@article{CM_1991__78_1_1_0,
author = {Oledzki, Wies{\l}aw J.},
title = {On the eta-invariant of $\mathrm {Pin}^+$-operator on some exotic 4-dimensional projective space},
journal = {Compositio Mathematica},
pages = {1--27},
year = {1991},
publisher = {Kluwer Academic Publishers},
volume = {78},
number = {1},
zbl = {0725.57017},
language = {en},
url = {https://www.numdam.org/item/CM_1991__78_1_1_0/}
}
TY - JOUR
AU - Oledzki, Wiesław J.
TI - On the eta-invariant of $\mathrm {Pin}^+$-operator on some exotic 4-dimensional projective space
JO - Compositio Mathematica
PY - 1991
SP - 1
EP - 27
VL - 78
IS - 1
PB - Kluwer Academic Publishers
UR - https://www.numdam.org/item/CM_1991__78_1_1_0/
LA - en
ID - CM_1991__78_1_1_0
ER -
%0 Journal Article
%A Oledzki, Wiesław J.
%T On the eta-invariant of $\mathrm {Pin}^+$-operator on some exotic 4-dimensional projective space
%J Compositio Mathematica
%D 1991
%P 1-27
%V 78
%N 1
%I Kluwer Academic Publishers
%U https://www.numdam.org/item/CM_1991__78_1_1_0/
%G en
%F CM_1991__78_1_1_0
Oledzki, Wiesław J. On the eta-invariant of $\mathrm {Pin}^+$-operator on some exotic 4-dimensional projective space. Compositio Mathematica, Tome 78 (1991) no. 1, pp. 1-27. https://www.numdam.org/item/CM_1991__78_1_1_0/
[1] , and , Clifford modules, Topology 3, Suppl. 1 (1964), 3-38. | Zbl | MR
[2] and , Some new four-manifolds, Ann. of Math. 104 (1976), 61-72. | Zbl | MR
[3] , Sur les difféomorphismes de la sphére de dimension trois (Γ4 = 0). Lecture Notes No. 53, Springer-Verlag (1968). | Zbl
[4] , and , An exotic free involution on S4, Ann. of Math. 113 (1981), 357-365. | Zbl | MR
[5] , The eta-invariant for even-dimensional Pinc-manifolds, Adv. in Math. 58 (1985), 243-284. | Zbl | MR
[6] , Involutions on manifolds, Springer-Verlag, Berlin (1971). | Zbl | MR
[7] , Four-dimensional topology, Moscow (1981) (Russian edition). | Zbl | MR
[8] , , Seifert manifolds, plumbing, μ-invariant and orientation reversing maps, Lecture Notes No. 664, 163-196. | Zbl
[9] , Exotic structures on 4-manifolds detected by spectral invariants, Invent. Math. 94, 147-162 (1988). | Zbl | MR





