@article{CM_1984__52_1_99_0,
author = {Wilson, P. M. H.},
title = {Base curves of multicanonical systems on threefolds},
journal = {Compositio Mathematica},
pages = {99--113},
year = {1984},
publisher = {Martinus Nijhoff Publishers},
volume = {52},
number = {1},
mrnumber = {742700},
zbl = {0544.14025},
language = {en},
url = {https://www.numdam.org/item/CM_1984__52_1_99_0/}
}
Wilson, P. M. H. Base curves of multicanonical systems on threefolds. Compositio Mathematica, Tome 52 (1984) no. 1, pp. 99-113. https://www.numdam.org/item/CM_1984__52_1_99_0/
[1] and : Introduction to Grothendieck Duality Theory. Lecture Notes in Mathematics 146. Berlin, Heidelberg, New York: Springer (1970). | Zbl | MR
[2] : Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics 156. Berlin, Heidelberg, New York: Springer (1977). | Zbl | MR
[3] : Algebraic Geometry. Graduate Texts in Mathematics 52. Berlin, Heidelberg, New York: Springer (1977). | Zbl | MR
[4] : A Generalization of Kodaira-Ramanujam's Vanishing Theorem: Math. Ann. 261 (1982) 43-46. | Zbl | MR | EuDML
[5] : Projective manifolds with ample tangent bundles. Ann. Math. 110 (1979) 593-606. | Zbl | MR
[6] : Threefolds whose canonical bundles are not numerically effective. Proc. Nat. Acad. Sci. USA 77 (1980) 3125-6. | Zbl | MR
[7] : Private communication.
[8] : Factorization of birational maps in dimension 3. Lecture given at the A.M.S. Summer Institute on Singularities, Arcata, 1981 (to appear). | Zbl | MR
[9] : Canonical threefolds. In: A. Beauville (ed.), Journées de Géométrie Algébrique, Juillet 1979, Sijthoff & Noordhoff (1980). | Zbl | MR
[10] : Minimal models of canonical threefolds. To appear in: S. Iitaka and H. Morikawa (eds.), Symposia in Math. 1, Kinokuniya and North-Holland (1982). | MR
[11] : Vanishing theorems. J. reine angew. Math. 335 (1982) 1-8. | Zbl | MR
[12] : On the canonical ring of algebraic varieties. Comp. Math. 43 (1981) 365-385. | Zbl | MR | Numdam
[13] : Resolution of the singularities of algebraic three dimensional varieties. Ann. Math. 45 (1944) 472-547. | Zbl
[14] : The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface. Ann. Math. 76 (1972) 560-615. | Zbl | MR





