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SIZES OF QUOTIENT SPACES OF CERTAIN FUNCTION
ALGEBRAS ON TOPOLOGICAL SEMIGROUPS

Heneri A.M. Dzinotyiweyi *

Introduction

Let S be a locally compact topological semigroup, C(S) the space of all
bounded complex-valued continuous functions on S, LWUC(S) the
space of all left weakly uniformly continuous functions in C(S) and
M,(S) the convolution measure algebra of absolutely continuous bounded
complex-valued Radon measures on S.

When S is a closed subsemigroup of a locally compact topological
group such that S is neither compact nor discrete, we showed that the
quotient space C(S)/LWUC(S) is nonseparable in [9]. In this paper, we
will extend this result to a more general class of topological semigroups.

For a locally compact topological group G, M,(G) can be identified
with the usual group algebra, L'(G), of G-see e.g. Hewitt and Ross [13].
When G is nondiscrete it is known that the quotient space L*(G)/C(G)
and the radical of the Banach algebra L*(G)* are nonseparable-see E.E.
Granirer [10] and S.L. Gulick [12]. Motivated by these results, we will
show that for a large class of nondiscrete topological semigroups S we
have M,(S)*/C(S) and the radical of M,(S)** nonseparable; the actual
setting of our results being more general.

Definitions and notations

Let A and B be any subsets of a semigroup S and x any element of S.
We take AB, A7'B, x"'B and 4~ 'x to denote {ab: a€ 4 and b € B},
{y€S: aye B forsome ac A}, {x} 'Band 4~ '{x} (respectively). By
symmetry the definitions of BA™', Bx~' and x4 ' must be clear. By a
right cancellative semigroup we mean a semigroup S such that whenever
yx =zx then y=z, forall x, y and z in S.

* This research was partially supported by a Fulbright Research Fellowship.
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Throughout this paper, a semigroup, S, endowed with a Hausdorff
topology with respect to which the semigroup operation (x, y)— xy is a
jointly continuous mapping of S X S into S, is called a topological
semigroup.

Let S be a locally compact topological semigroup for the reminder of
this section. For every function f in C(S) and x in S, we define the
functions , f and f, in C(S) by

S()=f(xy)and f(y)=f(yx)(y €S).
Let
LWUC(5)={feC(S): themap x —  fof S into C(S) is
weakly continuous},
WAP(S):={f€ C(S): theset { . f: x €S} is relatively weakly
compact},
AP(S):={f€ C(S): theset { .f: x € S} is relatively norm
compact} .

These spaces of functions have been studied widely - see e.g. [4] and [5].
If A is a subset of C(S) and E of S we write A= { f g f€ A} where
/e denotes the restriction of a function f to E.

Let M(S) be the set of all bounded complex-valued Radon measures
on S. It is well known that M(S) is a Banach algebra with respect to the
usual total variation norm, || ||,, and convolution multiplication given by

ru(E)= (s E)v(x) = [o(Ex)au().

for all Borel subsets E of S and measures », p in M(S). For each p in
M(S) and x in S we take |p| to be the Radon measure arising from the
total variation of p and X the point mass at x. Let M, (S):= {p € M(S):
the maps x = |p|(x'(C) and x = |v|(Cx~!) of S into R are continu-
ous, for every compact subset C of S'}

The set M,(S) has been studied in many publications; for S, it plays a
role analogous to that of L'(G) for a locally compact topological group G
—see e.g. [1], [2], [15] and [16]. In particular, we have the following result
proved in [1] and [2]
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THEOREM 1: We have M (S) an L-ideal of M(S) (-that is: M,(S) is a
norm-closed subalgebra of M(S) such that for all p € M(S) and v € M (S)
we have v*u, p*v € M,(S) and if p << |v| then p€ M, (S)).

For each p € M(S), let supp(p):= {x € S: if V is an open neighbour-
hood of x then |p|(V)> 0}.

Following A.C. and J.W. Baker we say S is a foundation semigroup if S
coincides with the closure of U{supp(u): up € M,(S)}.

For ease of reference we quote the following result proved by Sleijpen
[15].

THEOREM 2: Let S be a foundation semigroup with identity element 1 and
S, =(x€S:1€int(X 'x N xX"') whenever X is a neighbourhood of x }.
Then S, is dense in S and if V is an open neighbourhood in S then Vv~ is a
neighbourhood of 1, for allv e VN S;.

The main results

Our next theorem is a generalization, to a larger class of semigroups, of a
result we proved before-see [9, Theorem 2.5}. The proof employed
contains a mixture of techniques we employed in [9] and those used in
the proof of Baker and Butcher [3, Theorem 3]. The proof we give is also
much simpler compared with that in [9].

THEOREM 3: Let S be a normal, locally compact and right cancellative
topological semigroup. Suppose S is neither countably compact nor discrete
and C~'D is compact for all compact subsets C and D of S. Then, for some
closed subset X of S we have that (C(S)\LWUC(S)) |x contains a linear
isometric copy of I and so the quotient space C(S)/LWUC(S) is
nonseparable.

ProOOF. Since S is nondiscrete, we can find a relatively compact infinite
set {5, n€N}in S. As C:=cl({s,: n € N}) is compact, we can choose
a sequence {7, } in S with no cluster point and such that

t,negJcl(cy) forallneN 1)
i=1

Choose infinite subsequences T} = {1y, t;5,...} of T:= {1, t,,...} such
that

o0
U I,=T
k=1
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and
T,NT,. =P
if and only if k # k.
Let X, :={s,t,: m,neN}, X:={s,1,: m, n€N} and note that
our construction of the 7,’s and T imply

(a) X,={ct,: c€Cand neN} (-see proof of [3, Theorem 3]),

(b) X,Nn X, =0  ifandonlyif k #k’,
il p— —_—
() UX.=x.
k=1

Next we define the functions f,: X, — R by

if
A { 1 man

filet, )= =1 if ce C\{s,: meN}.

then (as similarly shown in [3, page 105],) f, is continuous, for all k in
N.

Corresponding to each element {d,.} in /%, let F, , be the function
defined on X by

F(d,(,)(x) = d,f,(x)
if and only if x € X, for some /€ N.
By items (b) and (c) we have F, , well-defined as a function. From
items (b) and (c) we have that each X, is both closed and open in the
space X. Consequently F, , is continuous, by the continuity of the f,’s.

Now noting that

d, ifm<n

(*) F;dk,)(smtk,,) = { _dk if mz=>=n,

[3, Theorem 5] and Tietze’s Extension Theorem imply the existence of a
function F, , in C(S)\LWUC(S) such that

F(d,(,)lx= Fog.yand | Fyylls= 1 Fayllx= 1l {di} o
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Thus the (clearly) linear map {dk,}—>l_7-(dk,)|x of [* into (C(S)\
LWUC(s)),x is isometric.

Since /* is nonseparable, it follows that C(S)\ LWUC(S) and hence the
quotient space C(S)/LWUC(S) is nonseparable.

For our next results, recall that the norm of M,(S)* is given by

WA a5y = sup{ | h(v)|: v € M,(S) with ||»|| = 1}.

For a locally compact topological group G, M,(G)* is simply L*(G).

THEOREM 4: Let S be a nondiscrete and right cancellative foundation
semigroup with an identity element 1. Then the quotient spaces
M, (S)*/C(S)and M, (S)*/LWUC(S) contain isometric linear copies of

.

PrOOF. Let W be a compact neighbourhood of 1 and corresponding to
each function g in C(S) let G be the function in C(W X W) given by

G(x, y)=g(xy) forallx, yeW.

Then a simple compactness argument shows that the set {G(x,.): x € W}
is relatively (norm and hence) weakly compact in C(W). (Here each
G(x,.) is given by G(x,)(y)=G(x, y) for all x, y in W and C(X)
denotes the space of all bounded complex-valued continuous functions
on a topological space X.)

Since S is not discrete, 1 is not isolated and so we can find a sequence
{V,} of disjoint open neighbourhoods contained in W. Choose v, € V,
N S, and note that V,v; ' is a neighbourhood of 1, by Theorem 2. So
there is a sequence {U, } of open neighbourhoods of 1 such that

U2c Vo' forall kinN.
By [8, Lemma 4.2] we can choose sequences {C, %y Ckp---} and
{Dy,» Di,s-- -} of non-M,(S)-negligible compact subsets of U, such that,

for all n, m, i and j in N,

Ci,Di,, N Cy, Dy, =P whenever n <m and i>].

By right cancellation we have

Ci,Di, 0k N Ci Dy v =P  whenever n <m and i > . (1)
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In the notation of [8, page 166], take 4 = M, (S) and set d,:=d (s)- We
can choose sequences of points {¢, } and {¢, } such that

ck"Eda(Ck") and e, €d,(D, ;). (2)

Let

0 o0
E=U U'Ck,Dk,Uk and F.=UJ UC":D"/U"'

1=1i<jy J=1i>j
We define the function 4, on S by
hi=Xg, — Xg,
where X, denotes the characteristic function of a subset 4 of S. Since E,
and F, are disjoint o-compact subsets of S, we also have that A, is a
functional in M, (S)* (where h,(v):= [h,(x)dv(x), for all » in M, (S)).

We claim that, in the norm of M,(S)*,

N+ gllar,s)>1 for all g in C(S) (3)

If not, then for some (real-valued) function g in C(S) we can find € > 0
such that

Ay + 8l a,sy<1—e

In particular, for positive measures »,, pg in M,(S) such that ||v, || =
Il a1l = 1, supp(¥,) € Cy, and supp(p) C D, vy, we have

|hi(ving) +g(ving) | <1—e. (4)
Recalling our definition of 4, (4) implies that

if n<m then |1+ g(v¥ug)| <1—e
if n>m then | -1+ g(vkpg)| <1—e.
Letting the net (,) converge in the weak*-topology to ¢, and (pg) to

e,, we thus get that (, since g is continuous on W),

if n<mthen|1+g(c, e, )| <1—e€
if n>mthen |—1+g(c, e, )| <1—e.
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It follows that

<—¢ ifn<m
G(cy,» ex,) =g(cknekm){ > ¢ €if n>m

and so G(x,): x € W} is not relatively weakly compact, by
Grothendieck’s Theorem [11]. This contradicts the observation at the
beginning of our proof. By this conflict, claim (3) holds.

Since the V,’s are pairwise disjoint and C, D, v, C V, for all n, m
and k in N, we have that

el
{tn} = X tih+ C(S)
k=1
defines a linear mapping of [* into M,(S)*/C(S). Noting that

1A llar,(s)=1, item (3) implies that

I{ti} o= 1l 2= tihy+ C(S)] M,(S)*/C(S)
k=1

and so the mapping {¢, } = L_ 1., + C(S) is isometric.
Similarly the mapping {t,} = Xi_ 1t h,+ LWUC(S) of [* into

M, (S)Y*/LWUC(S) is linear and isometric. This completes our proof.
(The idea of embedding /* used here is inspired by [6] and [9].)

The second dual of M,(S), namely M, (S)**, can be turned into a
Banach algebra with Arens product o defined as follows: For ¢ €
M, (S)**, he M,(S)* and v € M,(S) we define voh, hor and 2* in
M,(S)* by

voh(p)=h(v*p), hov(p)=h(p*r) and
h*(p)=(poh) forall pin M,(S).

For all ¢, ¥ in M,(S)** we have ¢poi given by
poy(h):=¢(h¥).

R,(S), the radical of M,(S)** is the intersection of all maximal
modular left (or right) ideals (See [14] page 55).

Let G be a locally compact topological group. When G is nondiscrete
and abelian, Civin and Yood [7] showed that R, (G) is infinite dimen-
sional and later S. Gulick [12] showed that R,(G) is even nonseparable.
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In [10], Granirer showed that R,(G) is nonseparable whenever G is
nondiscrete or G is discrete and amenable. We generalize the former
result to the semigroup situation.

THEOREM. Let S be a nondiscrete and right cancellative foundation semi-
group with an identity element. Then there exists a subspace P of M, (S)*
such that P* is a linear isometric copy of (I°)* and the restriction of the
radical of M,(S)** to P is P*. In particular the radical of M,(S)** is
nonseparable.

Proor. (c.f. [10] for a related proof in the group case.) Let

A={oeM,/(S)*: ¢(f)=0 forall fin LWUC(S).

For all y € M, (S)**, ve M (S) and he M,(S)*, we have that voh €
LWUC(S), by the left handed version of [9, Lemma 4.1]; consequently
h?(v):=¢(roh)=0(¢ € A) and so

poy(h)=y(h*)=0(¢ € 4).

Thus A is a right ideal of M (S)** such that
AoM,(S)**={0}.

Hence 4 € R ,(S)-see e.g. Richart [14, Theorem 2.3.5(ii)].

Now by Theorem 4, there exists an isometric linear map II of /*
M, (S)*/LWUC(S). So for some closed subspace P of M,(S)*, we have
I1(/*) dense in P/LWUC(S). The inverse map I1~! therefore extends
to a unique isometric linear map 7: P/LWUC(S) — [*. Hence the dual
T (I*)* > (P/LWUC(S))* is an isometric linear map that is onto. But
A= LWUC(S)* ¢ M, (S)** can be identified with (M, (S)*/
LWUC(S))*. Hence each element of (P/LWUC(S))* can be identified
with the restriction of some element of 4 to P. This completes our proof.

The case for a cancellative discrete topological semigroup S that is
amenable can be similarly handled as in the equivalent group case -see
[10, page 323]. To what extent one can drop the right cancellation
requirement on S, in Theorems 4 and 5, remains an open problem.

We proved related results for other spaces of functions in [9]. In
particular we showed that if S is a C-distinguished topological semigroup
such that M,(S) is nonzero and S is not relatively neo-compact, then
WUC(S)/WAP(S) contains an isometric linear copy of /. (See [9] for
definition of terms.) There seems to be some relationship between sizes of
quotient spaces and the existence of continuous projections. We have the
following conjecture.
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CONJECTURE: Let S be as stated in the preceding paragraph. Then there
does not exist bounded linear projections from WUC(S) onto WAP(S) or
from WUC(S) onto AP(S).

When S = R-the usual additive group of reals with usual topology
then this conjecture is true-see e.g. [17]. we are indebted to Professor
W.G. Bade for drawing our attention to the reference [17].
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