

COMPOSITIO MATHEMATICA

HENERI A. M. DZINOTYIWEYI

Sizes of quotient spaces of certain function algebras on topological semigroups

Compositio Mathematica, tome 55, n° 3 (1985), p. 303-311

http://www.numdam.org/item?id=CM_1985__55_3_303_0

© Foundation Compositio Mathematica, 1985, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (<http://www.compositio.nl/>) implique l'accord avec les conditions générales d'utilisation (<http://www.numdam.org/conditions>). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

*Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/*

SIZES OF QUOTIENT SPACES OF CERTAIN FUNCTION ALGEBRAS ON TOPOLOGICAL SEMIGROUPS

Heneri A.M. Dzinotyiweyi *

Introduction

Let S be a locally compact topological semigroup, $C(S)$ the space of all bounded complex-valued continuous functions on S , $LWUC(S)$ the space of all left weakly uniformly continuous functions in $C(S)$ and $M_a(S)$ the convolution measure algebra of absolutely continuous bounded complex-valued Radon measures on S .

When S is a closed subsemigroup of a locally compact topological group such that S is neither compact nor discrete, we showed that the quotient space $C(S)/LWUC(S)$ is nonseparable in [9]. In this paper, we will extend this result to a more general class of topological semigroups.

For a locally compact topological group G , $M_a(G)$ can be identified with the usual group algebra, $L^1(G)$, of G —see e.g. Hewitt and Ross [13]. When G is nondiscrete it is known that the quotient space $L^\infty(G)/C(G)$ and the radical of the Banach algebra $L^\infty(G)^*$ are nonseparable—see E.E. Granirer [10] and S.L. Gulick [12]. Motivated by these results, we will show that for a large class of nondiscrete topological semigroups S we have $M_a(S)^*/C(S)$ and the radical of $M_a(S)^{**}$ nonseparable; the actual setting of our results being more general.

Definitions and notations

Let A and B be any subsets of a semigroup S and x any element of S . We take AB , $A^{-1}B$, $x^{-1}B$ and $A^{-1}x$ to denote $\{ab: a \in A \text{ and } b \in B\}$, $\{y \in S: ay \in B \text{ for some } a \in A\}$, $\{x\}^{-1}B$ and $A^{-1}\{x\}$ (respectively). By symmetry the definitions of BA^{-1} , Bx^{-1} and xA^{-1} must be clear. By a *right cancellative semigroup* we mean a semigroup S such that whenever $yx = zx$ then $y = z$, for all x , y and z in S .

* This research was partially supported by a Fulbright Research Fellowship.

Throughout this paper, a semigroup, S , endowed with a Hausdorff topology with respect to which the semigroup operation $(x, y) \rightarrow xy$ is a jointly continuous mapping of $S \times S$ into S , is called a *topological semigroup*.

Let S be a locally compact topological semigroup for the remainder of this section. For every function f in $C(S)$ and x in S , we define the functions ${}_x f$ and f_x in $C(S)$ by

$${}_x f(y) := f(xy) \text{ and } f_x(y) := f(yx) \quad (y \in S).$$

Let

$$LWUC(S) := \{ f \in C(S) : \text{the map } x \rightarrow {}_x f \text{ of } S \text{ into } C(S) \text{ is weakly continuous} \},$$

$$WAP(S) := \{ f \in C(S) : \text{the set } \{ {}_x f : x \in S \} \text{ is relatively weakly compact} \},$$

$$AP(S) := \{ f \in C(S) : \text{the set } \{ {}_x f : x \in S \} \text{ is relatively norm compact} \}.$$

These spaces of functions have been studied widely - see e.g. [4] and [5]. If A is a subset of $C(S)$ and E of S we write $A|_E := \{ f|_E : f \in A \}$ where $f|_E$ denotes the restriction of a function f to E .

Let $M(S)$ be the set of all bounded complex-valued Radon measures on S . It is well known that $M(S)$ is a Banach algebra with respect to the usual total variation norm, $\| \cdot \|$, and convolution multiplication given by

$$\nu * \mu(E) := \int \mu(x^{-1}E) d\nu(x) = \int \nu(Ex^{-1}) d\mu(x),$$

for all Borel subsets E of S and measures ν, μ in $M(S)$. For each μ in $M(S)$ and x in S we take $|\mu|$ to be the Radon measure arising from the total variation of μ and \tilde{x} the point mass at x . Let $M_a(S) := \{ \mu \in M(S) : \text{the maps } x \rightarrow |\mu|(x^{-1}(C)) \text{ and } x \rightarrow |\nu|(Cx^{-1}) \text{ of } S \text{ into } \mathbb{R} \text{ are continuous, for every compact subset } C \text{ of } S \}$

The set $M_a(S)$ has been studied in many publications; for S , it plays a role analogous to that of $L^1(G)$ for a locally compact topological group G - see e.g. [1], [2], [15] and [16]. In particular, we have the following result proved in [1] and [2]

THEOREM 1: *We have $M_a(S)$ an L-ideal of $M(S)$ (–that is: $M_a(S)$ is a norm-closed subalgebra of $M(S)$ such that for all $\mu \in M(S)$ and $\nu \in M_a(S)$ we have $\nu^*\mu, \mu^*\nu \in M_a(S)$ and if $\mu \ll |\nu|$ then $\mu \in M_a(S)$).*

For each $\mu \in M(S)$, let $\text{supp}(\mu) := \{x \in S: \text{if } V \text{ is an open neighbourhood of } x \text{ then } |\mu|(V) > 0\}$.

Following A.C. and J.W. Baker we say S is a *foundation semigroup* if S coincides with the closure of $U\{\text{supp}(\mu): \mu \in M_a(S)\}$.

For ease of reference we quote the following result proved by Sleijpen [15].

THEOREM 2: *Let S be a foundation semigroup with identity element 1 and $S_1 := (x \in S: 1 \in \text{int}(X^{-1}x \cap xX^{-1}) \text{ whenever } X \text{ is a neighbourhood of } x)$. Then S_1 is dense in S and if V is an open neighbourhood in S then Vv^{-1} is a neighbourhood of 1, for all $v \in V \cap S_1$.*

The main results

Our next theorem is a generalization, to a larger class of semigroups, of a result we proved before–see [9, Theorem 2.5]. The proof employed contains a mixture of techniques we employed in [9] and those used in the proof of Baker and Butcher [3, Theorem 3]. The proof we give is also much simpler compared with that in [9].

THEOREM 3: *Let S be a normal, locally compact and right cancellative topological semigroup. Suppose S is neither countably compact nor discrete and $C^{-1}D$ is compact for all compact subsets C and D of S . Then, for some closed subset \bar{X} of S we have that $(C(S) \setminus \text{LWUC}(S))|_{\bar{X}}$ contains a linear isometric copy of l^∞ and so the quotient space $C(S)/\text{LWUC}(S)$ is nonseparable.*

PROOF. Since S is nondiscrete, we can find a relatively compact infinite set $\{s_n: n \in \mathbb{N}\}$ in S . As $C := \text{cl}(\{s_n: n \in \mathbb{N}\})$ is compact, we can choose a sequence $\{t_n\}$ in S with no cluster point and such that

$$t_{n+1} \notin \bigcup_{i=1}^n C^{-1}(Ct_i) \quad \text{for all } n \in \mathbb{N} \quad (1)$$

Choose infinite subsequences $T_k := \{t_{k1}, t_{k2}, \dots\}$ of $T := \{t_1, t_2, \dots\}$ such that

$$\bigcup_{k=1}^{\infty} T_k = T$$

and

$$T_k \cap T_{k'} = \emptyset$$

if and only if $k \neq k'$.

Let $X_k := \{s_m t_{k_n} : m, n \in \mathbb{N}\}$, $X := \{s_m t_n : m, n \in \mathbb{N}\}$ and note that our construction of the T_k 's and T imply

$$(a) \quad \bar{X}_k = \{ct_{k_n} : c \in C \text{ and } n \in \mathbb{N}\} \text{ (see proof of [3, Theorem 3])},$$

$$(b) \quad \bar{X}_k \cap \bar{X}_{k'} = \emptyset \quad \text{if and only if } k \neq k',$$

$$(c) \quad \bigcup_{k=1}^{\infty} \bar{X}_k = \bar{X}.$$

Next we define the functions $f_k : \bar{X}_k \rightarrow \mathbb{R}$ by

$$f_k(s_m t_{k_n}) := \begin{cases} 1 & \text{if } m < n \\ -1 & \text{if } m \geq n \end{cases}$$

$$f_k(ct_{k_n}) := -1 \quad \text{if } c \in C \setminus \{s_m : m \in \mathbb{N}\}.$$

then (as similarly shown in [3, page 105],) f_k is continuous, for all k in \mathbb{N} .

Corresponding to each element $\{d_{k'}\}$ in l^∞ , let $F_{(d_{k'})}$ be the function defined on \bar{X} by

$$F_{(d_{k'})}(x) := d_l f_l(x)$$

if and only if $x \in \bar{X}_l$ for some $l \in \mathbb{N}$.

By items (b) and (c) we have $F_{(d_{k'})}$ well-defined as a function. From items (b) and (c) we have that each \bar{X}_k is both closed and open in the space \bar{X} . Consequently $F_{(d_{k'})}$ is continuous, by the continuity of the f_l 's.

Now noting that

$$(*) \quad F_{(d_{k'})}(s_m t_{k_n}) = \begin{cases} d_k & \text{if } m < n \\ -d_k & \text{if } m \geq n, \end{cases}$$

[3, Theorem 5] and Tietze's Extension Theorem imply the existence of a function $\bar{F}_{(d_{k'})}$ in $C(S) \setminus LWUC(S)$ such that

$$\bar{F}_{(d_{k'})|_{\bar{X}}} = F_{(d_{k'})} \text{ and } \|\bar{F}_{(d_{k'})}\|_S = \|F_{(d_{k'})}\|_{\bar{X}} = \|\{d_{k'}\}\|_\infty.$$

Thus the (clearly) linear map $\{d_{k'}\} \rightarrow \bar{F}_{(d_{k'})_{\mid X}}$ of l^∞ into $(C(S) \setminus LWUC(S))_{\mid X}$ is isometric.

Since l^∞ is nonseparable, it follows that $C(S) \setminus LWUC(S)$ and hence the quotient space $C(S)/LWUC(S)$ is nonseparable.

For our next results, recall that the norm of $M_a(S)^*$ is given by

$$\|h\|_{M_a(S)^*} := \sup\{ |h(\nu)| : \nu \in M_a(S) \text{ with } \|\nu\| = 1 \}.$$

For a locally compact topological group G , $M_a(G)^*$ is simply $L^\infty(G)$.

THEOREM 4: *Let S be a nondiscrete and right cancellative foundation semigroup with an identity element 1. Then the quotient spaces $M_a(S)^*/C(S)$ and $M_a(S)^*/LWUC(S)$ contain isometric linear copies of l^∞ .*

PROOF. Let W be a compact neighbourhood of 1 and corresponding to each function g in $C(S)$ let G be the function in $C(W \times W)$ given by

$$G(x, y) := g(xy) \quad \text{for all } x, y \in W.$$

Then a simple compactness argument shows that the set $\{G(x, \cdot) : x \in W\}$ is relatively (norm and hence) weakly compact in $C(W)$. (Here each $G(x, \cdot)$ is given by $G(x, \cdot)(y) := G(x, y)$ for all x, y in W and $C(X)$ denotes the space of all bounded complex-valued continuous functions on a topological space X .)

Since S is not discrete, 1 is not isolated and so we can find a sequence $\{V_k\}$ of disjoint open neighbourhoods contained in W . Choose $v_k \in V_k \cap S_1$ and note that $V_k v_k^{-1}$ is a neighbourhood of 1, by Theorem 2. So there is a sequence $\{U_k\}$ of open neighbourhoods of 1 such that

$$U_k^2 \subset V_k v_k^{-1} \quad \text{for all } k \text{ in } \mathbb{N}.$$

By [8, Lemma 4.2] we can choose sequences $\{C_{k_1}, C_{k_2}, \dots\}$ and $\{D_{k_1}, D_{k_2}, \dots\}$ of non- $M_a(S)$ -negligible compact subsets of U_k such that, for all n, m, i and j in \mathbb{N} ,

$$C_{k_n} D_{k_m} \cap C_{k_i} D_{k_j} = \emptyset \quad \text{whenever } n < m \text{ and } i > j.$$

By right cancellation we have

$$C_{k_n} D_{k_m} v_k \cap C_{k_i} D_{k_j} v_k = \emptyset \quad \text{whenever } n < m \text{ and } i > j. \quad (1)$$

In the notation of [8, page 166], take $A = M_a(S)$ and set $d_a := d_{M_a(S)}$. We can choose sequences of points $\{c_{k_n}\}$ and $\{e_{k_n}\}$ such that

$$c_{k_n} \in d_a(C_{k_n}) \quad \text{and} \quad e_{k_n} \in d_a(D_{k_n}v_k). \quad (2)$$

Let

$$E_k := \bigcup_{i=1}^{\infty} \bigcup_{i < j} C_{k_i} D_{k_j} v_k \quad \text{and} \quad F_k := \bigcup_{j=1}^{\infty} \bigcup_{i > j} C_{k_i} D_{k_j} v_k.$$

We define the function h_k on S by

$$h_k := X_{E_k} - X_{F_k},$$

where X_A denotes the characteristic function of a subset A of S . Since E_k and F_k are disjoint σ -compact subsets of S , we also have that h_k is a functional in $M_a(S)^*$ (where $h_k(\nu) := \int h_k(x) d\nu(x)$, for all ν in $M_a(S)$).

We claim that, in the norm of $M_a(S)^*$,

$$\|h_k + g\|_{M_a(S)} \geq 1 \quad \text{for all } g \text{ in } C(S) \quad (3)$$

If not, then for some (real-valued) function g in $C(S)$ we can find $\epsilon > 0$ such that

$$\|h_k + g\|_{M_a(S)} \leq 1 - \epsilon.$$

In particular, for positive measures ν_α, μ_β in $M_a(S)$ such that $\|\nu_\alpha\| = \|\mu_\beta\| = 1$, $\text{supp}(\nu_\alpha) \subseteq C_{k_n}$ and $\text{supp}(\mu_\beta) \subseteq D_{k_m}v_k$, we have

$$|h_k(\nu_\alpha^* \mu_\beta) + g(\nu_\alpha^* \mu_\beta)| \leq 1 - \epsilon. \quad (4)$$

Recalling our definition of h_k , (4) implies that

$$\begin{cases} \text{if } n < m \text{ then } |1 + g(\nu_\alpha^* \mu_\beta)| \leq 1 - \epsilon \\ \text{if } n > m \text{ then } |-1 + g(\nu_\alpha^* \mu_\beta)| \leq 1 - \epsilon. \end{cases}$$

Letting the net (ν_α) converge in the weak*-topology to \bar{c}_{k_n} and (μ_β) to \bar{e}_{k_m} we thus get that (, since g is continuous on W),

$$\begin{cases} \text{if } n < m \text{ then } |1 + g(c_{k_n} e_{k_m})| \leq 1 - \epsilon \\ \text{if } n > m \text{ then } |-1 + g(c_{k_n} e_{k_m})| \leq 1 - \epsilon. \end{cases}$$

It follows that

$$G(c_{k_n}, e_{k_m}) = g(c_{k_n} e_{k_m}) \begin{cases} < -\epsilon & \text{if } n < m \\ > \epsilon & \text{if } n > m \end{cases}$$

and so $G(x, \cdot) : x \in W\}$ is not relatively weakly compact, by Grothendieck's Theorem [11]. This contradicts the observation at the beginning of our proof. By this conflict, claim (3) holds.

Since the V_k 's are pairwise disjoint and $C_{k_n} D_{k_m} v_k \subset V_k$ for all n, m and k in \mathbb{N} , we have that

$$\{t_k\} \rightarrow \sum_{k=1}^{\infty} t_k h_k + C(S)$$

defines a linear mapping of l^∞ into $M_a(S)^*/C(S)$. Noting that $\|h_k\|_{M_a(S)} = 1$, item (3) implies that

$$\|\{t_k\}\|_\infty = \|\sum_{k=1}^{\infty} t_k h_k + C(S)\|_{M_a(S)^*/C(S)}$$

and so the mapping $\{t_k\} \rightarrow \sum_{k=1}^{\infty} t_k h_k + C(S)$ is isometric.

Similarly the mapping $\{t_k\} \rightarrow \sum_{k=1}^{\infty} t_k h_k + LWUC(S)$ of l^∞ into $M_a(S)^*/LWUC(S)$ is linear and isometric. This completes our proof. (The idea of embedding l^∞ used here is inspired by [6] and [9].)

The second dual of $M_a(S)$, namely $M_a(S)^{**}$, can be turned into a Banach algebra with Arens product \circ defined as follows: For $\phi \in M_a(S)^{**}$, $h \in M_a(S)^*$ and $\nu \in M_a(S)$ we define $\nu \circ h$, $h \circ \nu$ and h^ϕ in $M_a(S)^*$ by

$$\nu \circ h(\mu) := h(\nu * \mu), \quad h \circ \nu(\mu) := h(\mu * \nu) \quad \text{and}$$

$$h^\phi(\mu) := \phi(\mu \circ h) \quad \text{for all } \mu \text{ in } M_a(S).$$

For all ϕ, ψ in $M_a(S)^{**}$ we have $\phi \circ \psi$ given by

$$\phi \circ \psi(h) := \phi(h^\psi).$$

$R_a(S)$, the radical of $M_a(S)^{**}$, is the intersection of all maximal modular left (or right) ideals (See [14] page 55).

Let G be a locally compact topological group. When G is nondiscrete and abelian, Civin and Yood [7] showed that $R_a(G)$ is infinite dimensional and later S. Gulick [12] showed that $R_a(G)$ is even nonseparable.

In [10], Granirer showed that $R_a(G)$ is nonseparable whenever G is nondiscrete or G is discrete and amenable. We generalize the former result to the semigroup situation.

THEOREM. *Let S be a nondiscrete and right cancellative foundation semigroup with an identity element. Then there exists a subspace P of $M_a(S)^*$ such that P^* is a linear isometric copy of $(l^\infty)^*$ and the restriction of the radical of $M_a(S)^{**}$ to P is P^* . In particular the radical of $M_a(S)^{**}$ is nonseparable.*

PROOF. (c.f. [10] for a related proof in the group case.) Let

$$A := \{ \phi \in M_a(S)^{**} : \phi(f) = 0 \text{ for all } f \text{ in } LWUC(S) \}.$$

For all $\psi \in M_a(S)^{**}$, $\nu \in M_a(S)$ and $h \in M_a(S)^*$, we have that $\nu \circ h \in LWUC(S)$, by the left handed version of [9, Lemma 4.1]; consequently $h^\psi(\nu) := \phi(\nu \circ h) = 0$ ($\phi \in A$) and so

$$\phi \circ \psi(h) := \psi(h^\phi) = 0 (\phi \in A).$$

Thus A is a right ideal of $M_a(S)^{**}$ such that

$$A \circ M_a(S)^{**} = \{0\}.$$

Hence $A \subset R_a(S)$ —see e.g. Richart [14, Theorem 2.3.5(ii)].

Now by Theorem 4, there exists an isometric linear map Π of $l^\infty M_a(S)^*/LWUC(S)$. So for some closed subspace P of $M_a(S)^*$, we have $\Pi(l^\infty)$ dense in $P/LWUC(S)$. The inverse map Π^{-1} therefore extends to a unique isometric linear map $\tau: P/LWUC(S) \rightarrow l^\infty$. Hence the dual $\tau^*: (l^\infty)^* \rightarrow (P/LWUC(S))^*$ is an isometric linear map that is onto. But $A = LWUC(S)^\perp \subset M_a(S)^{**}$ can be identified with $(M_a(S)^*/LWUC(S))^*$. Hence each element of $(P/LWUC(S))^*$ can be identified with the restriction of some element of A to P . This completes our proof.

The case for a cancellative discrete topological semigroup S that is amenable can be similarly handled as in the equivalent group case—see [10, page 323]. To what extent one can drop the right cancellation requirement on S , in Theorems 4 and 5, remains an open problem.

We proved related results for other spaces of functions in [9]. In particular we showed that if S is a C -distinguished topological semigroup such that $M_a(S)$ is nonzero and S is not relatively neo-compact, then $WUC(S)/WAP(S)$ contains an isometric linear copy of l^∞ . (See [9] for definition of terms.) There seems to be some relationship between sizes of quotient spaces and the existence of continuous projections. We have the following conjecture.

CONJECTURE: *Let S be as stated in the preceding paragraph. Then there does not exist bounded linear projections from $WUC(S)$ onto $WAP(S)$ or from $WUC(S)$ onto $AP(S)$.*

When $S = \mathbb{R}$ —the usual additive group of reals with usual topology then this conjecture is true—see e.g. [17]. we are indebted to Professor W.G. Bade for drawing our attention to the reference [17].

References

- [1] A.C. and J.W. BAKER: Algebras of measures on a locally compact semigroup II. *J. Lond. Math. Soc.* 2 (1970) 651–659.
- [2] A.C. and J.W. BAKER: Algebras of measures on a locally compact semigroup III. *J. Lond. Math. Soc.* 4 (1972) 685–695.
- [3] J.W. BAKER and R.J. BUTCHER: The Stone-Cech compactification of a topological Semigroup. *Math. Proc. Camb. Phil.* 80 (1976) 103–117.
- [4] J.F. BERGLUND, H.D. HUNGHENN and P. MILNES: *Compact right topological semigroups and generalizations of almost periodicity*. Springer-Verlag lecture notes 663 (1978).
- [5] R.B. BURCHEL, *Weakly almost periodic functions on semigroups*. New York: Gordon and Breach (1970).
- [6] Ching CHOU: Weakly almost periodic functions and almost convergent functions on a group. *Trans. Amer. Math. Soc.* 206 (1975) 175–200.
- [7] P. CIVIN and B. YOOD: The second conjugate space of a Banach algebra as an algebra. *Pac. J. math.* 11 (1961) 847–870.
- [8] H.A.M. DZINOTIWEYI: Weakly almost periodic functions and the irregularity of multiplication in semigroup algebras. *Math. Scand.* 46 (1980) 157–172.
- [9] H.A.M. DZINOTIWEYI: Nonseparability of Quotient spaces of function algebras on topological semigroups. *Trans. Amer. Math. Soc.* 272 (1982) 223–235.
- [10] E.E. GRANIRER: The radical of $L^\infty(G)^*$. *Proc. Amer. Math. Soc.* 41 (1973) 321–324.
- [11] A. GROTHENDIECK: Critères de compacité dans les espaces fonctionnels généraux. *Amer. J. Math.* 74 (1952) 168–186.
- [12] S.L. GULICK: Commutativity and ideals in the biduals of topological algebras. *Pac. J. Math.* 18 (1966) 121–137.
- [13] E. HEWITT and K.A. ROSS: *Abstract harmonic analysis*. Vol. I. Berlin: Springer-Verlag (1963).
- [14] C. RICKART: *General theory of Banach algebras*. University series in higher mathematics. Princeton, N.J.: Van Nostrand, (1960).
- [15] G.G. SLEIJPEN: Locally compact semigroups and continuous translations of measures. *Proc. Lond. Math. Soc.* 37 (1978) 75–97.
- [16] G.L.G. SLEIJPEN: Emaciated sets and measures with continuous translations. *Ibid* 98–119.
- [17] B.B. WELLS, Jr.: Uncomplemented function algebras. *Studia mathematica* T. XXXII (1969) 41–46.

(Obaltum 11-VIII-1983 & 30-I-1984.)

Department of mathematics
 University of Zimbabwe
 Box MP 167, Mount Pleasant
 Harare
 Zimbabwe