@article{CM_1983__49_2_173_0,
author = {Welters, Gerald E.},
title = {Polarized abelian varieties and the heat equations},
journal = {Compositio Mathematica},
pages = {173--194},
year = {1983},
publisher = {Martinus Nijhoff Publishers},
volume = {49},
number = {2},
mrnumber = {704390},
zbl = {0576.14042},
language = {en},
url = {https://www.numdam.org/item/CM_1983__49_2_173_0/}
}
Welters, Gerald E. Polarized abelian varieties and the heat equations. Compositio Mathematica, Tome 49 (1983) no. 2, pp. 173-194. https://www.numdam.org/item/CM_1983__49_2_173_0/
[1] and : On period relations for abelian integrals on algebraic curves. Ann. Sc. Norm. Pisa, Ser. 3, 21 (1967) 189-238. | Zbl | MR | Numdam | EuDML
[2] and : The irreducibility of the space of curves of given genus. Publ. Math. IHES 36 (1969) 75-109. | Zbl | MR | Numdam | EuDML
[3] : EGA IV, 4ème Partie, Publ. Math. IHES 32 (1967). | Zbl | Numdam
[4] : Géométrie formelle et géométrie algébrique, Sém Bourbaki 182 (1959). | Zbl | Numdam | EuDML | MR
[5] : On the geometry of a theorem of Riemann. Ann. of Math. 98 (1973) 178-185. | Zbl | MR
[6] and : On deformations of complex analytic structures, I, II. Ann. of Math. 67 (1958) 328-466; III, Ann. of Math. 71 (1960) 43-76. | Zbl | MR
[7] : Le théorème de Brill-Noether (d'après P. Griffiths, J. Harris, G. Kempf, S. Kleiman et D. Laksov). Sém Bourbaki 571 (1981). | Zbl | Numdam | MR
[8] : Abelian varieties, Tata Inst. of Fundamental Research, Bombay, Oxford University Press, London, 1974. | Zbl | MR
[9] : Geometric invariant theory. Ergebnisse der Mathematik 34, Springer-Verlag, Berlin, 1965. | Zbl | MR
[10] : On the equations defining abelian varieties I. Inv. Math. 1 (1966) 287-354; II, Inv. Math. 3 (1967) 75-135; III, ibid. 215-244. | Zbl | MR
[11] : Finite group schemes, local moduli for abelian varieties and lifting problems. In: Algebraic Geometry, Oslo 1970, Wolters-Noordhoff, Groningen, 1972. | Zbl
[12] and : The local Torelli problem for algebraic curves, in: Algebraic Geometry, Angers 1979, pp. 157-204, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980. | Zbl | MR






