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0. Introduction

Projective geometry over fields of positive characteristic does not behave like the
classical projective geometry. For example, when the characteristic of the ground
field is positive, a plane curve is not always reflexive, i.., the dual map from the
curve to its dual is not always birational.

In this context, R. Pardini proved the following theorem.

THEOREM (Pardini [4]). Let C be a smooth curve of degree d in projective plane
P2 over an algebraically closed field of characteristic p > 2. Then C is nonreflexive
if and only if p|d — 1 and the equation of C is of the form,

X, P, (X%, X5 X8) + X, P, (X%, X5, X5) + X3 P5(X], X5, X%) =0,

where the P; are homogeneous of degree (d — 1)/p.
On the other hand, the author showed the following result in the previous
paper [1].

THEOREM. Let C be a smooth projective plane curve of degree d = 4 over a field
of characteristic p > 0. Then the dual curve of C is smooth if and only if d — 1 is
a power of p and C is projectively equivalent to the curve defined by

X4+ X4 X, + X, X4 =0

We proved the theorem through complicated calculation. Purposes of this note
are:

(1) to give a souped-up version of Pardini’s theorem (see, §2, Cor. 2.5) and

(2) to give a conceptual and straightforward proof of our previous theorem,
using the souped-up version of Pardini’s theorem and a recent result of H.
Kaji [2] (see, §3).
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1. Hasse-Schmidt differential operators on a polynomial ring
Throughout this section, we fix a polynomial ring k[X ¢, ..., X, ] over a field k.

First we define differential operators D{® (i € Z with 1 < i < m; a e N,), where N,
is the nonnegative integers.

DEFINITION 1.1. For integers i (1 < i < n) and « € N,, we define the k-linear
endomorphism D{® of k[X,,..., X,] by

DX = é.-,-(if) X,
where §;; is Kronecker symbol and (3) = (m!/al(m — a)!).
REMARK 1.2. The following properties hold:

o

1) «! DY =
(1) 2l D = 50

(2) [D¥,DP'] =0;

(3) DD = (“ i ) D+
o

a

4) DP(G-H) = Z DY(G)D~V(H).

DEFINITION 1.3. Let F(X) be a homomogeneous polynomial in k[X,...,
X, ] of degree d and let j be an integer with 0 < j < d. We define the polynomial

FOX;Y)ek[X,,...,X,, Y;,..., Y,]
by

FO(X;Y) =Y (DF... D@ F) Y3 ... Yin,
(@)

where (o) ranges over the set of nonnegative integers (ay,...,a,) with
ot o, =

LEMMA 1.4. (0) F9(X;Y) is bihomogeneous of degree (d — j, j).

(1) FOOX;X) = (f) FX)
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(2) Let s and t be two variables. Then

d
F(sX +tY)= Y, FOX; Y)s'~It/,

ji=0
(3) FO(X;Y) = F4=(Y; X).

Proof. (0)is trivial by the defintion. To prove (1), it suffices to show the formula
when F(X) is a monomial. This case can be proved by using the following
formula; for a fixed nonnegative integers e,,..., e, with e, + --- + ¢, =d, we

> (2)-()-0)

with
ay+an=j

[This formula obtained by comparing coefficients of A/ in (A + 1)°*...(4 + 1)*
and (4 + 1)7.]

(2) It also suffices to show the formula when F(X) is a monomial. In this case,
the formula is obvious. (3): By (2), we have

d
Y (FO(X;Y) — F4=i(Y; X)) st = 0,
j=o0
Hence we have FU(X; Y) = FY~(Y; X) for any j.

2. A souped-up version of Pardini’s theorem

From now on, we work over a field of characteristic p > 0.

Throughout of this section, we fix an irreducible curve C = P? of degree d,
given by the equation F(X,,X,,X;)=0.

For a smooth point P € C, we define an integer m(P) (> 2) by the intersec-
tion multiplicity of the tangent line Tp(C) and C at P. Let M(C)=
min{m(P) | P € Reg C}, where Reg C is the set of smooth points of C. Obviously,
M(C) = m(P)if Pis a general point of C. It is known that if M(C) > 2, then M(C)is
a power of p and m(P) or m(P)— 1 is divided by M(C). In this case, M(C) coincides
with the inseparable degree of the dual map C — C*, where C* is the dual curve of
C. (see, for example, [1].)

PROPOSITION 2.1. Let us fix an integer m > 3. Let P = (x) = (x,X,, X3) be
a smooth point of C. Then m(P) > m if and only if FV(x;Y)| FO(x;Y) as
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polynomials in (Y) = (Y,,Y,,Y;) forany iwith2 <i<m—1.

Proof. Let (y)e P? with (y) # (x) and let I((x), (¥)) the line joining (x) and (y).
Then the divisor on C cut out by the line I((x),(y)) is equal to Z.,s(x) + t(y),
where (s:t) ranges over the zeros counting multiplicities of the following equation:

0 = F(s(x) +t(y))
| =Fx)s* + FO(x;y)s* 1t + -
+ P D )t~ m gy FO(y)ed,

Therefore, choosing (y) on T,(C), we have

m(P) = m <(1:0) is a root of (*) with multiplicity > m

< F(x) = FO(xy) = - = F" (x;y) = 0.

Note that the condition F(x) = FM(x; y) = 0 is satisfied automatically, because
P =(x)eC and (y)eTp(C). Hence m(P)>m if and only if FO(x;Y) (as
a polynomial in Y) vanishes on Tp(C)for 2 < Vi < m — 1. Since, Tp(C) is the line
determined by F)(x; Y) = 0, the above condition is equivalent to the condition
that FO(x; Y) | FO(x; Y)for2<Vi<m— 1.

To prove our main theorem, we need the following lemma, whose proof is
easy and omitted.

LEMMA 2.2. Let C, and C, be complete smooth curves and let D and E be
effective divisors on C, x C, such that

(1) D has no components of type {P} x C,;
(2) foranyPe C,,Dn{P} x C, < En{P} x C,asdivisorsonC, ~ {P} x C,.
Then we have C < E.

THEOREM 2.3. Suppose that C is smooth. Let g =p(e>0ifp#2,e>11if
p = 2). Then M(C) > qif and only if F(X; Y) = 0 (as a polynomial in (X) and (Y))
for2<Vi<q— 1.

Proof. Proposition 2.1 implies the “if” part. We prove the “only if” part.
Suppose the contrary: there exists i (2 < i < g — 1) with FO(X; Y) # 0. Let H be
the divisor on P2 x P2 determined by the equation F?(X; Y) = 0. First we show
that HN C x C is a divisor on C x C. To prove this, by the irreducibilty of
C x C, and by the unmixedness theorem, it suffices to show that H # C x C.
Suppose that H > C x C. Restricting the both sides of H > C x Cto C x {P},
we have that F?(X; y) vanishes on C. Since deg, F?(X;y) =d —i < d = deg C,
we have F?(X;y) = 0 as a polynomial in (X). This holds for any y € C. Hence,
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putting

FOX;Y)= Y f,(Y)X" X7 X",
)

we have f,(Y)=0 on C. Since deg f,(Y)=i<d, we have f (Y)=0 as
a polynomial in (Y). Hence we have F(X;Y) = 0, which is a contradiction.

Since F")(x; Y) is an equation of the (embedded) tangent line to C at (x) if
(x) € C, the polynomial F)(X; Y) is nontrivial. Therefore, by an argument similar
to the one above, the equation F)(X;Y) = 0 determines a divisor, say D, on
C xC.

Let E = Hn C x C. Since C is smooth, D has no components of type {x} x C
(because FM(x;Y) = X3, (0F/0X;)x)Y;), and since FV(x;Y)|F?(x;Y) (by
Proposition 2.1), we have

Dn{x} x CKEn{x} xC

for any (x)e C. Therefore D < E by Lemma 2.2. Hence, for any point (y)e C,
D-C x {y} <E-C x {y} on C x {y} >~ C. This is impossible, because

deg D-C x {y} = degy FV(X;y):d = (d — 1)d.
deg E-C x {y} = degx FO(X;y)-d = (d — i)d.

Hence we have FO(X;Y)=0for2<Vi<qg-—1.

COROLLARY 24 (Pardini). Suppose that C is smooth. If M(C)> 2, then
M(C)|d—1.

Proof. Since M(C) is a power of p and S(C)M(C)d* = d(d — 1), where S(C) is
the separable degree of the dual map C —» C* and d* = deg C* (see, for example,
[1] the proof of 5.1), it suffices to show p | d — 1. One can prove this by using our
theorem and an argument similar to the proof of ([4], Corollary 2.2). O

COROLLARY 2.5. Let C be a smooth plane curve of degree d. Let q = p°(e > 0 if
p>2;e>1ifp=2). Then M(C) = q if and only if q divides d — 1 and there are
three homogeneous polynomials P, P,, P;ek[X,, X,, X;] of degree (d — 1)/q
such that

3
F(XI,XZ’XS) = Z P,.(X‘{,Xg,xg)X,..

i=1

Proof. Since M(C) is a power of p if M(C) > g, the assumption M(C) = ¢
implies g | d — 1 (by Corollary 2.4). So it suffices to show the assertion under the
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conditionq|d — 1.Say (d — 1)/q = r. From Theorem 2.3, M(C) > q if and only if

D@ plep@EF —
for any triples (a;,a,,a;) with 2 < o, + a, + a3 < g — 1. Writing

F= % cpXhXBXY,
pi+p2+pa=d

the above condition means that if Cip1papn 0 then
Bs
o

(4) (51 ><£§)< 3> =0 mod p

for any (a;,a,,a3) with 2 <o, + o, + 03 <g— 1.
The condition (A4) is equivalent to the condition:

( there is a permutation {i,j,k} of {1,2,3} and integers r;, i Ty
such that

Bi=rq+1

ﬂj =r;q

Be=r4

\ i +rj+r=r

(8)

To prove this, we use the following lemma.

LEMMA 2.6. Let u and v be nonnegative integers and p a prime number. Expand
u and v by p as follows:

a; < p).

u=ap+ap+--+a,p° 0<
< b; < p).

v=>by+bp+-+b,p° (

(=)

Then () #0modp if and only if a, > b, for i = 0,1,..., e.

Proof. See Schmidt [5].

Let us continue the proof of Corollary 2.5. Assume that the condition (A) is
satisfied for a fixed triple (8,,8,,8;) with B, + B, + By =rq+ 1. Put B, =
r.g+r,(0<r,<q—1)forv=1,2, 3. Suppose that some r,, say r, is greater
than 1. Then we may put o, =r, a, = a; = 0 in (4), and then we have

(YY) (7 %0 moan
oy 0y o3 ri
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by Lemma 2.6. This is a contradiction. Hence we haver, =0 or 1 foranyv = 1, 2,
3. Since B, + B, + B3 =rq + 1, we have r; + ry + r3 = 1 mod g. Recall g = p®
withe > 0if p > 2 or e > 1 if p = 2. Hence we have that there is a permutation
{i,j, k} of {1,2,3} such that r; = 1, r; = r;, = 0. So the condition (4) implies (B).
Conversely, (B) implies (4) by Lemma 2.6. Therefore the equivalence of the two
conditions has been established. This completes the proof.

3. An application to funny curves

In this section, we give another proof of our previous theorem which is stated in
Introduction.

Let C be a smooth plane curve of degree d > 4 over an algebraically closed field
of characteristic p > 0.

First we review our previous proof. The proof divides into two parts. The first
one is to show that

(I) if C* is smooth, then M(C) =d — 1. (Hence M(C) is a power of p, say q.)
The second one is to show that

(IT) if M(C) = d — 1 = g, then Cis projectively equivalent to the curve defined by
X{M + X4X,+ X,X4=0.

Our new proof is as follows. Concerning the first step, we can use a nice
theorem by H. Kaji [2], which is the answer to the problem posed by Kleiman

([31, page 342).

KAJI'S THEOREM (a restricted version). If C is a smooth plane curve of
degree > 4, then S(C) = 1, where S(C) is the separable degree of the dual map
C-C*

Leg g (resp. g*) be the genus of C (resp. C*) and d (resp. d*) the degree of C (resp.
C*). Since both C and C* are smooth plane curve, we have g = 3(d — 1)(d — 2)
and g* = $(d* — 1)d* — 2). Thanks to Kaji’s theorem, we have g = g* and hence
d = d*. Since S(C)M(C)d* = d(d — 1), we have M(C) =d — 1.

Next, we show (II). By Corollary 2.5, we have that there are three linear
polynomials P, , P,, P, such that C is defined by the equation =}, P,(X{, X%, X)X, =
0. By an argument similar to that of Pardini ([4], the proof of 3.7), we can show
that such equations are projectively equivalent to each other. In particular, the
curve C is projectively equivalent to the curve with

X9t 4+ X3X, + X, X4 =0.

This completes the proof.
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Note added in proof. After the paper was submitted, the author received
a preprint from A. Hefez: Nonreflexive curves (to appear in Comp. Math.). He
found a proof of Corollary 2.5 independently of the author.



