@article{CM_1986__60_2_187_0,
author = {Benveniste, X.},
title = {Un r\'esultat sur les faces du c\^one des 1-cycles effectifs},
journal = {Compositio Mathematica},
pages = {187--208},
year = {1986},
publisher = {Martinus Nijhoff Publishers},
volume = {60},
number = {2},
mrnumber = {868137},
zbl = {0624.14006},
language = {fr},
url = {https://www.numdam.org/item/CM_1986__60_2_187_0/}
}
Benveniste, X. Un résultat sur les faces du cône des 1-cycles effectifs. Compositio Mathematica, Tome 60 (1986) no. 2, pp. 187-208. https://www.numdam.org/item/CM_1986__60_2_187_0/
[B] : Sur l'anneau canonique de certaines variétés de dimension 3. Inv. Math. 73 (1983) 153-164. | Zbl | MR
[B-1] : Sur le cône des 1-cycles effectifs en dimension 3. Math. Ann. 272 (1985) 257-265. | Zbl | MR
[B-2] : Sur la décomposition de Zariski en dimension 3. Note aux C.R.A.S. t 295 (20 Sept 1982), Série I 107-110. | Zbl | MR
[Ha] : Algebraic Geometry. G.T.M. 52. Springer Verlag (1977). | Zbl | MR
[Hi] : Resolution of an algebraic variety over a field of characteristic zero (I, II). Anals of Math. 79 (1964) 109-326. | Zbl | MR
[H-W] and : An introduction to the theory of numbers 5th edition, Clarendon: Oxford (1979). | Zbl | MR
[K] : A generalisation of Kodaira-Ramanujam's vanishing theorem. Math. Ann. 261 (1983) 43-46. | Zbl | MR
[K-1] : The cone of curves of algebraic varieties. Ann. of Math. 119 (1984) 603-633. | Zbl | MR
[K-2] : Pluricanonical systems on minimal algebraic varieties. Inv. Math. 79 (1985) 567-588. | Zbl | MR
[Ko] : The cone theorem. Ann. of Math. 120 (1984) 1-5. | Zbl | MR
[R] : Canonical 3-folds. In: Géometrie Algébrique, Angers 1979, pp. 273-310, A. Beauville (éditeur) Sijthoff Noordhoff (1980). | Zbl | MR
[R-1] : Minimal models of canonical 3-folds. In: Symposia in Math. Vol. 1, S. Iitaka et H. Morikawa (éditeurs). Kinokuniya-North Holland (1981). | Zbl | MR
[Ro] : Convex Analysis: Princeton University Press no. 28 (1970). | Zbl | MR
[S] : Non vanishing theorem. Izv. An. SSSR. (à paraître). | Zbl
[V] : Vanishing theorems. J. reine angew. Math. 335 (1982) 1-8. | Zbl | MR





