@article{CM_1987__63_1_41_0,
author = {O'Brian, N. R.},
title = {Geometry of twisting cochains},
journal = {Compositio Mathematica},
pages = {41--62},
year = {1987},
publisher = {Martinus Nijhoff Publishers},
volume = {63},
number = {1},
mrnumber = {906378},
zbl = {0641.32021},
language = {en},
url = {https://www.numdam.org/item/CM_1987__63_1_41_0/}
}
O'Brian, N. R. Geometry of twisting cochains. Compositio Mathematica, Tome 63 (1987) no. 1, pp. 41-62. https://www.numdam.org/item/CM_1987__63_1_41_0/
1 : Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85 (1957) 181-207. | Zbl | MR
2 and : On the zeros of meromorphic vector fields. Essays on topology and related topics, memoires dédiés à Georges de Rham. Springer, Berlin, Heidelberg, New York (1970) 29-47. | Zbl | MR
3 and : A computation of the equivariant index of the Dirac operator. Bull. Soc. Math. France 113 (1985) 305-345. | Zbl | MR | Numdam
4 : The Atiyah-Singer Theorems: a probabilistic approach. I. The index theorem. J. Functional Analysis 57 (1984) 56-99. | Zbl | MR
5 : Pseudodifferential operators on supermanifolds and the Atiyah-Singer Index theorem. Commun. Math. Phys. 92 (1983) 163-178. | Zbl | MR
6 and : Geometric Asymptotics. A.M.S. Mathematical Surveys 14 (1977). | Zbl | MR
7 , and : The trace map and characteristic classes for coherent sheaves. Am. J. Math. 103 (1981) 225-252. | Zbl | MR
8 , and : Hirzebruch-Riemann-Roch for coherent sheaves. Am. J. Math. 103 (1981) 253-271. | Zbl | MR
9 , and : A Grothendieck-Riemann-Roch formula for maps of complex manifolds. Math. Ann. 271 (1985) 493-526. | Zbl | MR
10 : An analytic proof of Riemann-Roch-Hirzebruch theorem for Kaehler manifolds. J. Diff. Geometry 5 (1971) 251-283. | Zbl | MR
11 and : A parametrix for ∂ and Riemann-Roch in Čech theory. Topology 15 (1976) 273-301. | Zbl
12 and : Duality and intersection theory in complex manifolds I. Math. Ann. 237 (1978) 41-77. | Zbl | MR
13 and : Duality and intersection theory in complex manifolds II, the holomorphic Lefschetz formula. Ann. Math. 108 (1978) 518-538. | Zbl | MR





