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0. Introduction

Projective geometry over fields of positive characteristic does not behave like the
classical projective geometry. For example, when the characteristic of the ground
field is positive, a plane curve is not always reflexive, i.e., the dual map from the
curve to its dual is not always birational.

In this context, R. Pardini proved the following theorem.

THEOREM (Pardini [4]). Let C be a smooth curve of degree d in projective plane
¡p2 over an algebraically closed field of characteristic p &#x3E; 2. Then C is nonreflexive
if and only if p|d - 1 and the equation of C is of the form;

where the Pi are homogeneous of degree (d - I)lp.
On the other hand, the author showed the following result in the previous

paper [1].

THEOREM. Let C be a smooth projective plane curve of degree d  4 over a field
of characteristic p &#x3E; 0. Then the dual curve of C is smooth if and only if d - 1 is

a power of p and C is projectively equivalent to the curve defined by

We proved the theorem through complicated calculation. Purposes of this note
are:

(1) to give a souped-up version of Pardini’s theorem (see, §2, Cor. 2.5) and
(2) to give a conceptual and straightforward proof of our previous theorem,

using the souped-up version of Pardini’s theorem and a recent result of H.
Kaji [2] (see, §3).
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1. Hasse-Schmidt differential operators on a polynomial ring

Throughout this section, we fix a polynomial ring k[X1,..., Xn] over a field k.
First we define differential operators D(03B1)i(i E Z with 1  i  n; 03B1~N0), where N0
is the nonnegative integers.

DEFINITION 1.1. For integers i (1  i  n) and a E N0, we define the k-linear

endomorphism D(03B1)i of k[X1,..., Xn] by

where bij is Kronecker symbol and (m 03B1) (m !/a !(m - a)!).
REMARK 1.2. The following properties hold:

DEFINITION 1.3. Let F(X) be a homomogeneous polynomial in k[X1,...,
Xn] of degree d and let j be an integer with 0  j  d. We define the polynomial

by

where (03B1) ranges over the set of nonnegative integers (03B11,..., an) with

a + ... + an - j.

LEMMA 1.4. (0) F(j)(X; Y) is bihomogeneous of degree (d - j, j).
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(2) Let s and t be two variables. Then

Proof. (0) is trivial by the defintion. To prove (1), it suffices to show the formula
when F(X) is a monomial. This case can be proved by using the following
formula; for a fixed nonnegative integers e1,...,en with e 1 + ··· + en = d, we
have

[This formula obtained by comparing coefficients of Âj in (À + 1 )el ... (À + 1 )en
and (03BB + 1)d.]

(2) It also suffices to show the formula when F(X) is a monomial. In this case,
the formula is obvious. (3): By (2), we have

Hence we have F(j)(X; Y) = F(d-j)(Y; X) for any j.

2. A souped-up version of Pardini’s theorem

From now on, we work over a field of characteristic p &#x3E; 0.

Throughout of this section, we fix an irreducible curve C c P2 of degree d,
given by the equation F(X1,X2,X3) = 0.
For a smooth point P E C, we define an integer m(P) ( 2) by the intersec-

tion multiplicity of the tangent line TP(C) and C at P. Let M(C) =
min{m(P) P E Reg C}, where Reg C is the set of smooth points of C. Obviously,
M(C) = m(P) if P is a general point of C. It is known that if M(C) &#x3E; 2, then M(C) is
a power of p and m(P) or m(P)-1 is divided by M(C). In this case, M(C) coincides
with the inseparable degree of the dual map C ~ C*, where C* is the dual curve of
C. (see, for example, [1].)

PROPOSITION 2.1. Let us fix an integer m  3. Let P = (x) = (x1,x2,x3) be
a smooth point of C. Then m(P)  m if and only if F(1)(x; Y)|F(i)(x; Y) as
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polynomials in (Y) = (YI, Y2, Y3) for any i with 2  i  m - 1.

Proof. Let ( y) E p2 with (y) 1= (x) and let l((x), (y)) the line joining (x) and ( y).
Then the divisor on C cut out by the line l((x),(y)) is equal to 03A3(s:t)s(x) + t(y),
where (s : t) ranges over the zeros counting multiplicities of the following equation:

Therefore, choosing (y ) on Tp(C), we have

m(P)  m =&#x3E;(1 :0) is a root of (*) with multiplicity  m

Note that the condition F(x) = F(1)(x;y) = 0 is satisfied automatically, because
P = (x) E C and (y)~TP(C). Hence m(P)  m if and only if F(i)(x; Y) (as
a polynomial in Y) vanishes on TP(C) for 2  V i  m - 1. Since, Tp(C) is the line
determined by F(1)(x; Y) = 0, the above condition is equivalent to the condition
that F(1)(x; Y) | F(i)(x; Y) for 2  V i  m - 1.

To prove our main theorem, we need the following lemma, whose proof is
easy and omitted.

LEMMA 2.2. Let Ci and C2 be complete smooth curves and let D and E be
effective divisors on Cl X C2 such that

(1) D has no components of type {P} x C2;
(2) for any P ~ CI, D n {P} x C2 - E n {P} x C2 as divisors on C2 {P} X C2.

Then we have C ~ E.

THEOREM 2.3. Suppose that C is smooth. Let q = pe(e &#x3E; 0 if p ~ 2; e &#x3E; 1 if
p = 2). Then M(C)  q if and only if F(i)(X; Y) = 0 (as a polynomial in (X) and (Y))
for 2  ~i  q-1.

Proof. Proposition 2.1 implies the "if" part. We prove the "only if" part.
Suppose the contrary: there exists i (2  i  q - 1) with F(i)(X; Y) 1= 0. Let H be
the divisor on P2 x P2 determined by the equation F(i)(X; Y) = 0. First we show
that H n C x C is a divisor on C x C. To prove this, by the irreducibilty of
C x C, and by the unmixedness theorem, it suffices to show that H ~ C x C.
Suppose that N =3 C x C. Restricting the both sides of H ~ C  C to C  {P},
we have that F(i)(X; y) vanishes on C. Since degX F(i)(X; y) = d - i  d = deg C,
we have F(i)(X; y) = 0 as a polynomial in (X). This holds for any y E C. Hence,
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putting

we have f03B3(Y) = 0 on C. Since deg f03B3(Y) = i  d, we have f03B3(Y) = 0 as

a polynomial in (Y). Hence we have F(i)(X; Y) = 0, which is a contradiction.
Since F(1)(x; Y) is an equation of the (embedded) tangent line to C at (x) if

(x) E C, the polynomial F(1)(X; Y) is nontrivial. Therefore, by an argument similar
to the one above, the equation F(1)(X; Y) = 0 determines a divisor, say D, on
C x C.

Let E = H n C x C. Since C is smooth, D has no components of type {x} x C
(because F(1)(x; Y) = 03A33i= 1 (~F/~Xi)(x)Yi), and since F(1)(x; Y)|F(i)(x; Y) (by
Proposition 2.1), we have

for any (x) E C. Therefore D  E by Lemma 2.2. Hence, for any point (y) E C,
D·C {y} ~ E·C  {y} on C  {y} ~ C. This is impossible, because

Hence we have F(i)(X; Y) = 0 for 2  V 1 K q - 1. 

COROLLARY 2.4 (Pardini). Suppose that C is smooth. If M(C) &#x3E; 2, then

M(C) 1 d - 1.
Proof. Since M(C) is a power of p and S(C)M(C)d* = d(d - 1), where S(C) is

the separable degree of the dual map C ~ C* and d* = deg C* (see, for example,
[1] the proof of 5.1), it suffices to show p|d - 1. One can prove this by using our
theorem and an argument similar to the proof of ([4], Corollary 2.2). D

COROLLARY 2.5. Let C be a smooth plane curve of degree d. Let q = pe(e &#x3E; 0 if
p &#x3E; 2; e &#x3E; 1 if p = 2). Then M(C)  q if and only if q divides d - 1 and there are
three homogeneous polynomials Pl, P2, P3 c- k[Xl, X2, X3] of degree (d - I)lq
such that

Proof. Since M(C) is a power of p if M(C)  q, the assumption M(C)  q
implies q d - 1 (by Corollary 2.4). So it suffices to show the assertion under the
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condition d - 1. Say (d - 1 )/q = r. From Theorem 2.3, M(C)  q if and only if

for any triples (al, a2,oC3) with 2  al + a2 + 03B13  q - 1. Writing

the above condition means that if c(03B21,03B22,03B23) ~ 0 then

The condition (A) is equivalent to the condition:

To prove this, we use the following lemma.

LEMMA 2.6. Let u and v be nonnegative integers and p a prime number. Expand
u and v by p as follows:

Then (v) =1= 0 mod p if and only ïf ai  bi for i = 0,1, ... , e.

Proof See Schmidt [5].
Let us continue the proof of Corollary 2.5. Assume that the condition (A) is

satisfied for a fixed triple (03B21, 03B22, 03B23) with Pl + P2 + P3 = rq + 1. Put 03B2v =

rvq + r’v (0  r’v  q - 1) for v = 1, 2, 3. Suppose that some rv, say r’1, is greater
than 1. Then we may put al = r’1, a2 = a3 = 0 in (A), and then we have
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by Lemma 2.6. This is a contradiction. Hence we have rv = 0 or 1 for any v = 1, 2,
3. Since Pl + 03B22 + 03B23 = rq + 1, we have r’1+r’2+r’3 ~ 1 mod q. Recall q = pe
with e &#x3E; 0 if p &#x3E; 2 or e &#x3E; 1 if p = 2. Hence we have that there is a permutation
{i, j, kl of {1, 2, 3} such that ri = 1, rj = rk = 0. So the condition (A) implies (B).
Conversely, (B) implies (A) by Lemma 2.6. Therefore the equivalence of the two
conditions has been established. This completes the proof.

3. An application to funny curves

In this section, we give another proof of our previous theorem which is stated in
Introduction.

Let C be a smooth plane curve of degree d  4 over an algebraically closed field
of characteristic p &#x3E; 0.

First we review our previous proof. The proof divides into two parts. The first
one is to show that

(I) if C* is smooth, then M(C) = d - 1. (Hence M(C) is a power of p, say q.)

The second one is to show that

(II) if M(C) = d - 1 = q, then C is projectively equivalent to the curve defined by

Our new proof is as follows. Concerning the first step, we can use a nice
theorem by H. Kaji [2], which is the answer to the problem posed by Kleiman
([3], page 342).

KAJI’S THEOREM (a restricted version). If C is a smooth plane curve of
degree  4, then S(C) = 1, where S(C) is the separable degree of the dual map
C ~ C*.

Leg g (resp. g*) be the genus of C (resp. C*) and d (resp. d*) the degree of C (resp.
C*). Since both C and C* are smooth plane curve, we have g = 1 2(d - 1)(d - 2)
and g* = 2(d* - lxd* - 2). Thanks to Kaji’s theorem, we have g = g* and hence
d = d*. Since S(C)M(C)d* = d(d - 1), we have M(C) = d - 1.

Next, we show (II). By Corollary 2.5, we have that there are three linear
polynomials P 1, P2 , P3 such that C is defined by the equation 03A33i= 1Pi(Xq1,X12,Xq3)Xi =
0. By an argument similar to that of Pardini ([4], the proof of 3.7), we can show
that such equations are projectively equivalent to each other. In particular, the
curve C is projectively equivalent to the curve with

This completes the proof.
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Note added in proof. After the paper was submitted, the author received
a preprint from A. Hefez: Nonreflexive curves (to appear in Comp. Math.). He
found a proof of Corollary 2.5 independently of the author.


