@article{CM_1983__48_3_363_0,
author = {Kwasik, S{\l}awomir},
title = {On equivariant finiteness},
journal = {Compositio Mathematica},
pages = {363--372},
year = {1983},
publisher = {Martinus Nijhoff Publishers},
volume = {48},
number = {3},
zbl = {0519.57036},
language = {en},
url = {https://www.numdam.org/item/CM_1983__48_3_363_0/}
}
Kwasik, Sławomir. On equivariant finiteness. Compositio Mathematica, Tome 48 (1983) no. 3, pp. 363-372. https://www.numdam.org/item/CM_1983__48_3_363_0/
[1] : An equivariant Wall obstruction theory. Trans. Amer. Math. Soc. 256 (1978) 305-324. | Zbl | MR
[2] : Algebraic K-theory, W.A. Benjamin, New York, 1969. | Zbl | MR
[3] : Invariance of torsion and the Borsuk Conjecture. Can. J. Math. 6 (1980) 1333-1341. | Zbl | MR
[4] : A course in simple homotopy theory. Graduate texts in Math. 10, Springer, 1973. | Zbl | MR
[5] : A simple-homotopy approach to the finiteness obstruction. In Proceedings : Shape Theory and Geometric Topology, Dubrovnik, 1981.Lect. Notes in Math. 870 (1981) 73-81. | Zbl | MR
[6] : Äquivariante Whiteheadtorsion, Manuscripta Mathematica 26 (1978) 63-82. | Zbl | MR
[7] : Whitehead torsion and group actions. Annales Acad. Sci. Fennicae A. J. 588 (1974). | Zbl
[8] : On the equivariant homotopy type of G-ANR's. Proc. Amer. Math. Soc. 267 (1981) 193-194. | Zbl
[9] and : G-smoothing theory. Proceedings of Symposia in Pure Mathematics, vol. XXXII, Part I, AMS (1978) 211-266. | Zbl | MR
[10] and : Introduction to Piecewise-Linear Topology, Springer-Verlag, 1972. | Zbl | MR
[11] : Finiteness conditions for CW complexes. Ann. Math. 81 (1965) 55-69. | Zbl | MR
[12] : Equivariant homotopy theory and Milnor's theorem. Trans. Amer. Math. Soc. 258 (1980) 351-368. | Zbl | MR





