corrigé par Correction to : “On isospectral deformations of riemannian metrics. II”
@article{CM_1982__47_2_195_0,
author = {Kuwabara, Ruishi},
title = {On isospectral deformations of riemannian metrics. {II}},
journal = {Compositio Mathematica},
pages = {195--205},
year = {1982},
publisher = {Martinus Nijhoff Publishers},
volume = {47},
number = {2},
mrnumber = {677020},
zbl = {0505.53019},
language = {en},
url = {https://www.numdam.org/item/CM_1982__47_2_195_0/}
}
Kuwabara, Ruishi. On isospectral deformations of riemannian metrics. II. Compositio Mathematica, Tome 47 (1982) no. 2, pp. 195-205. https://www.numdam.org/item/CM_1982__47_2_195_0/
[1] : On isospectral deformations of Riemannian metrics. Comp. Math. 40 (1980) 319-324. | Zbl | MR | Numdam
[2] : On the characterization of flat metrics by the spectrum. Comment. Math. Helv. 55 (1980) 427-444. | Zbl | MR
[3] , , and : Le spectre d'une variété riemannienne. Lecture Notes in Mathematics 194. Springer-Verlag, 1971. | Zbl | MR
[4] and : Some inverse spectral results for negatively curved 2-manifolds. Topology 19 (1980) 301-312. | Zbl | MR
[5] and : Some inverse spectral results for negatively curved n-manifolds. Proc. Sympos. Pure Math. 36 (1980) 153-180. | Zbl | MR
[6] : A characterization of the canonical sphere by the spectrum. Math. Z. 175 (1980) 267-274. | Zbl | MR
[7] : Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21 (1968) 467-490. | Zbl | MR
[8] : Families of linear operators depending upon a parameter. Am. J. Math. 87 (1965) 752-758. | Zbl | MR
[9] : On the volume elements on a manifold. Trans. Amer. Math. Soc. 120 (1965) 286-294. | Zbl | MR
[10] : Quelques formules de variation pour une structure riemannienne. Ann. sci. Éc. Norm. Sup., 4e serie 3 (1970) 285-294. | Zbl | MR | Numdam
[11] and : Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 92 (1970) 102-163. | Zbl | MR
[12] : Non-deformability of Einstein metrics. Osaka J. Math. 15 (1978) 419-433. | Zbl | MR
[13] : The manifold of Riemannian metrics. Proc. Symp. Pure Math. 15 (1970) 11-40. | Zbl | MR
[14] : Geodesic flow on closed Riemannian manifolds with negative curvature. Trudy Mat. Inst. Steklov 90 (1967). | Zbl | MR





