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A CHARACTERIZATION OF QUASI-HOMOGENEOUS
GORENSTEIN SURFACE SINGULARITIES

Jonathan M. Wahl

Abstract

Following Steenbrink, we introduce 3 new resolution invariants of a complex normal
surface singularity. For a complete intersection we give a formula for = dim 7! in terms
of these and the usual resolution invariants. As a corollary, we obtain Looijenga’s result
w> 7+ b, where p is the Milnor number, and b is the number of loops in the resolution
dual graph. We also prove that if u = 7, then the singularity is quasi-homogeneous; for a
hypersurface, this is a special case of a well-known theorem of K. Saito. As a corollary of
the method, we show every quasi-homogeneous Gorenstein surface singularity, not a
rational double point, admits a one-parameter equisingular deformation.

Introduction

Let feC{z,...,z,} =P define a hypersurface with an isolated singu-
larity at the origin. Define

. 9 0
[.L=dlm P/(a—zf(-)-,,%)

. d ]
7=dim P/(éz—j;,...,a—zc,f).

Clearly, p > 7, with equality if f=Ya,0f/0z,, i.e., if there is a derivation
D =3%a,0/0z; with Df=f. f is called a q.-h. polynomial (quasi-homoge-
neous, or weighted homogenous) if for some positive integers wy,...,w,,
d,

f(t7ozg, ., t"z,) =1t (zq,...,2,).

If f is q.-h., then D= (1/d)Xw;z;(0/9z;,) has Df=f, whence p=r.
Conversely a theorem of K. Saito [11] says that if p =, then after a
holomorphic change of coordinates, f is q.-h. (cf. also Zariski’s theorem
[21] on irreducible plane curves).

Now suppose (X, 0)c (C¥, 0) is the germ of an n-dimensional iso-
lated complete intersection singularity, with n > 1. Compatibly with the
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270 Quasi-homogeneous Gorenstein surface singularities
hypersurface case, define

p=rk H,(F)

7=dim TAI,‘ 0

here, F is the Milnor fibre of a smoothing ([7], [17]), and 7 is the
dimension of the base space of a semi-universal deformation. From the
defining equations of (X, 0), one can give formulae for u and 7 as
dimensions of certain finite length modules; but it is no longer clear what
is the relation between these invariants. This problem was first consid-
ered by G.-M. Greuel [3], who conjectures pu> 7, and proves the in-
equality in case n =1 or if the link of X is a rational homotopy sphere.
Greuel also proves that (in every dimension > 0) p =7 if (X, 0) is q.-h.
E. Looijenga has recently proved [6] that for n=2, p>7+b where
b =number of loops in the resolution dual graph of (X, 0). (More
recently, Looijenga and J. Steenbrink [25] have generalized this result for
all n > 2, yielding in particular that u > 7). We shall prove the analogue
of Saito’s theorem for n = 2, yielding (with numbers referring to location
in the text):

THEOREM 3.3: Let (X, 0) be a two-dimensional isolated complete intersec-
tion. Then u> 7, and p= 7 iff (X, 0) is q.-h.

We actually prove a sharper result; namely, p>7+b, and p=7+Db
iff (X, 0) is q.-h. (b=0) or (X, 0) is cusp (b =1).

Our proof involves first writing p — 7 as a positive integral combina-
tion of b and some resolution invariants «, 8, and y introduced by J.
Steenbrink (Theorem 2.7). Then, the hard work is to show that the
vanishing of this expression implies the existence of an interesting global
vector field on a resolution of (X, 0), hence a derivation on 0y ,. (Only
in the hypersurface case does the condition p = 7 immediately produce a
derivation). Finally, there is a key theorem of G. Scheja and H. Wiebe
[12] saying that in dimension 2, the existence of a non-nilpotent deriva-
tion implies quasi-homogeneity.

In fact, we prove much more.

THEOREM 3.2: Let (X, 0) be a two-dimensional Gorenstein (see 2.1)
surface singularity. Then o= B =y =0 iff either (X, 0) is quasi-homoge-
neous (so b=0), or (X, 0) is a cusp (so b=1).

Another corollary of the expression for u—7 is that one gets a
topological lower bound for the analytic invariant 7, viz. 7> pu_+ p,
(Corollary 2.9). This should be compared with the problem of finding the
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minimum value of 7 in p-constant families ([1], [22], and Examples 4.6
and 4.7 below).

If a Gorenstein (X, 0) is smoothable, we can define p= Milnor
number of the smoothing = rk H,(F), and 7= dimension of the corre-
sponding smoothing component in the semi-universal deformation. In
dimension 2, g — 7 is expressed via the same formula as in the complete
intersection case (this depends on recent work of Greuel and Looijenga
[23]); so, also in this case, p > 7, with = iff ( X, 0) is q.-h. For a 1-dimen-
sional Gorenstein singularity, Greuel has proved [4] p > 7 with p =7 iff
(X, 0) is g.-h. (See also the recent paper of Greuel-Martin-Pfister [5]).

The invariants «, B8, and y for a normal surface singularity are
introduced in §1, a chapter due almost entirely to Steenbrink. We give his
proof of the basic Theorem 1.9, which yields an expression (in terms of
these and more usual resolution invariants) for the irregularity ¢ of
(X, 0). g, studied by Stephen Yau [20], is the dimension of the space of
holomorphic 1-forms on X-{0} modulo those which extend holomorphi-
cally on a resolution. From Theorem 1.9 one can compute g in the q.-h.
case, and also prove a theorem of Pinkham and Wahl [10]: for a rational
surface singularity, ¢ = 0. In §4, we compute «, 8, v, and g for some
hypersurface singularities; these invariants are not constant in equisingu-
lar families. g turns out to be a rather subtle invariant, and we pose two
questions:

Question 1 (See 5.7): Does every hypersurface singularity admit an
equisingular deformation to one whose general fibre has ¢ = 0?

Question 2 (See 5.10): Is ¢ a semi-continuous invariant?

To examine Question 1 in special cases (as in §4), one considers the
problem of “general moduli” for a given equisingularity type, as is done
for irreducible plane curves by Zariski in [22]. In fact, we use some
calculations and ideas of Zariski to answer Question 1 affirmatively in
several cases. While Yau conjectures in [20] that essentially all Gorenstein
singularities have ¢ > 0, examples indicate otherwise, and Question 1
even asks if the opposite should be true.

One surprising result is that ¢ is the dimension of the tangent space of
a functor of deformations of ( X, 0).

THEOREM 5.3: Let (X, 0) be a Gorenstein surface singularity. Then there is
a naturally defined smooth q-dimensional subspace of the base space of the
semi-universal deformation of (X, 0), corresponding to a certain class of
equisingular deformations.

COROLLARY 5.4: Let (X, 0) be a q.-h. Gorenstein surface singularity, not a
rational double point. Then there exists a non-trivial one-parameter equisin-
gular deformation of (X, 0).
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We are apply to thank Josef Steenbrink, whose two pages of handwrit-
ten notes (in response to some questions we posed) form the basis of
Chapter 1. We also thank E. Looijenga for discussions, and the Univer-
sity of Nijmegen and the National Science Foundation for support
during part of the preparation of this paper.

NOTATION AND TERMINOLOGY: A singularity shall mean a Stein germ
(X, 0) of an analytic space with an isolated singularity at 0. (X, 0) is
called (by abuse of language) q.-h., or said to have a good C*-action, if
the complete local ring of X at 0 is the completion of a positively graded
ring; equivalently, the analytic isomorphism type of (X, 0) is that of a
variety defined by weighted homogeneous polynomials. 4’ means dim H';
RDP means rational double point. A simple elliptic singularity is one
whose resolution consists of one smooth elliptic curve; and a cusp is one
whose resolution consists of one rational curve with a node, or a cycle of
smooth rational curves. The invariants « and B in this paper have
nothing to do with those of the same name in [17]. A good resolution of a
normal surface singularity is one for which all exceptional components
are smooth, and all intersections are transversal; there is a unique
minimal one.

§1. Steenbrink’s invariants

(1.1) Let (X, 0) be a normal surface singularity, X > X a good resolu-
tion, and E C X the (reduced) exceptional fibre. E is a union of smooth
curves E,, i=1,...,k; let g, =genus of E, g=23g, and denote by E
the disjoint union of the E,. Also, define b = first betti number of the
dual graph of E (= number of loops). Then h'(Og)=g + b,
dim H'(E; C)=2g+ b. We also define the geometric genus p, = h'(05).

(1.2) The sheaf of germs of logarithmic 1-forms Q% (log E) is defined by
the kernel of the restriction map:

0-Q%(log E)(—E)- Q%> Q- 0. (1.2.1)
It follows that A’Q%(log E)= Q%(E), and there is an exact sequence

0- Q%> Q%(log E) > 0z - 0; (1.2.2)
here, the map on the right is the residue map.

LEMMA 1.3:
a) The composition

H®(0p) > H'(Q) - H' (k)



Jonathan M. Wahl 273

is an isomorphism.

b) H(@%)> H(Q(log E)).
PROOF: b) follows from a) and (1.2.2). As for a), the image of 1 € H( Og,)
in H'(Q%) is the class of the line bundle Oy(E,); projecting then to
H 1(&2}5[) gives the class of the line bundle O, (E,) on the curve E;. Thus,
the composition in a) is essentially the intersection pairing on E; by
negative-definiteness, this is an isomorphism.

(1.4) Since HX(0z) > H°(0;), the map H°(0z)— H'(QY%) factors via
HL(QY%). Therefore, by (1.3.a), we may define an integer y > 0 by

Kby =k (H(0%) > H(95)) (141)
(Recall k = number of components of E).

(1.5) Exterior differentiation is seen, via a straightforward local argu-
ment, to give rise to an exact sequence

d d
0 Cs_r—0zx(—E) > Q%(og E)(—E) > Q%—-0. (15.1)

Here, j: X — E > X is the inclusion, and j,C z_j is the sheaf of locally
constant functions which vanish on E, defined via the map

0-jC;z >Cz—>C—0.

If X is contractible, then X retracts topologically onto E, so H'(C 3) =
H'(C ), all i; so, all cohomology of j,C z_g is 0. In particular,

H'(0x(—E))> H(dOyx(—E)), alli. (15.2)

(1.6) Asin (1.5), an easy local argument gives, for every exceptional cycle
Y > 0 with support in E, an exact sequence

d d
0-jiCx > 0x(~Y—E) > Qy(log E)(-Y—E) > Q3(-Y)—0.
(1.6.1)

With the natural inclusion of this sequence into (1.5.1), one deduces

PROPOSITION 1.7: For every exceptional cycle Y >0, there is an exact
C-linear sequence of locally free sheaves on Y:

0> 0y(—E)—>Q%(log E)®0y(—E) > Q58 0y — 0.
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(1.8) Besides y (see (1.4)), Steenbrink introduces two other invariants:
a=dim H°(Q%)/dH"(Qx(log E)(—E))
B=dim H°(Q})/Im H°(2%).
THEOREM 1.9 (Steenbrink): Let EC X — X be a good resolution of a
normal surface singularity, with Dgs 8 and b as usual, and a, B, vy >0 as
in (1.4) and (1.8). Then the irregularity q = dim H°(Q%_.)/H°(Q%) is
given by
q=p,—g—b-a—-B-y.
PrROOF: From
0->03(—E)—> 0z 00,
we see h'(0Oy(—E)) = p, — & — b. Next, consider
0—>d0z(—E)—Q%(log E)(—E)— Q% —0.

But h'(Ox(—E))=h"(dOgx(—E)) (1.5.2) and h'(Q%)=0 (Grauert-
Riemenschneider), so

h(Qx(log E)(—E))=p,~g—b—a. (1.9.1)
From (1.2.1) we deduce

W(Q%)=k+p,—g—b—a—B. (1.9.2)
By Serre duality,

R (Q%) = n'(Q%). (1.9.3)
Now consider the exact sequence

HO(Q%) > HO(Q)_) » HE(2%) — H'(2%).

As the rank of the last map is k + y, the cokernel of the first map has
dimension

q=ng(Q%)—(k+7v).

Use (1.9.2) and (1.9.3) now to get the result.
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COROLLARY 1.10: The invariants a, B, v = 0 satisfy
a) atB+y<p,—g—b
b) B<g
©) py— 8~ b—a> (0, (~E).

PRrOOF: a) follows from the theorem; b) is because g=h"(Q}); c) is a
consequence of (1.9.1) and the surjection from (1.2.2):

Q%(log E)(—E)— @0, (—E)—0.

COROLLARY 1.11: Suppose (X, 0) is quasi-homogeneous. Then q=p, — g,
and a=B=v=0.

PROOF: The resolution graph is star-shaped, so b = 0; and one could use
the C*-action to show a=8=y=0. However, it is easiest to use
Stephen Yau’s theorem [20] that in the q.-h. case, ¢ > p, — g. Combining
with Theorem 1.9 yields ¢ =p, — g, hence a ==y =

COROLLARY 1.12 (Pinkham-Wahl [10], p. 178): On the resolution of a
rational singularity, all 1-forms on X — E extend holomorphically across E;
that is, q = 0.

PrROOF: Immediate from Theorem 1.9, as rational means p, = 0.

REMARKS: (1.13.1) «, B, and y are independent of the good resolution
chosen. For instance, if m: X, > X, is a blowmg—up at an exceptional
point of X,, we have Q% X%, W*Qxl and R'7 QY% %, has length 1; thus,

H(@%,) = H°(2,)
H(Q%,)=r'(Q%,)+1

Therefore, B and g are the same on X, and X,, as well as (see (1.9.2))
P~ 8—b—a—p.

As p,, & and b are the same, this proves the assertion.

(1.13.2) As will be seen below, a, 8, and y are not constant in equisingu-
lar (i.e., simultaneous resolution) families (see especially 5.1); this con-
trasts with p,, g, and b. However, standard semi-continuity theorems
plus (1.9.1) and (1.9.2) imply that in such a family, @ and a + 8 cannot
go down under deformation. It would be interesting to relate «, 8, and y
to other invariants which distinguish fibres in an equisingular family,
such as those involving the “b-function” [19].
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(1.13.3) Lemma (1.3.a) may fail in characteristic p (as Corollary 1.12

may), since the determinant of the intersection matrix may be divisible
by p (cf. the characteristic 0 vanishing theorems of [14]).

(1.13.4) In lieu of a and B, one could define two other invariants § and e,
arising from the Hodge spectral sequence on X:

8 =dim H°(Q%)/dH°(2%)

g+b+e=rk(H'(X;C)—> H'(0})).
€>0 because H'(X;C)>H'(E;C), and H'(E;C)—> H'(0,) is a
surjection onto a (g + b)-dimensional space. One shows easily that § < a,

B<e and a+B=8+e It also follows from [6] that g—e=
dim H’(O)(d(ﬂx).

§2. Gorenstein singularities and smoothing components

(2.1) In this section we assume (X, 0) Gorenstein, i.e., there exists a
nowhere-0 holomorphic 2-form on X-{0}; recall that a complete intersec-
tion is Gorenstein. On the MGR (minimal good resolution) X — X, this
2-form has a polar divisor Z > 0; and in fact Z > E unless X is a RDP
(see 3.6 below). Thus

Ky=03(-Z2),

and we will write K-K=Z-Z. Recall the MGR is equivariant, i.e.
H°(®;)=H%U, ©3)=0, (where U= X — E).

PROPOSITION 2.2: Let X— X be the MGR of a Gorenstein surface
singularity. Then

(0;z)=2(p,—g—-b-a—-B)—y+k—-K-K
=2p,+ Xip(E)—K-K—=1—(b+2a+2B8+7).

PrOOF: The result being true for an RDP (both sides equal k), we
assume Z > 0. A rank 2 vector bundle F satisfies

F=F*® A’F
(“duality™), so

0;=0%(2).
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By equivariance,
H(Q%(Zz)=H(U, 9%(2))=H (U, 2%).
From
0-025-0%(Z2)->Q®0,(Z)-0,
we deduce
q-X(2%® 0,(2))+h' (%) -r'(2%(2))=0. (2.2.1)

One computes g from Theorem 1.9 and 4'(Q2%) from (1.9.2). The Euler
characteristic on Z is computed as in [16], (A.7.3), since A’Q%(Z)® 0,
=0,(2):

x(25®0,(2))=Z2-(K+2Z)-Z-(Z+K)=K-K.
Since h(0 ) = h'(Q%(Z)), the result follows from (2.2.1).
(2.3) Recall the following:

THEOREM 2.4. (|17],[23],[24]). The dimension of any smoothing component
of the semi-universal deformation of a Gorenstein surface singularity (X, 0)
is

T=h(0y)+10p, + 2K - K. (2.4.1)

(2.5) The preceding result was conjectured in [17], and proved there for
complete intersections. It was also shown there how a general proof
would follow from two now-verified results. First, there is a general
deformation theoretic assertion that the dimension of a smoothing com-
ponent is the “number” of derivations of (X, 0) that do not lift during
the smoothing; this was subsequently proved by Greuel-Looijenga [23].
Second, the formula for this number of derivations can be found if one
can globalize the smoothing; Looijenga proved in [24] that this can
always be done.

(2.6) Putting together (2.4.1) with Proposition 2.2 gives the dimension for
a smoothing component of

12p,+ Xip( E)+K-K—=1—(b+2a+2B8+7Y). (2.6.1)

THEOREM 2.7: Let (X, 0) be a Gorenstein surface singularity. For a given
smoothing, let p = Milnor number and ™= dimension of the corresponding
smoothing component (so, 7=dim Ty if X is unobstructed, e.g., a com-
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plete intersection). Also, let b= number of loops in the dual graph of a
resolution, and a, B, vy the invariants of §1. Then

p=12p,+ xiop(E) +K-K—1
p—1=b+2(a+pB)+y.

ProOOF: The formula for p is due to Laufer, Wahl [17], and Steenbrink
[13]. Put this together with Theorem 2.4 and (2.6.1).

COROLLARY 2.8 ( Looijenga [6]): For a two-dimensional complete intersec-
tion, u> 1+ b; in particular, p > 7.

COROLLARY 2.9: For a two-dimensional smoothable Gorenstein singularity,
write p=po+ p,+p_, from diagonalizing the intersection pairing on
H,(F; R). Then
T>potp_=p—(2p,—2g-b).
ProoOF: From Theorems 2.7 and 1.9, we deduce
T=p—(2p,—28—-b)+y+2q.

But p,=2p,—2g — b (eg., [17], (1.5.1) and (3.13.d)).

REMARKS: (2.10.1) Corollary 2.9 is new even for hypersurfaces, and gives
a lower bound for the minimum value of 7 in a p-constant family (see

§4).

(2.10.2) We will show below that a Gorenstein surface singularity is
quasi-homogeneous iff b=a = =1y =0; if (X, 0) is smoothable, Theo-
rem 2.7 says this is equivalent to the condition p = dimension of a
smoothing component.

(2.10.3) In §4, we use Theorem 2.7 to compute «, B, y, and the
irregularity ¢ in many cases.

§3. The main theorem

(3.1) Our goal in this section is the converse to Corollary 1.11 in the
Gorenstein case.

THEOREM 3.2: Let ( X, 0) be a Gorenstein surface singularity. Then a = 8
=vy=0iff (X,0)is q.-h. (b=0) or (X,0) is acusp (b=1).



Jonathan M. Wahl 279

COROLLARY 3.3: Let (X, 0) be a complete intersection surface singularity.
Then p> 7, and p.= 7 iff (X, 0) admits a good C*-action.

(3.4) Corollary 3.3 follows from Theorem 2.7 and 3.2; in fact, p>7+b
excepting the q.-h. and cusp cases. That p=17 if (X, 0) is q.-h. was

proved for complete intersections in any dimension by Greuel [3]; in
dimension 2, it follows from Theorem 2.7 and Corollary 1.11.

(3.5) We shall always work on the MGR X - X. Denote by S = S the
sheaf of derivations of X, logarithmic along E. Thus,

S=(2%(log E))*, (3.5.1)
and A’S = 0y (Z — E), hence (*“duality”)

S=Q%(log E)(Z—E). (3.52)
S is also defined by

0->S—>03—> ®0.(E)—0,

so H°(S)= H°(85). By equivariance of the MGR, H°(S)=H°(U, S);
combining with (3.5.2) gives

H°(Q%(log E)(Z-E))=H (U, Q%). (3.5.3)

(This gives a bound on the polar order along E of 1-forms on U). If C is
one of the smooth E,’s, there is a natural exact sequence (cf. [14], 1.10.2)

0-0.»S5S®0.-0.(—(E—-C))—0. (3.5.4)

Our first task will be to locate a C so that the image of H’(S)—
H°(S® 0.) contains the global section of (3.5.4). We start with a
generally known

LEMMA 3.6: On the minimal good resolution of a Gorenstein singularity, let

Z =2r,E;. Excluding the RDP case, all r,> 1, and r,=1 implies either
a) E, is rational, with at most 2 intersection points with other curves.
b) Z = E is one non-singular elliptic curve, and (X, 0) is simple elliptic.

PrROOF: See e.g. ([2], 4.6), for a proof due to M. Reid of the fact that
r; > 1. If some r,=1, then

—-K-E=Z-E=2-2g+E -E=E-E+Z2r,
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the last sum being over the intersection points with neighbors of E,. The
result follows.

LEMMA 3.7: Consider the MGR of a Gorenstein singularity which is not an
RDP, simple elliptic, or a cusp singularity. Then there is a smooth E, with
Z>E+FE, for whichg,>0, or g,=0 and E, has > 3 intersections with
other curves.

PrROOF: This is a simple consequence of lemma 3.6. For, the only graphs
in which all curves are of type 3.6. a) are chains of rational curves (from
cyclic quotient singularities) and cycles of rational curves (from cusps).
The only Gorenstein quotient singularities, however, are the RDP’s.

(3.8) For a cusp singularity, p, =b =1, g =0, and there is no C*-action.
A simple elliptic singularity always admits a C*-action. Let us exclude
these cases, and assume

C is an exceptional curve with Z > E + C, and g(C) >0 or
g(C) =0 and has at least 3 intersection points withother curves.

(3.8.1)

(3.9) If Y is any effective exceptional divisor, then the dualizing sheaf on
Y is an invertible sheaf given by

wy=Kz®0,(Y)=0,(Y—-2Z). (3.9.1)
Riemann-Roch says that for any locally free F on Y,

hO(F)=h"(wy,® F*). (3.9.2)

LEmMMA 3.10: Suppose C is a smooth exceptional curve with Z > C + E.
Then

a) Z=C+E impliesp,=g+b+1

b) If Z> C+ E, then hl(@Z_C_E(—E))=pg—g—b— 1.

PROOF: By Grauert-Riemenscheider, 4'(03x(—Z))=0, so pg=h1((92).
By (39.1), w,=0,, wy_=0,_~(—C). Thus (3.9.2) pg=h0(wz)=
h'(0,). From

020, (=C)=0;-0--0

weget p=1+h0;_(=CHN=1+h%w,_)=1+h"(0,_ (). 1f Z=
C+ E, then h'(0,_.)=h'(0,) =g+ b, whence a). Otherwise, consider

020, ¢« p(—E)>0,_—0z—0.
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Since H°(0,_ ) maps onto the constant functions H°(0) = C, we have
hl((OZ—C~—E( “E)) = hl(mz—c) _hl((pE)
=p,—1-g—b,
as desired.

LeMMA 3.11: Suppose C is a curve satisfying (3.8.1). Then a=8=vy=0
implies

H°(S)>H’(S®0.)=C
is surjective.

PrROOF: The hypothesis on C implies H°(O-(—(E — C)))=0, so (3.5.4)
h°(S ® 0-)=1. We must show

H°(S(—C))c H(S)
has cokernel of dimension u > 1. By (3.5.2) and (3.5.3), this inclusion is
H°(Q%(log E))(Z—- C—E))c H°(U, 9%). (3.11.1)
So, if we let v be the dimension of the cokernel of
H°(Q%(log E)) c H*(Q%(log E)(Z—- C—E)), (3.11.2)
we see that u + v = g (recall (1.3.b) and the definition of ¢). By Theorem
1.9 and the hypotheses, ¢ = p, — g — b; we want u > 1, so we must show
v<p,—g§—b-1
If Z=C+ E, then v=0. Lemma 3.10 a) yields p, = g+ b+ 1, so the
desired inequality is true.
Assume Z > C + E. By (3.11.2),
v<h®(Q%(log ENZ-C—E)®0;__;); (3.11.3)
by (3.9.1), (3.9.2), and (3.5.2), this last dimension is
hl(ﬂk(log E) ®0Z—C—E(_E))'
Now consider the exact sequence (1.7), with Y=2—- C - E:

020, ¢ p(—E)—>Q%(log E)®0,__x(—E)

->Q3%00,__—0.
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As H'(2%)=0, so is H' of the last term; combining with (3.11.3) yields

v<h (O c_p(-E)).
Applying lemma 3.10 b) gives v < p, — g — b — 1, as desired.

(3.12) Continuing with C as above let D € H°(S) map onto the natural
section of S ® 0. Choose analytic local coordinates (x, y) at a point of
C, so that in this patch, C=FE is given by x =0. Let A be the ring of
local holomorphic functions. D, being logarithmic along FE, is given
locally by

d d
D—fXa"‘g@, f,gEA.

In terms of (3.5.4), the image of D in H°(O.(—(E-C))=0 is
g(0, y)da/dy; thus g= xh, some h € A. As D induces a non-0 section of
S ® O, we have f(0, y)is a unit, so f€ A4 is a unit.

LEMMA 3.13: D€ H%(S) as above induces an injection of (x")/(x"*")
into itself, for all integers n > 1.

PrROOEF: Clearly, D: A — A sends the ideal (x") into itself. Suppose
D(x"p)e (x"*1), some pEA. As D=fxd/dx+ hxd/dy, we deduce
nfx"p € (x"*"). Since f is a unit, p must be in (x), as needed to
complete the proof.

(3.14) Since D€ H’(S)=H"(©®3)=0,, D gives a derivation (still
denoted D) of the complete local ring R of X. Let I, C R be the ideal of
all functions on R vanishing to order >n on C (when the function is
considered on X). As vanishing order can be determined in any patch,
we have

1,c(x")
In ﬂ(x"+1) = In+1

sothat I /I ., C(x")/(x"*"). Certainly D(I,)C I,, since D is logarith-
mic along Ej; so, by (3.13), D induces an injection on /,/1, ;.

LEMMA 3.15: D € Oy is a non-nilpotent derivation, i.e. D: m/m* — m/m*

(m = maximal ideal of R) is a non-nilpotent linear map.

PROOF: Choose the largest » so that m =1, and pick g€ I, — I, ;. (Note
m?c1,.,). Then D*g&1,.,, all k, by (3.14). Thus, if g€ m/m? is the
image of g, then D*g # 0, all k.
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(3.16) The proof of Theorem 3.2 is now a consequence of Lemma 3.15
and the Theorem of G. Scheja and H. Wiebe [12] that a complete normal
domain of dimension 2 admits a good C*-action if there exists a
non-nilpotent derivation.

§4. Calculating a, B, v, and ¢

(4.1) In this chapter, we shall calculate a, B, y, and g for some
hypersurface singularities which are fibres in a positive weight deforma-
tion of a quasi-homogeneous singularity. We can thus compute p, p,, g,
and b =0 at the beginning, and use different values for 7 in the family to
compute (with the aid of Theorem 2.7 and the inequalities of (1.10)) the
other invariants.

(4.2) Suppose R=Clx, y, z]/f is q.-h., with wt x=w,, wt y =w,, wt
z=w,, and wt f=d; these positive integers are to have no common
factors. Let us define

I=d—Sw,.

It is known that / <0 iff R is an RDP, /=0 iff R is simple elliptic. The
Jacobian algebra

af of 9
J=Cl[x, y, Z]/(a_){’ a—i, E—ZZ)

is graded with J = &('J,, where N =2/+d. Jy has dimension 1, and is
spanned by the Hessian of f. Multiplication followed by projection to the
Hessian component gives, by local duality, a perfect pairing

JXJ—>Jy=C.
LEMMA 4.3: Considering the singularity X = Spec R, we have

py=dim & J,

i<l

g=dim J;
d
w=1{51)

ProOF: See [18], or use [8]: for, if i</, then dim J,=dim R, (R=
®20R;), and R, can be expressed as the global sections of some line
bundle L; on the curve C=ProjR. Then L,=K., L, ®L,_,=K_,
0 < i</ use Serre duality on C and Theorem 5.7 of [8] to complete the
calculation of p, (and g). The calculation of u is well-known.
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ExAMPLE 4.4: Consider the (bimodular) family

X, 22 +y’ + x4+ sxTy + ixPy =0.
Calculating with s=7r=0, we find weights (3, 10, 15; 30), so /=2,
p,=1, g=0, p=18. Calculating 7= dim J/(f),

18 (s,1)=(0,0)
T.:= {17 s=0,1#0
16 s#0

As g=0, 8=0; so (2.7)
18 —7=2a+vy.

By (19), g=1—a—y>0. We find in the respective 3 cases above:
(a, v)= (0, 0), (0, 1), and (1, 0). Note that ¢ = 0 except in the first (q.-h.)
case.

(4.5) One can imitate the last example, by using the stratification by
r=dim T' on the deformations of positive weight on a q.-h. R. In
particular, one is interested in finding the minimum value of 7, i.e., 7 for
a generic positive weight deformation. This is a problem of Zariski in the
case of curves ([22], see also Teissier’s appendix).

EXAMPLE 4.6: Consider R defined by z?+ x?¢*'+»?9*2=0. Using
(4.3), one calculates p,=a(a—1)/2, g=0, p=2a(2Za+1). Thus, for
any positive weight deformation, $=0 and g=a(a—1)/2—-a—y>0.
The minimum value of 7 is the same as for the positive weight deforma-
tions of the curve x***! + y29*2 = 0; according to [22], p. 126, this value
s T, =3a(a+1). [This is also p—2p,, as in (2.9)]. So, for these

singularities,
2a+y=p—1=a(a—-1).

Therefore, y=0 and a =a(a—1)/2, whence these singularities have
qg=0.

ExampLE 4.7: Consider R defined by x"+y"+:2z"=0, n>4. Then
=0, g=("2"), p=(n—1)% and p,—g=("3"). So,

n—1

q=( 5 )—a-—,B—Y?O.

A long calculation similar to [22], p. 114-127 yields the minimum 7 for
deformations of positive weight:

Toin = (2n—3)(n+1)(n —1) /3.
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So,
n—1
p—q’min=2( 5 )=2a+2,8+y.

Therefore, for these singularities with minimum 7, y=0 and a+ 8=
("3"); in particular, ¢ = 0. Using 8 < g and Corollary 1.10c), we see

n—2 n—1
("2)8<(")-
We do not know if « and B are constant on the 1, -stratum. Note that
again Tmin = & — 2(pg - g)

§5. The irregularity g and deformation theory

(5.1) Let (X, 0) be a normal surface singularity, X — X the MGR.
Denote by Def the functor (on artin rings) of deformations of (X, 0); it is
(weakly) represented by the semi-universal deformation space, denoted
Def. Def may be thought of as a local analytic space, or even (since
(X, 0) is algebraic) as the spectrum of an algebraic local ring. In [15], we
introduced the equisingular functor ES of deformations of X to which all
E, lift, and which blow down to deformations of X. ES has a good
deformation theory, and a key theorem [14] is that ES — Def is an
injection. Thus, there is a closed subspace ES of Def which represents ES
(on the category of artin rings - we make no convergence assertions). If
(X, 0) is q.-h., it is proved in [18] that ES is the functor of deformations
of (X, 0) to which the weight filtration lifts; one may think of ES as that
part of Def of weight > 0 (see also Pinkham [9]).

(5.2) Now suppose (X, 0) is Gorenstein, with Ky=03(—Z). As
H'(03(—Z))=0, there is a subfunctor TR, C ES, introduced in [16].
TR, consists of deformations of X to which all E, lift, in such a way
that the induced deformation of the divisor Z (as a scheme) is trivial, i.e.,
a product. (Thus, some infinitesimal neighborhood of E is held fixed).
TR, is represented by a closed subscheme of ES.

THEOREM 5.3: Let (X, 0) be a Gorenstein surface singularity. Then there
exists a smooth q-dimensional equisingular family in Def; specifically, TR ,
is a smooth functor, of dimension q.

PrOOF: Theorem 4.10 of [16] implies TR, is smooth, of dimension
h'(S)—h'(©,). By the exact sequence

0-04(-2)»5S->0,-0,
this dimension is that of

Im( HY(84(~2)) > H'(S)).
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By the main theorem of [14], HL(S)=0, so
H'(S)cH' (U, S)=H'(U, ©4(-2)).
Thus, the desired dimension is that of
Im(H'(03(-2)) > H'(U, 03(-2)).
Now, 0;(—2Z)=QY%, and the dimension of
Im(H'(Q%) - H'(U, 9%))
is equal to h'(Q%)-dim(kernel). By (1.4.1) and (1.9.2), this quantity is
k+p,—g—b—a-B—(k+y),
which equals the irregularity ¢ by Theorem 1.9.
COROLLARY 5.4: Let (X, 0) be a q.-h. Gorenstein surface singularity, not
an RDP. Then (X, 0) admits a non-trivial one-parameter equisingular
deformation.
ProOF: It follows from §3 that unless (X, 0) is simple elliptic, p, > g + 1,
whence (1.11) g > 0; the theorem implies the result. If (X, 0) is simple

elliptic, the result is well-known.

REMARK (5.5): It can be shown [18] that if R is Gorenstein and q.-h.,
then the tangent space of TR, is

:>1® Tl(l)’

where / was defined in (4.2) for a hypersurface, and as in the proof of
lemma 4.3 in general. In fact,

pg =1>l® Tl(l)’
and this space is the tangent space of another equisingular functor.

(5.6) In discussing the irregularity g of a Gorenstein surface singularity,
S.S.-T. Yau conjectured [20] that g > 0, except in a few special cases (e.g.,
P < 1). In the q.-h. case, then g > 0, except for an RDP or simple elliptic
singularity, as already observed by Yau. But, as the examples of §4
indicate, Yau’s conjecture is incorrect; instead we ask practically the
opposite:
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QUESTION 5.7: Let R be a Gorenstein surface singularity. Is there an
equisingular deformation (as in 5.1) to one with irregularity 0?

THEOREM 5.8: The answer to (5.7) is affirmative if p, < g + 1.

PROOF: As g=p,—g—b—a— -y, ¢>0 would imply g=1, p,=g
+1, and b=a= B =7v=0. By Theorem 3.2, R is q.-h. By Theorem 5.3,
Spec R has a one-parameter equisingular deformation, obtained from
blowing down an equisingular deformation of X for which the induced
deformation of Z is trivial. We will show the general fibre is not a q.-h.
singularity, so a + 8+ v > 0 there, so ¢ =0 there.

The general fibre in this family has the same resolution graph as R,
and the same central curve C (up to analytic isomorphism) and the same
interesection points on C with the other exceptional curves (because E
has been deformed trivially). Further, since Z > 2C (3.6), the isomor-
phism class of the normal bundle of C is the same, for special and
general fibre. But, e.g., by [8], these data determine a g.-h. singularity up
to isomorphism. Since R cannot appear as a singularity in the general
fibre of a deformation in Def, the general fibre of our family cannot be
q.-h.

REMARK (5.9): Theorem 5.8 applies to all minimally elliptic singularities,as
well as to Gorenstein singularities whose resolution graph is a smooth
curve C of genus > 2, with K = conormal bundle. Yau’s Example 2.8 of
[20] (p. 836) is incorrect; the error is that (in that notation) a derivation
in H%(S(— A)) will by definition have vanishing order at least 2 along 4
(and not 1, as claimed).

QUESTION 5.10: Is the irregularity ¢ a semi-continuous invariant?

(5.11) The adjacencies of a singularity are usually described in terms of
resolution diagrams (or equisingularity types), without distinguishing
analytic type. If (5.10) is affirmative, this would give a helpful way of
specifying analytic types.
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Note added in proof: According to a recent preprint of Steenbrink
and van Straten, the answer to Question (5.10) is negative.



