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VARIETE DES DROITES SAUTEUSES DU FIBRE INSTANTON
GENERAL

Jérome Brun et André Hirschowitz

Soit E un fibré vectoriel de rang deux sur P*, de premiére classe de
Chern nulle. Pour toute droite L de P?, notons a, I’entier positif tel que
E|, soit isomorphe a 0, (— a,;)®0,(a,). Vis a vis de E, une droite L sera
dite sauteuse si a, >1, bisauteuse si a, > 2, hypersauteuse si a; > 3. On
notera respectivement ¥ (E), Z(E) et ¥ (E) les sous-ensembles de la
grassmannienne G(1, 3) formés des droites sauteuses, bisauteuses et
hypersauteuses de E (on donne en 1.5 une définition avec multiplicité de
ces ensembles, qui permet de calculer leur degré).

L’objet de ce travail est de prouver le résultat suivant, prédit par Barth

(121, §6):

THEOREME: Soit E un fibré instanton général (cf 6.1) avec ¢, =0 et ¢, >1.
Alors:
(i) SZ(E) est vide
1

+
(ii) Z(E) est une courbe lisse de degré 2 (C2 3 )

(1i1) ¥ (E) est une hypersurface de degré c,, lisse en dehors de Z(E),
et dont Z(E) est un lieu de points doubles ordinaires.

Dans les cas ¢, =1, 2, ce résultat est connu respectivement de Barth
([1] §7), et de Hartshorne ([10] Proposition 9.11).

Dans notre langage, le théoréme concerne la stratification
cohomologique (§1) associée a un fibré instanton, dont il énonce des
propriétés locales stables (§2). Notre démonstration consiste 4 observer
(83) que les propriétés stables passent des déformations semi-universelles.
des restrictions d’un fibré spécial a la famille des restrictions du fibré
général, moyennant une certaine hypothése cohomologique (END).

Aprés quoi, il suffit de prouver que les déformations semi-universelles
(sur P') ont les propriétés stables requises (§4), et de trouver un fibré
vérifiant (END) (§5).

En supposant a priori que les droites bisauteuses de E forment une
courbe, Gruson-Peskine ([9], Remarque BS) mentionnent qu’on peut en
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326 Jérome Brun et André Hirschowitz [2]

calculer le degré par le théoréme de Grothendieck-Riemann-Roch, et
indiquent le résultat (lui aussi prédit par Barth): 2( c2¥1 ) Nous
retrouvons ce résultat au §6, par une application de la formule de
Porteous. Nous remercions Geir Ellingsrud qui a aimablement effectué ce
calcul avec nous. Cette méthode de calcul se trouve déja dans Bertin-Sols
[13].

Dans un autre travail [7], nous appliquons notre méthode, qui nous a
déja servi dans le cas des fibrés de rang quelconque sur P2 (cf [6]), a
I’étude des plans sauteurs du fibré instanton général. En revanche, en
dépit de nos efforts, nous n’avons pas réussi a appliquer cette méthode a
I’étude des droites sauteuses des fibrés de rang deux sur P avec premiére
classe de Chern impaire.

Jurgen Bingener a bien voulu écrire pour nous un appendice regroupant
les résultats de la théorie des déformations que nous utilisons et pour
lesquels nous ne connaissions pas de références.

Le corps de base est C.

§1. Stratification cohomologique

Dans ce paragraphe et les deux suivants, nous nous plagons dans un
cadre plus général que celui des restrictions de fibrés aux droites projec-
tives, en prévision de [7].

Soient P — X un fibré en P”", provenant d’un fibré vectoriel, et Op(1)

le fibré hyperplan relatif. Soit # un faisceau cohérent sur P, plat sur X.
On note Z, la restriction #® 0, , et # (k) le faisceau F® Op(k).

1.1. DerFINITION: On appelle stratification cohomologique de #sur X (ou
simplement: de %) la famille des S# (i, j, k)= {x € X/h'(P,, #.(k)) =
jhoul<i<n,j=letk€eZ.

1.2. D’aprés les théorémes généraux, les ensembles S (i, j, k) définis-
sent des sous-ensembles algébriques (réduits) de X, et leur formation
commute aux changements de base (en tant qu’ensembles). Une défini-
tion naturelle de structure de schéma sur les S& (i, j, k) n’étant pas
immédiate, nous ne l'introduirons ici que dans le cas ou i est maximal.

1.3. DErFINITION: On note encore S% (n, j, k) le schéma défini par le
(j — 1)-iéme idéal de Fitting du faisceau R"p , % (k).

1.4. Le schéma S# (n, j, k) a bien pour support ’ensemble SZ (n, j, k)
défini précédemment; sa formation commute aux changements de base,
en tant que schéma. Il différe en général du schéma défini par I'an-
nulateur de R"p , % (k), lequel présente 'inconvénient que sa formation
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ne commute pas aux changements de base. Dans la suite, on entendra par
stratification cohomologique tantot la famille des ensembles algébriques
SF (i, J, k), tantdt la famille des sous-schémas S (n, J, k).

1.5. EXEMPLE ET DEFINITION: Soit E un fibré de rang deux sur P3 avec
q P
¢; =0. Notons G(1, 3) « D — P3le diagramme d’incidence habituel, et

9 .
F—-D - G, 3) le fibré p*E.
Suivant Gruson-Peskine, nous définirons les schémas des droites
sauteuses, bisauteuses, hypersauteuses de E respectivement par:

S(E)=SF(1,1, 1), @(E)=SF(1,1,0),

#(E)=SF(1,1,1)

§2. Propriétés stables

Pour nous, une stratification d’'un schéma X est une famille (X;),., de
sous-ensembles algébriques, ou de sous-schémas de X. Parmi les propriétés
locales susceptibles d’étre vérifiées par une stratification, nous nous
intéressons a celles qui sont préservées par certains changements de base.

2.1. DEFINITION: La propriété locale 4 est stable si pour toute submer-
sion ¢: X — Y de variétés lisses, on a les propriétés suivantes:

a. si une stratification (Y;),c; de Y a la propriété 4, la stratification
(¢*(Y)));e, I'a aussi.

b. si une stratification ( X;),., de X a la propriété 4, il existe un ouvert
de Zariski dense Y’ de Y tel que, pour tout y dans Y, la stratification
induite sur la fibre X, ait la propriété 4.

Voici une série d’exemples de propriétés stables:
2.2. {{ X, est de codimension /})
2.3. {{ X, est lisse en dehors de X))
2.4. {{X; est le lieu singulier de X,, c’est un lieu de points doubles
ordinaires)). Ici on entend que toute section de X, transverse & X; est
localement (dans la topologie étale) isomorphe & un cone quadratique a
singularité isolée.

2.5. REMARQUE: Parmi les exemples précédents, seule la propriété 2.2. ne
dépend pas de la structure schématique.

§3. Transfert de propriétés stables

3.1. DEFINITION: Soit E, un fibré vectoriel sur P*, et n < k un entier. On
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dit que E, satisfait la condition (ENDn) si:

H?*(P*, End E)(—1)) = H>(P*, End Eo(-2))=...

.= HY(PX End Eg(—k+n))=0

Notons que cette condition assure que, pour tout n-plan L, I'application
de restriction H'(P*, End E,) > H'(L, End E,|,) est surjective.

3.2. NOTATIONS: Soient S un schéma et E un fibré sur P&, On note G ¥
la grassmannienne des n-plans de P&, et G"E la famille paramétrée par
G2* des restrictions de E aux n-plans.

3.3. PROPOSITION: Soit A une propriété stable. Soient E, un fibré sur P,
M son module local et E — P}, une déformation semi-universelle de E,. Soit
n < k. On suppose que M est lisse et que E, vérifie la condition (ENDn). Si
pour tout n-plan L, la stratification cohomologique de la déformation
semi-universelle de E,|, veérifie la propriété A, alors, pour m général dans
M, la stratification cohomologique de G" E,, vérifie la propriété A.

DEMONSTRATION: Soit L un n-plan. Notons F; — N, X P" la déforma-
tion semi-universelle de E,|,. La famille G"E étant une déformation de
E,|,, il existe un morphisme de déformation ¢, : Gj;¥ = N,; notons ¢,
la restriction de ¢, 8 M X { L}. On a la diagramme suivant, ou 7 désigne
les applications de Kodaira-Spencer, qui commute (cf. Appendice, A3)

Ext! (Eo, Eo) = Eth(EﬂlL’ EolL)-

La fléche du bas est surjective d’apreés la condition (ENDnr) pour E,. On
en déduit que ¢, est une submersion en 0, et donc aussi ¢, , cela pour
tout L. Par stabilité (2.1.a), la stratification cohomologique de G"E a la
propriété A4 dans un voisinage M’ X G™* de {0} X G™*, et, encore par
stabilité (2.1.b), la stratification cohomologique de G"E,, a la propriété 4
pour m général dans M’.

§4. Déformations semi-universelles sur P!

P
4.1. NotaTIONS: Dans le cas d’une famille F — P — X de fibrés de rang
deux sur P!, de premiére classe de Chern nulle, on pose, pour i > 0:
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S'F=SF(1,1,i—2). S'F est ainsi défini schématiquement; son support
est ’ensemble des s ol F; est isomorphe a 0,(—¢)® 0p(¢) avec £ 1.

4.2. PROPOSITION Soient a > 1, F; le fibré Op(—a)® Opi(a) et F—> N X
P! une déformation semi-universelle de F,.
Alors, pour tout i > a:
(i) S'F est de codimension pure 2i — 1.
(ii) S'F est lisse en dehors de S'*'F.
(iii) S'F admet une singularité quadratique le long de S*F — S°F.

DEMONSTRATION: Les propriétés (i), (ii), et (iii) sont classiques (cf.
Brieskorn [5]) si on remplace les S'F par leurs supports réduits. Tout ce
qui reste 3 montrer est donc que S‘F — S'*1F est réduit en tout point.
D’aprés I'ouverture de la versalité et le point A, de ’appendice, il suffit
de montrer que S°F est réduit ie que son idéal est I'idéal maximal de
lorigine dans N. Posons: G, = Fy(a — 2)= Opi(—2) + Op:(2a — 2). Soit
M, une matrice (24, 2a + 1) de polyndmes homogénes de degré un sur
P!, de rang maximal en tout point. On peut présenter ainsi G,:

(M, 0)
0- GO - (2a + 2)0,,1(20 - 2) - 20(9“,1(2[1 - 1) - 0.

Soit S le germe en s,=(M,,0) de Homgp:((2a+2) 0Qa—2), 2a
0Q2a-1)).
Considérons la suite exacte universelle sur S X P

A
(1)0—> G- (2a+2)0p1(2a—2) > 2a0p1(2a—1) - 0

ol, par définition, la restriction de A a P} est 'homomorphisme s. La
famille G —» P4 — S, est une déformation compléte de G, (cf. Appendice,

Ad4). Si on note ¢: S — N le morphisme de déformation de G(2 — a) vers
F, on en déduit (A2) que ¢ est une submersion; comme I'image réciproque
par ¢ de S°F est S°G(2 — a), on se raméne a4 montrer que ce dernier
schéma est réduit. Or S°G(2 — a) n’est autre que SG(1, 1, 0), qui est
défini par le 0O-ieme idéal de Fitting de R' 7,G. On obtient une
résolution de ce faisceau a partir de la suite (1):

A
(40> + 2a — 2)Og > 4405 — R'1 ,G = 0

ou l’on a fait I'identification naturelle: w*mpsl(k) = (k + 1) 0. Puisque
h'(P', G°) =1, le corang de A est 1 en s,,.
Moyennant des permutations de lignes et de colonnes, on peut donc
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écrire, pour tout s € S:

i * .. %

| A
A(s)=| Lk

' * Lk Q.. .0y,

ou A(s,) est une matrice (4a> — 1, 4a* — 1) inversible.

L’idéal de SG(1, 1, 0) est engendré par les 2a — 1 fonctions:
f=a det A+B,1<j<2a-1. Comme les coefficients de A sont des
coordonnées sur S, ces fonctions définissent un schéma lisse.

§5. Le fibré instanton général

5.1. DerINITIONS: Un fibré instanton est un fibré stable E de rang deux
sur P2, avec ¢, =0 et H'(P?, E(—2))=0.

On note Inst(n) le module des fibrés instantons de deuxiéme classe de
Chern n. Par ailleurs, on appelle fibré de 't Hooft tout fibré E de rang
deux sur P2 avec ¢, = 0 tel que £(1) admette une section dont le schéma
des zéros est une réunion disjointe de droites. Il est bien connu (cf.
Hartshorne [10], Example 4.3.1) que les fibrés de ’t Hooft de deuxiéme
classe de Chern n correspondent & des points lisses de Inst (n) et forment
une famille irréductible. Nous noterons Inst’(n) la composante irréduct-
ible de Inst(n) qui contient les fibrés de 't Hooft. Remarquons que pour
n=1, 2, 3, 4, Inst(n) est irréductible (cf respectivement Barth [1],
Hartshorne [10], Ellingsrud-Stromme [8], Barth [3]) et on a donc alors
Inst(n) = Inst®(n). Nous disons qu’une propriété est vérifiée par le fibré
instanton général (de deuxiéme classe de Chern r) s’il existe un ouvert de
Zariski dense de Inst’(n) ou les fibrés ont cette propriété.

5.2. PROPOSITION: Tout fibré de °t Hooft vérifie la condition (END1).

DEMONSTRATION: Soit £ un fibré de ’t Hooft, de deuxiéme classe de
Chern n. Il s’agit de montrer:

H*(P3,End E(—1))= H*(P3, End E(—2)) =0.

On a H3(P3, End E(—2))= H°(P3, End E(—2))=0 car E est stable.
D’autre part, la suite de définition de E s’écrit:

0-0-E(1)->1,(2)-0 (1)

n+1

ou Y= |J D, est la réunion de n + 1 droites disjointes.
i=1
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En tensorisant par E(—2) et en prenant la cohomologie, on obtient la
suite exacte:

H*(P3 E(-2))—> H*(P? End E(-1)) > H}(P,E®ly) (2)

Or H*(P3, E(-2))= H'(P3, E(—2))=0, car E est un instanton. Par
ailleurs, en tensorisant par E la suite 0 >1,—>0,,—»0,—>0 et en
prenant la cohomologie, on obtient la suite exacte:

H' (P} E®0,)>H*(P',E®I,)—> H*(P*,E). (3)

On déduit facilement de (1) que ce dernier espace est nul. D’autre part,

on déduit aussi de (1) que: E(1)® 0, =1, ® 0,; or ce dernier faisceau
n+1

est isomorphe au fibré conormal de Y dans P, a savoir 2 @ Op,(1).

i=1
n+1

Dou E®0y,=2@ 0, et H(P’, E®0,)=0. Ainsi, daprés (3):
i=1
H?*(P3, E®I,)=0, et donc d’aprés (2): H*(P3, End E(—1))=0.

5.3 DEMONSTRATION DU THEOREME: Soit E, un fibré de ’t Hooft, et
E —> M X P? une déformation semi-universelle de E,. Le schéma M est
lisse et E, vérifie (END1): on peut appliquer la proposition 3.3 4 E.

On considére les propriétés stables suivantes d’une stratification (S'):
S' est de codimension 2i — 1, S’ est lisse en dehors de S'*! et S! présente
une singularité quadratique le long de S*—S3 La stratification
cohomologique de la déformation semi-universelle de E,|, vérifie ces
propriétés pour toute droite L d’aprés 4.2. On en déduit par 3.3 que ces
propriétés sont vérifiées par la stratification (S’ G' E,,) pour m général
dans M.

Or les strates pour i = 1, 2, 3 de cette stratification sont par définition
(1.5) les schémas des droites respectivement sauteuses, bisauteuses, hyper-
sauteuses de E, . On en déduit le théoreme puisque dim G(1, 3)=4. Le
calcul des degrés fait 'objet du paragraphe suivant.

5.4. REMARQUE: On peut vérifier que & ( E) est toujours un diviseur. Pour
le fibré instanton général, c’est donc une hypersurface réduite.

§6. Le calcul du degré
6.1. Le fait que le degré de ¥ (E) vaut c,(E) est général pour un fibré E
semistable de rang deux sur P* avec c¢,(E)= 0 (Barth [1], Theorem 2).
Quant au degré de #(E), nous allons prouver le résultat plus général

suivant:

6.2. PROPOSITION: ( Gruson-Peskine). Soit E un fibré instanton de deuxiéme
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classe de Chern n > 1, tel que le schéma B(E) de ses droites bisauteuses
soit de codimension trois.

Alors le degré de #(E) est 2(" +1

)-

6.3. LA CoHOMOLOGIE ENTIERE DE G (1, 3): Considérons les cycles de
Schubert « et 8 de G(1, 3)= G: a est le cycle des droites qui rencontrent
une droite fixée, et B est le cycle des droites contenues dans un plan fixé.
Alors a et B engendrent le cohomologie entiére de G( cf. par exemple
Hodge-Pedoe [11], Chapter XIV); plus précisément:

H°(G,Z)=2G; H*(G,Z)=Za; H*(G,Z)=Zd’>a®1p;

H%(G,Z)=ZaB; H)G,Z)=1+;
et on a les relations suivantes:

aB=B*=x, a*=2%, et

o’ =2ap (1)

Naturellement, quand on parle du degré d’une courbe de G, on entend le
coefficient suivant le générateur af8 de la classe de cette courbe dans
Hé(G, Z).

6.4. LE FIBRE UNIVERSEL QUOTIENT Q SUR G(1, 3): C’est le fibré de rang
deux quotient du fibré tautologique 7 sur G. Si on note V l’espace
vectoriel tel que P(V)=P3, on a la suite exacte sur G: 0 > 7> VX G -
Q — 0. Comme ¢,(7) = —a et ¢,(7) = B (cf. Borel-Hirzebruch, [4], Theo-
rem 2.9.4), on déduit de cette suite exacte:

a(@)=a, ¢(Q)=a-B. )
D’autre part, soit D la variété d’incidence:

s

D’aprés le diagramme commutatif suivant sur X:

O_)pl P3( 1)_)V><X

[
0> "gfr—VXX->4gFf¥Q0—-0

on voit qu’il existe une section canonique 8 € H°( X, Q ® ), (1)), dont le
schéma des zéros est la variété D. Le complexe de Koszul de & fournit
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une suite exacte sur X:

6.5. LA COHOMOLOGIE D’UN INSTANTON: Soit E un fibré instanton, avec
¢, =n = 1. Soit L une droite de P>, De la suite exacte sur P>: 0 > O(—2)
—-20(—1)-> 0—- 0, — 0, et de la nullité de H*(P>, E(—2)), on déduit:
H*(P3, E(i))=0 pour i > —1. Le théoréme de Riemann-Roch pour E
permet alors de compléter le tableau suivant:

i -2 -1 0
W (E(i)) 0 n 2n-2
h2(E(i)) 0 0 0

6.6. PREUVE DE 6.2: En tensorisant la suite (3) par p¥E, on obtient la
suite exacte:

0> AQ*RE(-2)> Q*RE(—1)> p*E—-p*E >0

En appliquant ¢, , & cette suite, et compte tenu de 6.5, on obtient la suite
exacte:

A
nQ* > (2n-2)0; > R'q, p*E— 0

Par définition, le schéma Z(E) est le schéma d’annulation de A?"~2A.
Comme par hypothese, Z( E) est de codimension trois, on peut appliquer
la formule de Porteous (Kempf-Laksov [12], Corollary 11) et on obtient
que la classe de Z(E) est c5(n Q).

Un calcul standard donne:

&2(n0) = (5 )(e()) + n(n=1)e(@)ex(Q)

On en déduit d’aprés les formules (1) et (2):
1
es(n @)=} )208+ n(n - 1)aﬁ=z("“3“ )a,B,

soit: degré B(E)= 2(" +1 )

3

Appendice par Jirgen Bingener (Regensburg)

Soit F, un faisceau cohérent sur un schéma projectif lisse X,.
Soit (S, s,) un germe de schéma. Une déformation de F, de base
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(S, so) est un faisceau cohérent F— S X X, qui est S-plat et qui est
muni d’un isomorphisme de F; vers F,.

Un morphisme de la déformation F’, de base (S’, sg), vers la défor-
mation F"’, de base (S”, sg), est un morphisme de germes, p: §' — S”,
muni d’un isomorphisme de ¢*F’’ vers F’, compatible avec les isomor-
phismes de F; et F vers F, (¢*F” est une notation abusive pour
(¢ X 1x,)*F").

Une déformation F de F;, de base (S, s,), est dite verselle si elle vérifie
la propriété suivante:

Soient F' —» §' X X, et F”" — S§” X X, deux déformations de F, 6:
S’ — S” un morphisme de F’ vers F’’ qui soit un plongement, ¢: §’ — S
un morphisme de F’ vers F. Alors il existe un morphisme ¢: S” — S de
F" vers F tel que les deux morphismes de déformations ¢ et y o § soient
égaux.

Une déformation F de F; est dite compléte si, pour toute déformation
G de F,, il existe un morphisme de G vers F. Notons qu’une déformation
verselle est nécessairement compléte (prendre F’' = F, et F”' = G).

A toute déformation F de F, de base (S, s,) est associée une applica-
tion linéaire, dite de Kodaira-Spencer, notée 7., de ’espace tangent de
Zariski T, S vers Ext‘ (Fy, Fy). La formation de 7 est naturelle en ce
sens qu elle commute 4 'la différentielle des morphismes de déformation.

Une déformation est dite semi universelle si elle est verselle et si son
application de Kodaira-Spencer est bijective.

On a les résultats suivants:

Tout faisceau F, admet une déformation semi-universelle, unique a
isomorphisme preés. Si Extw (Fy, Fy) =0, cette déformation est a base
lisse. Si F — S X X, est un faisceau cohérent S-plat, I’ensemble des points
fermés s de S ou F est une déformation verselle de F, définit un ouvert de
Zariski de S (“Offenheit der Versalitat™).

Pour prouver ’existence d’'une déformation semi-universelle, on ap-
plique au foncteur des classes d’isomorphisme de déformations de F, un
résultat d’Artin (Artin 1, Theorem 1.6): on obtient une déformation de
F,, qui est formellement semi-universelle d’aprés Rim (Rim, 1.13), et
donc semi-universelle d’aprés Artin (Artin 2, Theorem 3.3.). Le critére de
lissité est classique et facile a obtenir. La version formelle de I'ouverture
de la versalité est encore un résultat d’Artin (Artin 2, Theorem 4.4); or,
en présence d’'une déformation semi-universelle, versalit¢ formelle et
versalité sont équivalentes.

Enfin nous affirmerons les faits suivants, dont la démonstration ne
présente pas de difficultés:

Al. Si une déformation a base lisse a son application de Kodaira-
Spencer surjective, elle est verselle.

A2. Si F, admet une déformation compléte F a base lisse, alors la
déformation semi-universelle U de F, est a base lisse, et les
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morphismes de déformations de F vers U sont des submersions.

A3. Si F— S X X, est une déformation de F, f un morphisme d’un
schéma lisse Y, vers X, tel que Tor! '(“x)(f~\(F,), 0y,) soit nul,
alors G= (14X f)*F est une déformation de f*F,, et le di-
agramme suivant est commutatif:

T, S — Exty, (Fy, Fy)

VA
Exty, (f*Fy, f*Fy)

A4. Si 0> % — 7*F;— Q — 0 est la suite exacte universelle sur un
schéma Quot X X, alors 7, (resp. 7,) est I'application naturelle de
Hom, (%, Q,) vers Exty (%, %,) (resp. vers Extj

0 Xo Xo
(QO’ QO))

Donc, si Quot est lisse en 0, % (resp. Q) est verselle dés que Ext!
(%,, F,) (resp Ext!'( Fy, Q,)) est nul.
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