the Hypersurface Singularities. In: Advanced Studies in Pure Mathematics 8, 405-436 (1986) (Complex Analytic Singularities). | Zbl
[Va] , a.n.: Zeta-function of monodromy and Newton's diagram. Invent. Math. 37, 253-262 (1976). | Zbl | MR
[Wa1] : Equisingular deformations of plane algebroid curves. Trans. Am. Math. Soc. 193, 143-170 (1974). | Zbl | MR
[Wa2] : Equisingular deformations of normal surface singularities, I. Ann. Math. 104, 325-356 (1976). | Zbl | MR





