@article{CM_1985__55_1_63_0,
author = {Fauntleroy, Amassa},
title = {Geometric invariant theory for general algebraic groups},
journal = {Compositio Mathematica},
pages = {63--87},
year = {1985},
publisher = {Martinus Nijhoff Publishers},
volume = {55},
number = {1},
mrnumber = {791647},
zbl = {0577.14037},
language = {en},
url = {https://www.numdam.org/item/CM_1985__55_1_63_0/}
}
Fauntleroy, Amassa. Geometric invariant theory for general algebraic groups. Compositio Mathematica, Tome 55 (1985) no. 1, pp. 63-87. https://www.numdam.org/item/CM_1985__55_1_63_0/
[1] : Linear Algebraic Groups, Benjamin, New York (1969). | Zbl | MR
[2] and : Elements de géometric algébrique, Inst. Hautes Etudes Sci. Publ. Math., No. 11.
[3] : Algebraic and Algebro-Geometric Interpretations of Weitzenboch's Theorem, J. Algebra 62 (1980) 21-38. | Zbl
[4] : Categorical Quotients of Certain Algebraic Group Actions, Illinois J. Math. 27 (1983) 115-124. | Zbl | MR
[5] and : Proper Ga-Actions, Duke J. Math. 43 (1976) 723-729. | Zbl | MR
[6] : Quasi-affine surfaces with Ga-section, Proc. A.M.S. 68 (1978) 265-270. | Zbl | MR
[7] : Introduction to Algebraic Geometry, Springer-Verlag (New York) 1976. | MR
[8] : Algebraic spaces, Springer Lecture Notes in Math. No. 203 (1971). | Zbl | MR
[9] : Finite generation of class groups of rings of invariants, Proc. A.M.S. 60 (1976) 47-48. | Zbl | MR
[10] : Geometric Invariant Theory, Springer-Verlag, Berlin (1982). | Zbl | MR
[11] : Introduction to Moduli Problems and Orbit Spaces, Tata, New Delhi (1978). | MR
[12] : A Remark on Quotient Spaces, Ana. da Acad. Brasiliera de Ciencias 35 (1963) 25-28. | Zbl | MR
[13] : Nilpotent linear algebraic groups, Sem. Alg. Geom. Topol. 1962/1963, vol. 1, Ist. Naz. Alta. Mat., Ediz. Cremonese, Rome (1965), pp. 133-152. | MR
[14] : On, quotient varieties and affine embeddings of certain homogeneous spaces, T.A.M.S. 101 (1961) 211-221. | Zbl | MR
[15] : Lectures on unique factorization domains, Tata Inst., Bombay (1964). | Zbl | MR
[16] : Quotient spaces modulo reductive algebraic groups, Annals of Math. 95 (1972) 511-556. | Zbl | MR
[17] : Theory of moduli, Proc. Symp. in Pure Math. 29 Alg. Ceom. A.M.S.263 (1975) 263-304. | Zbl | MR
[18] : Moduli and global period period mapping of surfaces with K2 = pg = 1: A counterexample to the Global Torelli problems, Comp. Math. 41 (1980) 401-414. | Numdam | Zbl | MR | EuDML
[19] : Projective manifolds with ample tangent bundle, Annals Math. (1980) 593-606. | Zbl | MR
[20] : On a generalization of complete intersections, J. Math. Kyoto Univ. 15 (1975) 619-646. | Zbl | MR






