@article{CM_1983__48_1_55_0,
author = {Kubert, Daniel S. and Lichtenbaum, Stephen},
title = {Jacobi-sum {Hecke} characters and {Gauss-sum} identities},
journal = {Compositio Mathematica},
pages = {55--87},
year = {1983},
publisher = {Martinus Nijhoff Publishers},
volume = {48},
number = {1},
mrnumber = {700580},
zbl = {0513.12010},
language = {en},
url = {https://www.numdam.org/item/CM_1983__48_1_55_0/}
}
TY - JOUR AU - Kubert, Daniel S. AU - Lichtenbaum, Stephen TI - Jacobi-sum Hecke characters and Gauss-sum identities JO - Compositio Mathematica PY - 1983 SP - 55 EP - 87 VL - 48 IS - 1 PB - Martinus Nijhoff Publishers UR - https://www.numdam.org/item/CM_1983__48_1_55_0/ LA - en ID - CM_1983__48_1_55_0 ER -
Kubert, Daniel S.; Lichtenbaum, Stephen. Jacobi-sum Hecke characters and Gauss-sum identities. Compositio Mathematica, Tome 48 (1983) no. 1, pp. 55-87. https://www.numdam.org/item/CM_1983__48_1_55_0/
[1] : Jacobi sums as "Grössencharaktere". Trans. Amer. Math. Soc. 75 (1952) 487-495. | Zbl | MR
[2] : Sommes de Jacobi et caractères de Hecke. Nachrich. der Akad. Göttingen (1974) 1-14. | Zbl | MR
[3] : Valeurs de fonctions L et périodes d'intégrales. Proceedings of Symposia in Pure Mathematics 33 (1979) 313-346. | Zbl | MR
[4] : Cycles de Hodge sur les varietes abeliennes, preprint.
[5] : Jacobi sums and Hecke characters, to appear. | Zbl | MR
[6] and : Die Nullstellen der Kongruenz-zeta funktionen in gewissen zyklischen Fallen. J. reine angew Math. 172 (1935) 151-182. | Zbl | JFM | EuDML
[7] : Jacobi-sum Hecke characters of imaginary quadratic fields, preprint.
[8] : Complex analysis. McGraw-Hill, 1953. | MR
[9] : Algebraic number theory. Addison-Wesley, 1970. | Zbl | MR
[10] : unpublished manuscript.
[11] and : Gauss sums and the p-adic Γ-function. Ann. of Math. 109 (1979) 569-581. | Zbl
[12] and : An introduction to the theory of numbers, 4th ed. Oxford University Press, 1960. | Zbl | MR
[13] : Some remarks on Hecke characters. International Symposium on Algebraic Number Theory, Kyoto, 1976. S. Iyanaga, ed. | Zbl
[14] : Identities for products of Gauss sums over finite fields. To appear in L'Enseignement Math. | Zbl | MR






