@article{CM_1982__46_1_121_0,
author = {Miquel, V.},
title = {The volumes of small geodesic balls for a metric connection},
journal = {Compositio Mathematica},
pages = {121--132},
year = {1982},
publisher = {Martinus Nijhoff Publishers},
volume = {46},
number = {1},
mrnumber = {660156},
zbl = {0489.53043},
language = {en},
url = {https://www.numdam.org/item/CM_1982__46_1_121_0/}
}
Miquel, V. The volumes of small geodesic balls for a metric connection. Compositio Mathematica, Tome 46 (1982) no. 1, pp. 121-132. https://www.numdam.org/item/CM_1982__46_1_121_0/
[1] , , and : Le spectre d'une variété riemannienne. Lecture Notes in Mathematics, vol. 194, Springer Verlag, Berlin and New York, 1971. | Zbl | MR
[2] and : Géometrie Différentielle. Armand Colin, Paris, 1972. | Zbl | MR
[3] , and : Démonstration d'un théorème de Gauss. Journal de Mathématiques 13 (1848) 80-90.
[4] : The volume of a tube in complex projective space. Illinois J. Math. 16 (1972) 627-638. | Zbl | MR
[5] : The volume of a small geodesic ball of a Riemannian manifold. Michigan Math. J. 20 (1973) 329-344. | Zbl | MR
[6] and : Riemannian geometry as determined by the volume of small geodesic balls. Acta Math. 142 (1979) 157-198. | Zbl | MR
[7] and : The volumes of tubes about curves in a Riemannian manifold (to appear). | Zbl | MR
[8] and : The volumes of tubes in a Riemannian manifold (to appear). | Zbl | MR
[9] : Complex differential and integral geometry and curvature integrals associated to singularities of complex analytic varieties. Duke Math. J. 45 (1978) 427-512. | Zbl | MR
[10] : Notes on Differential Geometry. Van Nostrand, New York, 1965. | Zbl | MR
[11] : Tubes and spheres in n-spaces, and a class of statistical problems. Amer. J. Math. 61 (1939) 440-460. | Zbl | MR | JFM
[12] and : Sur la relation entre la fonction volume de certaines boules géodésiques et la géométrie d'une variété riemannienne. C.R. Acad. Sci. Paris 290 (1980) 379-381. | Zbl | MR
[13] , , : Harmonic Spaces. Edizioni Cremonese, Rome, 1961. | Zbl | MR
[14] : Notiz über das mittlere Krümmungsmass einer n-fach ausgedehnten Riemann'schen Mannigfaltigkeit. Akad. Wissen. Gottingen Nach. (1917) 334-344. | JFM
[15] : On the volume of tubes. Amer. J. Math. 61 (1939) 461-472. | Zbl | MR | JFM
[16] : The Classical Groups. Princeton Univ. Press, Princeton, N.J., 1939.
[17] : The volume of tubes in complex projective space. Trans. Amer. Math. Soc. 157 (1971) 347-371. | Zbl | MR
[18] : On semi-symmetric metric connection. Rev. Roum. Math. Pures et Appl. XV (1970) 1579-1586. | Zbl | MR





