@article{CM_1982__45_2_207_0,
author = {Kudla, Stephen S. and Millson, John J.},
title = {Geodesic cycles and the {Weil} representation {I} ; quotients of hyperbolic space and {Siegel} modular forms},
journal = {Compositio Mathematica},
pages = {207--271},
year = {1982},
publisher = {Martinus Nijhoff Publishers},
volume = {45},
number = {2},
mrnumber = {651982},
zbl = {0495.10016},
language = {en},
url = {https://www.numdam.org/item/CM_1982__45_2_207_0/}
}
TY - JOUR AU - Kudla, Stephen S. AU - Millson, John J. TI - Geodesic cycles and the Weil representation I ; quotients of hyperbolic space and Siegel modular forms JO - Compositio Mathematica PY - 1982 SP - 207 EP - 271 VL - 45 IS - 2 PB - Martinus Nijhoff Publishers UR - https://www.numdam.org/item/CM_1982__45_2_207_0/ LA - en ID - CM_1982__45_2_207_0 ER -
%0 Journal Article %A Kudla, Stephen S. %A Millson, John J. %T Geodesic cycles and the Weil representation I ; quotients of hyperbolic space and Siegel modular forms %J Compositio Mathematica %D 1982 %P 207-271 %V 45 %N 2 %I Martinus Nijhoff Publishers %U https://www.numdam.org/item/CM_1982__45_2_207_0/ %G en %F CM_1982__45_2_207_0
Kudla, Stephen S.; Millson, John J. Geodesic cycles and the Weil representation I ; quotients of hyperbolic space and Siegel modular forms. Compositio Mathematica, Tome 45 (1982) no. 2, pp. 207-271. https://www.numdam.org/item/CM_1982__45_2_207_0/
[1] : On the Doi-Naganuma lifting associated with imaginary quadratic fields, Nagoya Math. J., 71 (1978), 149-167. | Zbl | MR
[2] , and , Le Spectre d'une Variété Riemannienne, Lecture Notes in Mathematics, 194, Springer-Verlag, New York. | Zbl
[3] : Asymptotic distributions associated with the Laplacian for forms, Comm. Pure and Appl. Math., XI (1958), 535-545. | Zbl | MR
[4] : Examples of dual reductive pairs, Proc. Symp. Pure Math., 33 (1979), part 1, 287-296. | Zbl | MR
[5] , and : Connections, Curvature, and Cohomology, vol. I, Academic Press, New York and London, 1972. | Zbl | MR
[6] , Differential Geometry and Symmetric Spaces, Academic Press, New York and London, 1962. | Zbl | MR
[7] and : Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus, Invent. Math., 36 (1976), 57-113. | Zbl | MR
[8] : θ-series and invariant theory, Proc. Symp. Pure Math., 33 (1979), part 1, 275-285. | Zbl
[9] and : The Weil Representation, Maslov Index and Theta Series, Birkhäuser, Boston-Basel- Stuttgart, 1980. | Zbl | MR
[10] : Über Poincarésche Reihen vom Exponentialtyp, Math. Ann., 234 (1978), 145-157. | Zbl | MR
[11] : Strong approximation, Proc. Symp. Pure Math., vol. 9, A.M.S. (1966), 187-196. | Zbl | MR
[12] : Intersection numbers for quotients of the complex 2-ball and Hilbert modular forms, Invent. Math., 47 (1978), 189-208. | Zbl | MR
[13] and : Harmonic differentials and closed geodesics on a Riemann surface, Invent. Math., 54 (1979), 193-211. | Zbl | MR
[14] : Siegel's Modular Forms and Dirichlet Series, Lecture Notes in Mathematics, 216, Springer-Verlag, New York, 1971. | Zbl | MR
[15] and : Geometric construction of cohomology of arithmetic groups I, to appear in the Patodi Memorial Issue of the Journal of the Indian Math. Soc. | Zbl | MR
[16] : Modular forms of half integral weight and the integral of certain theta function, Nagoya Math. J., 56 (1975), 147-163. | Zbl | MR
[17] : Introduction to Quadratic Forms, Springer-Verlag, New York, 1971. | Zbl
[18] : On modular forms associated with indefinite quadratic forms of signature (2, n - 2), Math. Ann., 231 (1977), 97-144. | Zbl | MR
[19] : The structure of semisimple symmetric spaces, Journal of Canadian Math. Soc., 31 (1979), 157-180. | Zbl | MR
[20] : On the estimation of Fourier coefficients of modular forms, Proc. Symp. Pure Math., 10 (1965), 1-15. | Zbl | MR
[21] : On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J., 58 (1975), 83-126. | Zbl | MR
[22] : Sur certains groupes d'operateurs unitaires, Acta Math., 111 (1964), 143-211. | Zbl | MR
[23] : Modular forms associated to real quadratic fields, Invent. Math., 30 (1975), 1-46. | Zbl | MR
[24] : Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields; Modular Functions of One Variable VI, Bonn; Lecture Notes in Math., 627, Springer-Verlag, New York, 1976. | Zbl | MR






