@article{CM_1984__53_1_51_0,
author = {Vogan, David A. and Zuckerman, Gregg J.},
title = {Unitary representations with non-zero cohomology},
journal = {Compositio Mathematica},
pages = {51--90},
year = {1984},
publisher = {Martinus Nijhoff Publishers},
volume = {53},
number = {1},
mrnumber = {762307},
zbl = {0692.22008},
language = {en},
url = {https://www.numdam.org/item/CM_1984__53_1_51_0/}
}
TY - JOUR AU - Vogan, David A. AU - Zuckerman, Gregg J. TI - Unitary representations with non-zero cohomology JO - Compositio Mathematica PY - 1984 SP - 51 EP - 90 VL - 53 IS - 1 PB - Martinus Nijhoff Publishers UR - https://www.numdam.org/item/CM_1984__53_1_51_0/ LA - en ID - CM_1984__53_1_51_0 ER -
Vogan, David A.; Zuckerman, Gregg J. Unitary representations with non-zero cohomology. Compositio Mathematica, Tome 53 (1984) no. 1, pp. 51-90. https://www.numdam.org/item/CM_1984__53_1_51_0/
[1] and : The unitary spectrum for real rank one groups. Invent. Math. 72 (1983) 27-55. | Zbl | MR
[2] and : Continuous cohomology, discrete subgroups, representations of reductive groups, Princeton University Press, Princeton, New Jersey (1980). | Zbl | MR
[3] and : The n-cohomology of representations with an infinitesimal character. Comp. Math. 31 (1975) 219-227. | Zbl | MR | Numdam
[4] : Relative Lie algebra cohomology and unitary representations of complex Lie groups. Duke Math. J. 46 (1979) 513-525. | Zbl | MR
[5] : Cohomologie des groupes topologiques et des algèbres de Lie, CEDIC-Fernand Nathan, Paris (1980). | Zbl | MR
[6] : Representations of semi-simple Lie groups I. Trans. Amer. Math. Soc. 75 (1953) 185-243. | Zbl | MR
[7] : Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978). | Zbl | MR
[8] and : A geometric meaning of the multiplicities of integrable discrete classes in L2(Γ\G). Osaka J. Math. 10 (1973) 211-234. | Zbl
[9] : Introduction to Lie algebras and representation theory. Springer-Verlag, New York Heidelberg Berlin (1972). | Zbl | MR
[10] : The canonical f-types of the irreducible unitary g-modules with non-zero relative cohomology. Invent. Math. 59 (1980) 1-11. | Zbl | MR | EuDML
[11] : Dirac operator and the discrete series. Ann. Math. 96 (1972) 1-30. | Zbl | MR
[12] : A generalization of the Enright-Varadarajan modules. Comp. Math. 36 (1978) 53-73. | Numdam | Zbl | MR | EuDML
[13] : Criteria for the unitarizability of some highest weight modules. Proc. Indian Acad. Sci. 89 (1980) 1-24.. | Zbl | MR
[14] , and : Representations of complex semi-simple Lie groups and Lie algebras. Ann. Math. 85 (1967) 383-429. | Zbl | MR
[15] : Unitary representations of GL(n, R) with non-trivial (g, K ) cohomology. Invent. Math. 71 (1983) 443-465. | Zbl | MR | EuDML
[16] : Unitary representations of SL(n, R) and the cohomology of congruence subgroups, In. Noncommutative Harmonic Analysis and Lie Groups, Lecture Notes in Mathematics 880, Springer-Verlag, Berlin Heidelberg New York (1981). | Zbl | MR
[17] and : Reducibility of generalized principal series representations. Acta Math. 145 (1980) 227-299. | Zbl | MR
[18] : The algebraic structure of the representations of semi-simple Lie groups I. Ann. Math. 109 (!979) 1-60. | Zbl | MR
[19] : Representations of real reductive Lie groups, Birkhäuser, Boston-Vasel-Stuttgart (1981). | Zbl | MR
[20] : Harmonic analysis on semi-simple Lie groups I, Springer-Verlag, Berlin Heidelberg New York (1972). | Zbl | MR
[21] , and : Singular unitary representations and indefinite harmonic theory, to appear in J. Func. Anal., 1983. | Zbl | MR






