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0. Introduction

Let p be an odd prime and M a positive integer prime to p. For a
positive integer N, denote by Fo(N) the congruence subgroup of level

N, i.e. ro(N) = a b E SL(2, Z) c --- 0 (mod N) and let Sk(N, X)
denote the space of cusp forms of weight k and character X on ro(N),
X a character of (ZIN)’. If X = 1, we write Sk(N) = Sk(N, 1). The
purpose of this paper is to study the subspace of Sk(N) generated by
theta series attached to orders of level N = p2M in quaternion al-
gebras (see [§2]) in the case N = p2M. The analogous question for the
case N = p 2r+1 M was studied in [13]. There we found for example
that all newforms in Sk (p 2’+’ M) are linear combinations of theta

series attached to orders of level p2,,IIM. The case N = pM is quite
different. If N = p2M we can construct as linear combinations of
theta series attached to orders of level p2M all newforms in Sk(p2M)
that are not obtained from forms in Sk(pM, t/J2) by twisting by # where If
ranges over all non trivial characters of (Z/p)x or from forms in Sk(M) by
twisting by the quadratic character cp mod p (see Proposition 8.5 below).
The most interesting case (since we can handle the non-square level case
by [ 13]) is when N = p 2M is a square. In fact the case N = p 2 contains all
the essential dificulties and new results.

In addition to identifying the subspace generated by theta series
and giving the action of the Hecke operators on this subspace, we

explicitly give the action of the Rp operator (twisting by the quadratic
character

B

of Atkin-Lehner (see [1]). Also in §9 we define
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operators Wj for e prime, e 1 N which act on the space of theta series
by "ideal multiplication" (see Proposition 9.4). We show (Proposition
9.6) that the We act just like the Wq operators of Atkin-Lehner (see
[1]) and in fact we conjecture (see Conjecture 9.24) that they are
essentially the Wq-operators. We prove (Corollary 9.23) that the

product of the We for C 1 N is essentially equal to the product of the
We for C I N, i.e. essentially equal to the canonical involution. We
keep saying "essentially" because one of the We (in fact Wp) differs
from the corresponding We by a minus sign. The results of section 9
are applicable to the case of level p2r+1M and in that case they
generalize the results of [14] to arbitrary weight k - 2 and also clearly
imply the existence of We operators in the case of level p2r,l M. The
final section of the paper contains a very explicit discussion of the
case of level N = p 2. Theorems 10.1 and 10.3 show that the subspace
Sk(p2) of Sk(p2) generated by newforms is a direct sum of a space of
theta series and spaces obtained by twisting certain spaces of forms
of level p and level 1 by appropriate characters. Also the results in
section 10 on multiplicity 2 may be related to recent results of

Labesse and Langlands giving counter examples to a ’multiplicity
one’ theorem holding for the representation theory for certain inner
forms of SL(2), see Remark 10.6.

Jacquet and Langlands in §16 of [6] (see also §10 of [4]) give a
correspondence between automorphic representations attached to

quaternion algebras and certain automorphic representations of

GL(2). The latter correspond to the classical modular forms on ro(N)
we consider in this paper. Our Theorem 8.2 should afford a concrete

realization of their correspondence in a special case.
The history of this paper began with Parry’s thesis [11] where he

considered the following problem. Can all newforms in S2(p2) come
from theta series? (As above we know that the answer is yes if the
level is not a perfect square). Parry obtained a negative answer by
explicitly constructing a basis for the subspace of cusp forms that do
come from theta series in the case p = 13 and then comparing
dimensions. Atkin using Parry’s results was then able to determine
that the missing forms (i.e. those not obtained from theta series) in
the case p = 13 where those obtained from forms in S2(p, «/12) by
twisting by the character where «/1 ran over the characters of (Z/p )x
with «/12 1. This and other calculations led him to the obvious

conjecture as to what the missing forms where in general for the case
S2(p 2) and his questions to the author about this problem led directly to
the present paper.
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1. Local orders

In this section we begin to develop the theory of orders of higher
level in local quaternion division algebras. We are particularly inter-
ested in the case of orders of ’level p2’ , see Definition 1.3 below.

Fix an odd prime p and let u E Z be a quadratic non residue mod p.
Qp has two ramified quadratic field extensions K = Qp(Vp) and K’ =
Qp(1/up). Using these we define

conjugation of K/Qp and

conjugation of K’ 1 Qp. Clearly B (resp. B’) with the structure inherited
from Mat(2, K) (resp. Mat(2, K’)) is an algebra of dimension 4 over

Qp. It is easy to check directly that B(resp. B’) is a division algebra
and that the reduced norm (N) and reduced trace (tr) of B (resp. B’)
are just the determinant and trace of Mat(2, K) (resp. Mat(2, K’))
restricted to B (resp. B’). Since there is a unique quaternion division
algebra over Qp up to isomorphism (see p. 154 of [8]), B and B’ are
isomorphic over Qp. Now let S = Zp + Z,-BIp- (resp. S’ = Zp + Zp 1/up )
be the ring of integers of K (resp. K’) and P = (Vp) (resp. P’ =
(1/up)) be the maximal ideal of S (resp. S’). For non negative integers
r we define the orders

and

Direct computation shows that if x E B and N(x) E Zp, then x E Mi
and similarly for MI. Hence Mi (resp. M1) is the unique maximal
order of B (resp. B’).
The notation introduced in the above paragraph will be used

throughout the rest of this section. In particular p is always an odd
prime.

PROPOSITION 1.1: Let C be a quaternion division algebra over Qp
and let M be an order of C. Then M is isomorphic to M, for some s if
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and only if M contains a subring isomorphic to S. Similarly, M is
isomorphic to M’ S for some s if and only if M contains a subring
isomorphic to S’.

PROOF: We recall that an order of C is a free Zp submodule of C of
rank 4 which is also a subring containing 1. We will prove the

statement concerning Ms, the proof of the statement concerning Ms
being similar. We need only show that if M contains a subring
isomorphic to S, then M is isomorphic to MS for some s as the
converse is obvious. C is isomorphic to B so we can identify C with
B. Then we can assume (by conjugating M if necessary by an element

of B’) that M contains Under this assumption

we will show M = M, for some s. But since Mi is the unique maximal
order, M C Mi and letting s be the greatest integer with M C M,, we
have M = Ms.

PROPOSITION 1.2: MS contains a subring isomorphic to S’ if and
only if s = 1 or 2. Similarly M’ contains a subring isomorphic to S if
and only if s = 1 or 2.

PROOF: We again prove only the first statement. Clearly it suffices
to show that S’ can be embedded in M2 but not in M3. S’ =

Zp + Zp V up, so S’ can be embedded in Ms if and only if Ms contains
an element y with tr( y) = tr(N/up) = 0 and N( y) = N(vu-p) = - up.
For M2 such an element is given by where

b, c E Zp satisfy b2 - uc’ = u. Such b and c exist since Qp(1/u) is an
unramified extension of Qp and every unit of 2p is the norm of an

element of Zp + Zp1/u. Now suppose y =

Then we have

u == b 2(mod p ), a contradiction.
Combining Proposition 1.1 and 1.2, we see that we have the following

arrangement of the orders M, and Ms in the quaternion division algebra
over Qp :
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and except for s = 1 or 2, Ms is never isomorphic to M’. Also it is

obvious that Ms can not be isomorphic to M; if s 4 t. Thus consider-
ing s = 2, we have a canonical choice for the definition of an ’order
of level p2’, so we give

DEFINITION 1.3: Let A be the quaternion division algebra over Qp,
p an odd prime. An order M of A is said to level p2 if M is

isomorphic (over Zp ) to the order M2 in (1.1).
Henceforth we will be exclusively interested in orders of level p2.

We will show shortly that there is a unique order of index p in the
maximal order of A and it is the unique order of level p 2 in A. First
we need to give one last representation of A.

Let L = Qp (1/ u ) be the unique unramified quadratic field extension
of Qp, R = Zp + ZpVM its ring of integers, and 0" its conjugation over
Qp. We also let v = N/û. Then as is easily checked

is the (unique) quaternion division algebra over Q, and

is the unique maximal order of A. The notation being as above, we
have

LEMMA 1.4: Ml, the maximal order of A, contains a unique suborder
of index p.

PROOF: Let M be a suborder of index p. We embed R into Ml by

Then M n R is a subring of R, say T. Now

RIT = RIM n R == R + MIM ç MtlM as additive groups. Hence

]R/ T] s p and so either T = R = Zp + Zpv or T = Zp + Zppv. If T = R,
then M contains R and so by Proposition 2 of [12], M must be an
order of level p2r+1 for some r 0 (see Definition 1 of [12]). Thus the
index of M in Mi must be p2r, a contradiction. Hence T = Z, + Zpv.

Now suppose with b a unit. Then
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and tr(y) = 0 while N(y) _

-u(b2+p(c2-d2u)lu)=-u82 for some unit 5 of Zp. Hence R=
Zp + Zp y C M and again we have a contradiction as above. Now let

D is an additive subgroup of R and it

followed from the above work that M = T EB D as an additive group.
But Ml == R EB R and [Ml : M) _ [R : T ][R : D] = p [R : D]. Hence R =
D and we have

This compotes the proof of Lemma 1.4.

THEOREM 1.5: Let A be the quaternion division algebra over Qp, p
an odd prime. Then A contains a unique order of level p2. In fact it is
the unique order of index p in the maximal order of A.

PROOF: Clearly an order of level p2 has index p in the maximal

order of A. Since the maximal order is unique, Lemma 1.4 shows that
there is a unique order of level p 2 and it is given by (1.3) if A is given
by (1.2). Existence of an order of level p2 is clear from the definition
or one can check directly that (1.3) gives an order of level p2 by using
Proposition 1.1.

REMARK 1.6: From now on we will use exclusively the represen-
tation of the unique quaternion division algebra over Qp given by (1.2)
and the corresponding representation of its unique order of level p2
given by (1.3).
We will need to determine the structure of the unit group of the

maximal order modulo the unit group of the order of level p 2. For any
ring S, denote by U(S) the unit group of S. Then we have the well
known

LEMMA 1.7: Let R = Zp + Zpv and T = Zp + Zppv. Then U(R)l U(T)
is cyclic of order p + 1. A set of coset representatives is given by v and
1 + av, a = 0, p - 1.

PROOF: Let L(resp. Qp) be the residue class field of L(resp. Qp). If
cpL and ç denote the maps to the residue class fields, we have the
commutative diagram
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Then p"LI(Qp) = T so we have U(R)I U(T) =-- f-’10’ which is a cyclic
group of order p + 1. It is clear that the given set is a set of coset

representatives.

PROPOSITION 1.8: Let A be the quaternion division algebra over Qp,
p an odd prime. Let Ml be the maximal order of A and M2 the order of
level p2. Then U(MI)I U(M2) is cyclic of order p + 1. A set of coset

representatives is given by and

PROOF: Let the notation be as in Lemma 1.7 above. Let t/1: Ml L
be given by Then /(Qp) = M2 and

U(M,)/ U(M2) = LX/Q p . It is easy to see that the given set is in fact a
set of coset representatives.

2. Local optimal embedding theory

The major tool we will need in obtaining a trace formula for Brandt
Matrices is the optimal embedding theory for orders of level p2. Let t
be a prime. The analogous theory for orders of level e2t+1 was

developed by Pizer in [12]. The optimal embedding theory for orders
in a split quaternion algebra over Qe was developed by Eichler
([2], [3]) and Hijikata ([5], §2). Let K be a semi-simple algebra of
dimension 2 over Qe (i.e. K is a quadratic field extension of Q,, or
K == Qe (D Qe) and let a be an order of K (with a Oz, Q,, = K). Let C
be a quaternion algebra over Qe and let M be an order of C. Then we
have the

DEFINITION 2.1: An embedding (injective Q,, homomorphism)
ç : K - C is called an optimal embedding of a/K into MIC if ’P(K) n
M = ’P«(J). Two such optimal embeddings cpl and ’P2 are equivalent
mod U(M) if there exists y E U(M) such that ’PI(a) = "-1’P2(a),, for
all a E K.
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REMARK 2.2: In this section we study optimal embeddings in the
case e = p, C = A the unique quaterion division algebra over Qp, and
M = M2.
Let us fix some notation which we will use for the remainder of the

paper. p is always an odd prime. u is a quadratic non-residue mod p
and v = VM. L = Q,(v), R = Zp + Zp v and T = Zp + Zppv. We identify
A as in (1.2) and M2 as in (1.3).

PROPOSITION 2.3: Let K = Qp(g) be a semi-simple algebra of
dimension 2 over Qp where Zp + Zpg is an order of K. Then an

isomorphism cp is an optimal embedding of Zp + Zpg/K into M2/A if

and only if with a = a + pbv E T and !3 E R where

either b or 8 is a unit.

PROOF: Zp + ZPg is optimally embedded in M2 if and only if

Zp + Zpcp(g) = M2 n (Qp + Qpcp(g)) and from this the proposition fol-
lows easily.

Let K, « be as in Definition 2.1. We denote by 4(a.) the discriminant
of a.. 4 (a) is defined mod U(Zp)2 and we write d (a.) = d to mean
d ( a ) = d U (Zp )2. If K = Qp (g ) and a = Zp + Zpg, then L1«(J) =

tr(g)2 - 4N(g).

PROPOSITION 2.4: Let a, K be as in Definition 2.1. Assume there

exists an optimal embedding of o-IK into M2/A. Then à(&#x26;) = p, pu, or

p 2U.

PROOF: Let cp be an optimal embedding of (J = Zp + Zpg into M2.

Then by Proposition 2.3 where a = a + pbv E

T, 8 e R and either b or!3 is a unit. Thus 4(a) = tr(G)2 - 4N(G) _
4p({3{3lT + pb2u) where either (i) 8 is a unit or (ii) p8 and b is a unit.
The first case gives discriminants p and pu, the second case gives p 2u.

PROPOSITION 2.5: Let a be an order in a quadratic extension of Qp
with 4(a) = p2u. Then tL has exactly two inequivalent mod U(M2)
optimal embedding into M2.

PROOF: We can assume « = Zp + Zppv. Let cp be an optimal
embedding of « into M2 and set cp(pv) = G. Then G is conjugate by an

element of A’ to p Now any element ofAx is in U(MI)



185

for some t, so G is conjugate by an element of t7(Mi) to

Hence G is conjugate by an element of U(M2) to some

where a runs over a set of coset representatives
v/ /

of U(MI)I U(M2). By Proposition 1.8, a set of coset représentatives is

given by and But

these are all in , so they commute with Hence

G is conjugate by an element of U(M2) to

and are never conjugate by U(M2) since if 1’E U(M2),

then would imply (by reducing mod p)

that v == - v mod p, a contradiction. Finally both these representatives
yield optimal embedding by Proposition 2.3. This completes the

proof.

PROPOSITION 2.6: Let a. be an order in a quadratic extension of Qp
with d(a) = p or pu. Then a. has exactly p + 1 inequivalent mod U(M2)
optimal embedding into M2.

PROOF: We can assume a = Zp + Zpg where g = vrp or yi up. Let cp
be an optimal embedding of 6 into M2 and set ç(g) = G. Then G is

conjugate by an element of (say) where /3 E R

and 38,8’ = 1 (if à («) = p) or 8,8’ = u (if A(&#x26;) = pu). Now N(H) =
- p{3{3CT so H is a prime element of A. Hence any element of A’ is
contained in U(MI)Ht for some t E Z. Thus G is conjugate by an
element of U(MI) to H. Thus by Proposition 1.8 G is conjugate by an

element of U(M2) to some aHa-’ where or

That is G is conjugate by an element

of U(M2) to one of
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or

Thus we have at most p + 1 inequivalent mod U(M2) optimal embed-
dings and all these representatives yield optimal embeddings by
Proposition 2.3. To show that we have exactly p + 1, we must only
show that no C or Da a = 0, 1,..., p - 1 can be conjugate by an
element of U(M2) to some other C or Da. First suppose C is

conjugate to some Da by Thus working

mod p, yCy-’ = Da implies (mod p ).

Thus (mod p ) or a’u - 1 = 1+ 2av + a 2u (mod p), a

contradiction. Now suppose Da is conjugate to Db by y E U(M2).
Again working mod p we see that this implies 0(l +av )2/1 - a2U ==
,8(1 + bv )2/1 - b 2 u. (mod p). This leads to

and

(2.1) implies either a== b which gives a = b and we are done or
a - - b which by (2.2) implies b --- 0 (mod p) which gives a = b = 0
and again we are done.
Combining Propositions 2.4, 2.5 and 2.6 we obtain

THEOREM 2.7: Let a, K, A and M2 be as in Definition 2.1. If
d (a) = p or pu, there are exactly p + 1 inequivalent mod U(M2) opti-
mal embeddings of a./K into M2/A. If 4(a) = p2U, there are exactly 2
inequivalent mod U(M2) optimal embedding of elK into M21A. If
,à(&#x26;) 0 p, pu or p2U, a/K has no optimal embedding into M2/A.

3. Orders of level p 2M and the Mass formula

We fix some notation which we will use throughout the remainder
of the paper. p will always denote an odd prime. ’à will always denote
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the (unique) quaternion (division) algebra over Q ramified precisely at
p and 00. We let Ce = ® QQe for any prime t of Q and also let

Le = L ® ZZe for any finite prime e of Q and lattice L of %. If 6# p
or 00, then %,e is split, i.e. 91,e Mat(2, Qe) and all maximal orders of 91,e
are conjugate by an element of ?1’ ,e to Mat(2, Ze) (see e.g. [16],
Theorem 17.3). Thus for convenience we can and do assume from
now on that çàe,,e 0 p or 00 is identified with Mat(2, Qe) in such a way
that there exists a maximal order of %, say D, such that De =

Mat(2, Ze) for all e 0 p_ or 00. Let u E Z be a quadratic non residue
mod p and let v =1/ u . Then L Q, (v) is the unique unramified
quadratic extension of Q, and R = Zp + ZPv is its ring of integers.
Then 2[p can and will be identified with (see (1.2)) 9tp =

where o- denotes conjugation of L/Qp. Let M

denote a positive integer prime to p.

DEFINITION 3.1: Let p, M, and 91 be as above. An order Al ouf 21 is
said to have level p2M if (i) A, is an order of level p2 in 9îp and (ii) Alt

is isomorphic (over Ze) to for all primes t;é p.

Let W be as above and let Al be an order of level p 2M of %. Just as
in Eichler [3], chapter 2 or Pizer [14], §2 Al has an ideal theory. The
ideal class number of left Al-ideals is finite (see Proposition 2.13 of
[14]) and depends only on the level, not on the particular order JK (see
Proposition 2.13 of [14] and Theorem 4.18 below) and is denoted by
H = H(p2M). Let Il,... , IH be representatives of all the distinct left
M-ideal classes and let Ai = {x e- 2t 1 Iix C I;} be the right order of li.
The «i are all orders of level p2M (see e.g. [14], p. 103) and we have
the following

DEFINITION 3.2: The Mass (p2M) (for M-ideals, JK an order of level
p 2M) is

REMARK 3.3: The Mass depends only on the level, not on the

particular order of level p2 M or on the choice of ideal class represen-
tatives (see Theorem 3.4 below). The 2 in the definition comes from
that fact that we really should consider 1 U(Al;)1 U(Z)I, at least if we
want our definition to extend naturally to quaternion algebras over
totally real number fields.
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THEOREM 3.4: Massl

the product being over all primes t of M.

PROOF: This follows immediately by the same techniques as in

Pizer [12], Propositions 24 and 25 once we take into account Pro-

position 1.8 of this paper.

For convenience of exposition we give the following normalization.

DEFINITION 3.5: Let p be an odd prime and M a positive integer
prime to p. We denote by 9 the order of level p 2M of 9t given by

REMARK 3.6: It is clear that is an order of level p2M. In general
an order « of 9( has level p2M if and only if JK + C (over Ze) for all
t  00. For the remainder of the paper A will denote some order of
level p 2M of 9( while t will always denote the order given by
Definition 3.5. Note that by adjusting the identification of 9(f with
Mat(2, Qf), e =;é p, any preselected order of level p2M can be taken as

4. The Brandt Matrices and their traces

Let p, M, (J, and 21 as in §3. Using 0, we define Brandt Matrices
B(n) = B,(n; p2, M) in exactly the same way as Eichler (see [3],
equation 15 and 15a on p. 105 or Pizer [15], Definition 2.13). For the
convenience of the reader we briefly recall the definition.

Let a - X, (a) denote the s + 1 dimensional matrix representation
of 9(x induced by taking the s th symmetric product of the two
dimensional representation 91x C (21 (D C)x = GL(2, C). Xo(a) denotes
the trivial one dimensional representation, i.e. Xo(a) = 1 for all a E
àx. Let 7i,..., IH be a set of representatives of all the left (9-ideal
classes. Let C; = fa E 91x I;a C 7,} denote the right order of I; and let
ej = 1 U(Oj)I. By Proposition 5.12 below ej = 2 or 6 and is often 2

(always if p &#x3E; 3). For n &#x3E; 0, let
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where the sum is over all a Ei Iî’Ii with N(a) = nN(Ii)IN(Ij). Here
the superscript t denotes transpose. Further let b ° (o) = 1 /e; and let
bfj(O) = 0, s &#x3E; 0. Then the bfj(n) are s + 1 by s + 1 complex matrices
and the Brandt Matrix B,(n; p2, M) is the H(s + 1) by H(s + 1) matrix
given by

that is the i th, j th block, 1 _ i, j _ H of BS (n ; p 2, M) is the s + 1 by
s + 1 matrix bfj(n).

REMARK 4.1: If s is odd, then X s(-a) _ -X s(a) and it follows

from (4.1) that the Brandt Matrices BS (n ; p 2, M) for s odd are

identically zero.

Note that the Brandt Matrices depend (slightly) on the choice of
ideal class representatives fi, ... , IH and also on the choice of the
ôrder 6. We now show how this dependence works. Let Jl, ... , JH be
another set of representatives of all the distinct left 6 ideal classes.
Then Ji = I,(i)ai for some ai E 91x and some permutation E of the

indices 1,..., H. Let B I(n) (resp. Bs(n)) be the Brandt Matrix cor-
responding to the choice of I,, ... , IH (resp. Ji,..., JH ) as ideal class
representatives. Finally let P be the H(s + 1) by H(s + 1) matrix

consisting of blocks pij of s + 1 by s + 1 matrices where the ith, jth block

Then we have

PROPOSITION 4.2: In the above notation B’(n) = PBI(n)P-’ for all
n.

PROOF: This follows easily from (4.1) and (4.2).
Let JB}1 be the idele group of 9[. Jâ acts transitively by conjugation

on orders of level p2M of N, the action being â :.LC H â-’.Glâ. If .J1 is

any fixed order of level p2M, then Jx acts transitively on left .J1-ideals,
the action being à : I H Iâ. For details see section 2 of [14].

PROPOSITION 4.3: The Brandt Matrices do not depend on the

particular order C of level p2M which is used to define them.

PROOF: Let t and 7i,..., IH be as above. Let .J1 be some other
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order of level P’M. Then « = â6â -’ for some à E J9I and it is clear
that dIi, ... , âIH is a complete set of representatives for the distinct
left M-ideal classes. By (4.1), the ith, jth entry block of the Brandt
Matrix associated to Ù (resp..J1) is obtained by summing over all

a e Iî’Ii (resp. (âIj)-’(âIi». But (âIj)-’(âIi) = Ij-1-Ii, so the Brandt

Matrices for t and .J1 are identical (if we choose corresponding sets
of ideal class representatives).

REMARK 4.4: It follows from Proposition 4.2 and 4.3 above that the
Brandt Matrices depend upto conjugation by a fixed matrix only on
the level p 2M. In particular, if s = 0 they are independent upto
conjugation by a permutation matrix of the particular order of level
p 2M and the particular choice of ideal class representatives used to
define them.

The Brandt Matrices Bs(n; p2, M) with (n, pM) = 1 generate a

commutative semi-simple ring (see [3] or [15]) and for (n, pM) = 1,
BS (n ; p 2, M) gives a matrix representation of the Hecke operator
Ts+2(n) acting on a space of generalized theta series (see Proposition
2.23 of [15] and the Proposition on p. 138 of [3]. Our major result on
the representation of cusp forms on ro(p 2M) by theta series (see §8)
will follow from a relation involving the traces of Brandt Matrices.
For this we need the formula for the trace of Brandt Matrices given in
this section.

Eichler first obtained a trace formula for Brandt Matrices attached

to orders of square free level in [2]. Since then it has been implicit in
the literature that given the optimal embedding theory and the mass
formula for a particular kind of order, one can then obtain the trace
formula for Brandt Matrices attached to that kind of order by
methods similar to Eichler’s. We think it is worthwhile to make this

principle explicit. The proof of the trace formula given below is valid
for any order (with finite class number) in a definite quaternion
algebra over Q (in fact over any totally real number field with obvious
modifications) and does not require any knowledge of the two-sided
ideal theory of the order. For simplicity we will treat the case of the
order C of level p2M (which is what we really need), but we make no
essential use of the fact that C has level p2M (see Remark 4.15).

DEFINITION 4.5: Let A be a quaternion algebra over Q and let D be
an order of A. Let K be a semi-simple algebra of dimension 2 over Q
and let a be an order of K. An isomorphism cp : K --&#x3E; A is said to be an

optimal embedding of (II K into DIA if cp(a) = D n cp(K). Two such

optimal embeddings çi and q;2 of 61K into D/A are said to be
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equivalent mod U(D) if and only if there exists a u E U(D) such that
cpl(x) = U-Icp2(X)U for all x E K.

REMARK 4.6: Note that this is just a global version of Definition 2.1.
Note in particular that now K denotes a global algebra and e a global
order.

REMARK 4.7: Let A be a quaternion division algebra over Q. Then
by the Brauer-Hasse-Noether Theorem on splitting fields of central
simple algebras over global fields, we know that there exists an

isomorphism ç of K into A if and only if K is a quadratic field such
that no ramified prime of A splits in K. In particular if 21 is the

quaternion algebra over Q ramified precisely at p and 00, there exists
an isomorphism cp: K -&#x3E; 1 if and only if K is an imaginary quadratic
field such that p does not split in K, i.e. such that Kp = K Q9 QQ, is a
field.

We need to set some notation. Let K be an imaginary quadratic
number field and a an order of K. Let % be the quaternion algebra
over Q ramified precisely at p and 00 and D an order of level p’M of
9t. Denote by A(a, D) the number of mod U(D) equivalence classes
of optimal embedding of 0-1 K into D/21. Note that A(a, D) depends
only on the isomorphism classes of a and D. For a prime t, denote by
Ce(O-) the number of mod U(De) equivalence classes of optimal
embedding of e,,IK,, into Del91e (see Definition 2.1). Note that Ce( 0- )
depends only on a and the level of Dé, since all local orders of the
same level are isomorphic by definition.
Let 0 be an order of level p 2M of W. Let Il, ... , IH be a set of

representatives of all the left 0-ideal classes and let 6; be the right
order of I;. The key result connecting the local optimal embedding
theory to the trace of the Brandt Matrices is

THEOREM 4.8: In the above notation we have

where h(e) is the class number of locally principal a-ideals and the
product is over all primes e dividing pM.

PROOF: Note that by the tables on p. 692-694 of [ 13] Ce(e) = 1 if

e,( pM. Thus we will prove the more aesthetically pleasing result
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If K can not be embedded in ?1, clearly (by Remark 4.7) both sides of
(4.3) are zero, so for convenience we assume K G 9Î, hence Ke C
21é,Vé’ and JK C Jx, where JK denotes the idele group of K.

If cp is an optimal embedding of célké, into Cel%,e, then cp(x) =
bxb-’ for some b G lll§ with bO-tb-1 = ce n bKtb-l. Clearly conjugat-
ing by b or b’ gives the same optimal embedding if and only if

b’e bKx. Also conjugating by b or b’ yield mod U(6e) equivalent
optimal embeddings if and only if b’ E U(Ce)bKx. Thus Ce(e) is equal
to the number of double cosets U(Ce)bKx in lll§ such that Ken
b-l(Jtb = ce. We need the little

LEMMA 4.9: Let a, K, t and % be as in Theorem 4.8. Then

Knc=û if and only if Kence-ùe V6  00.

PROOF: By the elementary divisor theorem we can choose a Z-
basis f 1, f2, f3, /4 of 6 such that f 1, /2 is a Z-basis for K n 6. From this
it follows that (K fl C),e = Ke n Ce and now the lemma is clear.
We continue with the proof of Theorem 4.8. From the above we see

that Ile. Cé,(û) is equal to the number of double cosets 6lL«(J)bJK in J91
such that 6 = (be) and Ké, n b-’Ceb, = û,, Ve. Here W(6) =
f û = (ue) e Jx ue E U«(Jt)Ve  oo}. Hence by Lemma 4.9

is equal to the number of double cosets

Now let

where h = h(û) is (by definition) the ideal class number of locally
principal a-ideals. Here OU(f}) = {ú = (Ut) E JK 1 u, E U(")Ve  oo}.
Consider a double coset IM(C)6JK with K n 6-’C6 = . ’U (C) 6JK =
U’=! OM(C)60k(,)âiKx = Uf=l OU(O)bliiKX since o, C b-l(Jb implies
bOU(f}) ç OU«(J)b. We claim that this gives h(f}) IItoo Ct(f}) distinct dou-
ble cosets IM(C)éKx such that K n ê-lcê = e. Clearly we have at most
this many. As above any two such double cosets must be of the form

IM(C)6âiKx for some 6 in (4.4) and âi in (4.5). If OU(O)bliiKX =
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OU (O)b’âjKX, then OU(O)bJK = OU«(J)b’JK hence b = b’. Thus

b-lOU«(J)bâjKX = b-lOU(O)bâKX or âj = wâik with w E b-lOU«(J)b =
OU(b-l(Jb) and k E K. Thus w E JK n OU(b-l(Jb) = W (a) (since b-l(Jb n
K = a.), so â; = wâik implies j = i.
We now give a bijective map from the h(O-) IItoo Ct(O-) double

cosets %(P)cK" with K n é-IOé = 0- onto the mod U«(Ji) equivalence
classes of optimal embeddings p of 0-1 K into C,/9î as i ranges over

1, 2,.., H. Let

be the decomposition of Jgl given by the ideals 7i,..., IH, i.e. we let
Ii = Cy,. Note that (9, = fi1()fi. Let K fl é-icé = 0- and consider the
map

where é = ÚYia, û E 6Il«(J), a E 21’ in (4.6). We claim (4.7) is well

defined. 6Il«(J)éKX C W(Ù));111, so clearly ; is uniquely determined by
ôk(C)êK’. Suppose ê = úYia and wék = ú’Yia’ with û, Û’, (5 E 6Il«(J);
a, a’ E Ux; and k E Kx. Then a’k-Ia-l = yIÚ’-IWÚYi E 6Il«(J;) rl 2ix =
U«(J;), hence a’ E U«(Ji)aKX and so (4.7) is well defined.
Now K fl e-Icé = a implies that K n a-l(Jia = 0-, so cp (x) = axa-’

gives an optimal embedding of a/K into Ci/% and clearly cp is well

defined upto equivalence mod U(Ci) by the double coset U(Ci)aK’.
To complete the proof we need only show that the map (4.7) is a

bijection onto the set of double cosets U(Ci)aKx with Kna-’Cia = a,
i . = 1,...,H.
onto : K fl a -’ 6;a = a. implies K f1 a -’ 00FF ’ 00FFa = a so this comes from
6Il( (J)YiaKx by (4.7).
one to one: Let OU(C)éKx and 6Il«(J)dKX have the same image under
(4.7). Let ê = úYia and à = wYjb with a, b E 9[B û,,c5 E 6Il«(J). Then

clearly i = j and U(Ci)aKx = U(Ci)bKx. Thus for some u E U(Ci),
ub E aKx and OU(C)êKx = OU«(J)YiaKx = 6Il«(J)YiubKx = 6Il«(J)YibKx =

IM(C)âKx since u E U(Ci) = yl U«(J)Yi implies ;u E U«(J)Yi. This

completes the proof of Theorem 4.8.
The following Corollary should be compared with Proposition 5 on

p. 102 of Eichler [3].

COROLLARY 4.10: Let the notation be as in Theorem 4.8. Let ai(e)
denote the number of optimal embeddings of 0-1 K into Ci/%. Then
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where ei = 1 U(ûi)l.

PROOF: Letço(x) = axa-’ be an optimal embedding of alK into Ci/21.
Then for each u E U(Ci), çu(x) = uaxa -’ u -’ gives an optimal embed-
ding of 0-1 K into O;/B}l which is mod U(Ci) equivalent to ,o. Further
çu(x) = çw(x) if and only if w-’u E cp(K) n U(Oi) = ,0 ( U(O-». Thus
ai(c) = A(a, O;)e;// U(O-)I and the Corollary follows directly from the
theorem.

We need one last

LEMMA 4.11: Let a E 91x with tr(a) = s, N(a) = n and let x2 - sx +

n = (x - ()(x -l) (E C[x]. Then if aÉ Qx, while if

PROOF: If aÉ Q’, a as an element of 9f0C is conjugate to

and the result is

obvious.

THEOREM 4.12: Let k be an even integer &#x3E;_ 2. The trace of the
Brandt Matrix Bk-2(n; p2, M) is given by

where
if n is a perfect square

otherwise

The meaning of s, ak ( s ), f, b ( s, f ), and c(s, f, 6) are given as

follows.

Let s run over all integers such that s2 - 4n is negative. Hence with
some positive integer t and square free negative integer m we can
classify s2 - 4n into cases by
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Let O@(X) = X 2 - sX + n and let x and y be the roots of (P,(X) = 0
in C. Put ak(s) = 112(Xk-1 - yk-’)(x _ y)-’.
For each s (fixed), let f run over all positive divisions of t.

Let K denote the quotient field Q[X]1(0,(X» and e the canonical
image of X in K. K is an imaginary quadratic number field and e
generates the order Z + Ze of K. For each f there is a uniquely
determined order a.f containing Z+Ze as a submodule of index f.
a (a f) = S 2- 4n/f2 = a ( f ) (say). Let h(,I(f» (resp. co(,à(f») denote the
class number of locally principal af-ideals (resp. 112JU(ef)l). Then
b (s, f) = h (à (f))lm(à (f)).

Finally let 6 be an order of level p2M of U. Then c(s, f, e) is the
number of inequivalent mod U(6 ® Ze) optimal embeddings of

af Q9 Ze into C Q9 Ze.

REMARK 4.13: The trace formula given in Theorem 4.12 is very

easy to evaluate. It is well known how to write h (4 ( f )) in terms of
’standard’ class numbers of maximal orders (see Corollary 4.17

below). Also it is well known and trivial that w(,à (f» = 1 with two
exceptions (w (- 4) = 2 and u(-3) = 3). c(s, f, p ) is given by Theorem
2.7 above and the c(s,f,,e),,eO p were computed by Hijikata in [5]
and are given explicitly by Pizer in [13], p. 692-694. Note that in [13]
c(s, f, é), 6 # p is denoted by c’(s, f, t) to distinguish the split case
from the ramified case.

REMARK 4.14: The great similarity between the formula for the
trace of the Brandt Matrix Bk-2( n, p 2, M) and the formula for the
trace of the Hecke Operator T(n) actings on cusp forms of weight k
on To(N), N = p2M (see Hijikata [5], p. 57) should be noted. This
similarity will be exploited in §7.

REMARK 4.15: To any order D (with finite class number) in a

definite quaternion algebra over Q one can associate Brandt matrices.
The trace of these Brandt matrices will be given by the formula of
Theorem 4.12 with the following changes: (i) The product Ilelpm will be
replaced by TIels where S is the product of all the finite primes e of Q
such that De is not isomorphic with Mat(2, Ze); (ii) c(s, f, e) denotes
the number of inequivalent mod U(De) optimal embeddings of a-f 0 Ze

into De; and (iii) is replaced by the Mass of D.
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PROOF oF THEOREM 4.12: Let ai(s, n ) denote the number of a E Ci
with tr(a) = s and N(a) = n and with X2 - sX + n irreducible over Q.
Using the notation of (4.1), it follows from the fact that IiI Ii =ci
using (4.1), (4.2) and Lemma 4.11 that

where
if n is a perfect square
otherwise

The first sum is over all integers s. However, clearly ai (s, n) = 0 if

s2 - 4n &#x3E; 0. The second term occurs only if n is a perfect square since
then a = ±1/n E Ci for all i and these give a contribution of

by Theorem 3.4 and Lemma 4.11. Let K = Q[X ]/(X 2 - sX + n ) and
let x be a root of X2 - sX + n in K. Then ai(s, n) is equal to the
number of isomorphisms ç of K into % with cp(x) E C;. Let ao =

Z + Zx and let a be an order of K with 0-() ç 0. C K. If ç is an optimal
embedding of a./K into Ci/21, then ç(a) = ci n cp(K) and x E 0-() ç 0.
implies ç(x) E 9,. Thus every optimal embedding of some order

o., ao C a C K into Cil?f is an isomorphism that is counted in ai(s, n).
Conversely, if rp: K ---&#x3E; % is an isomorphism with ço(x) E (Ji, then Ci n
ç(K) = a’ is an order of cp(K) containing cp(x). Hence cp -1(0.’) is an

order of K which contains 0-() and such that cp gives an optimal
embedding of cp-l(o.’) into 9,. Thus ai(s, n) = E (), the sum being
over all orders a. of K which contain 0-() and ai(e) is as in Corollary
4.10. So we have

by Corollary 4.10. Now d (oo) = s2 - 4n so 4 (a) = s2 - 4n/f 2 where
S2 - 4nlf’ = 0 or 1 (mod 4) and f &#x3E; 0, f E Z. Taking into account the
fact that K must be imaginary quadratic and that an order of K is
uniquely determined by its discriminant and writing h ( 4 (a.)) = h (a),
w ( à (a)) = 1/2’ U(o.)’, and c(s, f, t) = cé,(c) where 4 (a.) = S2 - 4nlf2 and
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noting the 1/2 in the definition of ak(s) we obtain the given formula.

LEMMA 4.16: Let K be an imaginary quadratic number field. Let 0-

be an order of K of discriminant L1 and let a’ be the suborder of a of

index f. Then

where
if é" 1 à and e-’,à = 0 or 1 (mod 4)

, the Kronecker symbol, otherwise

COROLLARY 4.17: Let K be an imaginary quadratic number field.
Let 0. be the maximal order of K and 0.’ a suborder of index f. Then

where

is the Kronecker symbol. Note that h(a) is the "standard" class

number of K.

THEOREM 4.18: Let p be an odd prime and let M be any positive
integer prime to p. The class number H(p2M) of orders of level p2M is
given by the formula

Note that is the Legendre symbol if t 0 2.

PROOF: From the definition of the Brandt Matrices we see that
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I-I(p’M) = tr Bo(l; pl, M) (see Remark 2.20 of [15]) and the theorem
follows from Theorem 4.12 - just note Remark 4.13.

5. The structure of the Brandt Matrices

In this section we develop the structure of the Brandt Matrices for
orders of level p 2M. The structure we study in this section is new (it
does not occur in the study of Brandt Matrices of level

p2r+IM, p A" M _ see e.g. [ 15] or [3]) and depends somewhat on
whether p --- 1 or 3 (mod 4). The difference between the cases p --- 1

and p == 3 (mod 4) will become clearer when we study the action of
the W-operator Wp in section 9 below.

PROPOSITION 5.1: Let k be an order o f level p2M of % and let I be a
left JK-ideal. Set SI = {c = N(x)/N(I ) with p A" c ) x El}. Then SI Ç
Z, SI 0 0 and either SI consists entirely of residues mod p or SI
consists entirely of non-residues mod p. Further whether SI consists of
residues or non-residues depends only on the class of 1.

PROOF: Recall that N(I), the norm of I, is the positive rational
number that generates the fractional ideal of Q generated by
{NMJxEZ}. Hence N(x)IN(1) E Z for x E I and the ideal

generated by {N(x)IN(I)’ x E Il is Z, so SI C Z and SI 0 0. Now

Ip = .J1pa for some a G %) and .ÂIlp = f3-10pf3 for some f3 (E 21 x. Let
x E I with p h N(x)/N(I). Then x Ei I C Ip = jg-’Cpa, so

N(x)IN(I) = N(y)N(a)IN(I) for some - a + bpv c + dv 
N(x)IN(I) = N(y)N(a)IN(I) for some y = (a ( + bpv d) a-bpv
0, where a, b, c, dE Zp. Thus N(y) --- a2 mod p is a quadratic residue
mod p. Since ord,(N(a»=ordp(N(I», N(a)IN(I) is a unit of Zp.
Further if we write 7p = .J1pa’, then a’ = ua for some unit u of .J1p and
as above N(u) is a quadratic residue mod p. Thus N(a)/N(I) is a unit
of Zp and whether it is a residue or a non-residue mod p depends only
on I. Since N(x)IN(I) == a2N(a)IN(I), we see that Si consists

entirely of residues or non-residues mod p according as N(a)IN(I) is
a residue or a non-residue mod p. Finally, if J is in the same class as
I, then J = Ib for some b E  Ux and x E J if and only if x = yb for
some y E 7. Hence N(x)/N(J) = N(y)IN(I) and Sj = SI.

DEFINITION 5.2: Let ,« be an order of level p2M and let I be a left
.J1-ideal. I is said to be of positive character if SI consists entirely of
residues mod p and to be of negative character if SI consists entirely
of non-residues mod p.
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Note that the character of an ideal depends only on the class of the
ideal, so we can speak of the character of an ideal class.

REMARK 5.3: The phenomenon noted in Proposition 5.1 and
Definition 5.2 was discussed by Parry in his thesis [11] where in
section 3 he talks about the ’quadratic residue symbol’ assigned to
certain quadratic forms - in our case the form would be q(x) _
N(x)IN(I) as x varies over 1. As in [ 11 ], we will see in Lemma 5.23
below that the character of an ideal will determine the behavior of its
associated theta series OI(T) _ ixei exp(rN(Jc)/N(7)) at the cusps of
ro(p’M).

DEFINITION 5.4: If p == 1(4), let while if p =-

3(4), let Let for all e 

00, e 0 p and let 8. = 1 E Uoo. Recall v = ’B/ u- where

Finally let à = (8l) E Ju

LEMMA 5.5 : Let At be an order of level p2M of 91 and let à be as in
Definition 5.4. Then s-l.cs = At, At82 = AtE and N(At8) = E where

PROOF: 8-IAl8 = Al if and only if é7JKà7 = JK for all e  oo.

Clearly this is true for all é# p. Now by Theorem 1.5, Alp is the

unique order of level p 2 in 91p, so a -’.Glpa = .llp for all a E «x, in
particular for 5p. For the second statement Al82 = AlE if and only if
Gl é = AltE for all e  00 and this is clear. Finally if I = -’la, then N(I )
is the positive rational number that represents the coset N(â)Gl,l(Z) in
JQ/GlC(Z). Here if à = (ap), then N(â) = (N(ap» E JQ and 6ll(Z) =
{3 = (e) E JQ I 3 E U(Ze) for all e  -1. Now the third statement is
clear.

PROPOSITION 5.6: Let k be an order of level p2M and I some left
,,«-ideal. Let à be as in Definition 5.4. Then 81 is also a left Al-ideal
and I is of positive character if and only if 81 is of negative character.
Conversely I is of negative character if and only if 81 is of positive
character.

PROOF: I = JKà for some à E J9I. Then âI = 8Ala = .;(l8a (by
Lemma 5.5) is again a left M-ideal. Now let E be as in Lemma 5.5.
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Then 821 = .At82â = IE is in the same class as I and so the second
statement follows from the first. We prove the first statement. Note
that N(8I) = EN(I ). Let Ip = Mpap Then by the proof of Proposition
5.1 the f act that I has positive character implies that N(ap )/N(I ) is a
quadratic residue mod p. Now (8I ) p = 8plp = .Atp8pap and so

N(SPap)/N(SI) _ (N(8P)/E)(N(ap)/N(I)) is a residue or non-residue

according as N(8p)/E is a residue or non-residue. But N(8p)/E =

u if p --- 1 (mod 4) is a non-residue, so again by the roof of Pro-u if p - 3(rnod 4) 
g y p

position 5.1, we are done.

REMARK 5.7: Clearly we do not have to consider the separate cases
p 1 (mod 4) and p == 3(mod 4) to prove the above result. It would

sufhce to use the definition given for 8p in the case p == 3(mod 4) for
all cases. The reason we have chosen à as we have is so that the
action of the W-operator Wp will be nice - see section 9 below.

COROLLARY 5.8: Let.M be an order of level p2M and let 1 be a left
.At-ideal. Then I and ÎI are never in the same class.

PROOF: Ideals in the same class have the same character.

THEOREM 5.9: Let M be an order of level p2M. Let I1, ... , IG be a
set of representatives of all the distinct left M-ideal classes of positive
character. Let à be as in Definition 5.4. Then 811, ... , ,8IG represent all
the distinct left M-ideal classes of negative character. Also Il, ..., IG,
811, ... , ,8IG is a complete set of representatives of all the distinct left
,«-ideal classes.

PROOF: Clearly the 8/;, i = 1,..., G represent distinct ideal classes
since 81i = 03B4Ija with a E Ux implies Ii = Ija which implies i = j. Thus
Il, ... , IG, 811,... , 8IG represent distinct ideal classes. Let I be any
left «-ideal. If I is of positive character, then I = lia for some

i, 1  i  G and some a E Ux. If I is of negative character, then àI is
of positive character, so 81 = Ijb for some j, 1 _ j _ G and some
b E Ux. Hence â’I=,EI=&#x26;Îjb or I = 03B4Ijb~-1. Thus Il,..., IG,
éfi, ..., 8IG represent all the left «-ideal classes.

COROLLARY 5.10: The ideal class number H(p2M) for orders of
level p2 M is even.

REMARK 5.11: We have an explicit formula for H(p2M) given by
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Theorem 4.18 and it is easy to see from that formula that H(p2M) is
always even.

PROPOSITION 5.12: Let « be an order of level p2M. If p &#x3E; 3, then
1 U(M)l = 2. If p = 3, then 1 U(Al)I = 2 or 6. Further if p = 3 and M is
divisible by 2 or by a prime - 2(mod 3), then l U(M)l = 2.

PROOF: Suppose u is a unit of Al with u ~ ± 1 and consider Q(u),
the subfield of U generated by u. Q(u) is an imaginary quadratic
number field and u is a unit of that field. Hence M2013± or u -

where ~ means ’has the same minimal polynomial as.’

Thus we can assume « contains an element w’ with either w’ ’- i or

Now w’,E,« C Mp, which is isomorphic to Op, so finally

we can assume (jp contains an element w with either w - i or

But then for some

a, b, c, d E Zp. In the first case tr( C1J) = 0 and N(w) = 1 imply 1=0
(mod p), a contradiction. In the second case tr(w) = - 1 and N(w) = 1

imply a = -2 and 4 = 4N(C1J) == 1 (mod p), that is p = 3. Thus we need
only consider the case p = 3. There is upto isomorphism only one
order of level 32. 1. This is true since by Theorem 4.18, the class
number of an order of level 32 - 1 is 2. Thus if Al is an order of level
3’ - 1 and 8 is as in Theorem 5.9, Al and 8Al = are representatives
of the two left «-ideal classes. But then, by the proof of Proposition
2.15 of [14], any order of level 3’ - 1 must be isomorphic to R. Now an
’easy’ calculation (see [ 15]) shows that / U(Al)/ = 6 if « has level 32·1.
Since any order of level 32M, 3 h M is contained in an order of level
32 - 1, 1 U(,«)l - 6 for any order « of level 32M. But M can not contain
an element ~ i, so / U (Al)I = 2 or / U (.Jl)/ = 6. Now assume « has level

3 
. -1 +1/-3 + -B/ 

32 . M and « contains an element w 2 . Let 6 be a prime

dividing M Then so con-

tains an element with trace -1 and norm 1, which implies -x(x + 1) ==
1 has a solution in Ze, that is e = 1 (mod 3). This completes the proof.

REMARK 5.13: The reason we have given Proposition 5.12 is that
when U(M) depends only on the level of Al, not on its isomorphism
class, the Brandt Matrices become simpler and also isolating the two
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Eisenstein series in the case of weight 2 (see Remark 5.26 below)
becomes simpler. Also if U(M) = 2 for all orders of level p2M, then
for all weights k - 2 all modular forms given in Theorem 5.31 below
are non-zero. Unfortunately it is not true in general that U(M)
depends only on the level. The simplest possible example (taking into
account Lemma 5.12) p = 3, M = 7 provides examples of orders
and .Al’, both of level 3’ - 7, with U(M) = 2 and U(M) = 6.

We now begin to determine the structure of the Brandt Matrices
Bs(n; p2, M)

DEFINITION 5.14: Let Il, ..., IG, I,, ..., 810 be a complete set of
representatives of all the left (7-ideal classes as in Theorem 5.9. Here
Il,..., la represent the ideals of positive character and 811,..., 810
represent the ideals of negative character. Let IG,i = &#x26;f, for i =

1,..., G. Letting b ; ( n ) be as in (4.1 ) we define

and

THEOREM 5.15: Let (J be an order of level p 2M, and let Ii, ..., IG,
IG+I = Sh, ..., IH = 5IG be a set of representatives of the left t-ideal
classes as in Definition 5.14 above. Then the corresponding Brandt
Matrices B,(n) = B,(n; p2, M) are composed of four blocks as fol-
lows :

where the Cs(n) and Ds(n) are given in Definition 5.14

and

PROOF: Note first that cj+G = I;+cI;+c = Ij’â Ii = I; lI; = (Jj for

j = 1, ..., G. We first show that b ;(n) = bi+G,j+G(n) for all 1 _ i, j  G.

By (4.1) b ;(n) = ejl 1 , X’(a) s where the sum is over all a E I; ’I; with
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N(a) = nN(Ii)/N(I;). But I; lIi = I;’s-lsl; = I;+cIa+c and ej = U(q)) =
/ U(Oj+G)/ = e;+c, so b ;(n) = bf+G,j+G(n). We next consider the relation
between bi+G,j(n) and bf,j+G(n), l si, jsG. Note that I; ’Ii+c =
I; ’sIi = I;1 s-1 s2li = Ij1GliE by Lemma 5.5. Thus a E Ij101; with

N(a) = nN(I;)/N(I;+c) = nN(Ii)/EN(Iï) if and only if Ea E I; lIl+c with
N(Ea) = nN(Ii+o)IN(Iï). Hence bi+G,j(n) = a X(Ea) = ES a X(a) =
~sbsi,j+G(n) where the sum is over all a E I;+cIi with N(a) =
nN(I; )I N(I;+c).

PROPOSITION 5.16: Assume p ---1 (mod 4) and p , n. Then Cs(n) =
DS(n) for all n.

PROOF: Note that as p =1 (mod 4), E = 1. We need to show that

bfj(n) = bf+G,j(n) for all 1  i, j  G in the notation of Theorem 5.15
above. We claim that a E IjlIi with p I N(a)N(I;)/N(Ii) if and only if
a E Ijlli+o with p’ N(a)N(Iï)IN(Ii+G). Since N(I;) = N(Ii+o), we
need only show that for a EU with p ) N(a)N(Iï)IN(I;), then a E
Ijlli if and only if a E Ijlli+G. Now a E I; lI if and only if a E (Ijlli)t
for aIl e  00 and similarly for I; lli+c. But (I; lh)e = (I; lIa+c) for all
6# p, so we need only worry about (I;’I)P and (77,+c)p. Letting
IkP = PykP for k = 1,..., G, we have (7)p=yCpy,p and

(lIIi+G)p = ’Yii/Op5p’YiP where S - v  E x by Définition 5.4.

Thus a E (I; lIi)P if and only if a = y;P’3yP for some f3 E Op. Further
p N(a)N(I;)/N(Ii) if and only if p JN(j8). Similarly a E (Ijlli+o)p
with p N(a)N(I;)/N(I;) if and only if a = ’Y ii/ f3l’YiP with f31 E Op8p
where p N (f3l). But it is easy to check using the definition of Op that
if p N(f3), then 03B2 E Op if and only if /3 E Op8p and this proves our
claim. The proposition now follows easily from the claim and the
definition of the b ;( n ).

REMARK 5.17: If p = 3(4), at least in several cases it is true that

Co( n ) = Do( n ) when p ) n. If it were true in general that Ds(n) =

Es/2Cs(n) when p n, then the statements of many results to follow
could be simplified. It seems that if DS ( n ) = Es/2Cs(n) when p ) n is

true in general, then it should be easy to prove. However, we have
not found a proof.

THEOREM 5.18: Let Cs(n) and DS(n) be as in Definition 5.14. If n is
a quadratic residue mod p, then Ds(n) = o. If n is a quadratic non-
residue.mod p, then Cs(n) = o.
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PROOF: A typical entry block of Cs(n) is bfj(n), 1 _ i, j _ G.
ejb$(n)=1«X[(a) where the sum is over all’ aEljlli with

N(a)/N(I;’I) = n. Now Ii and I; are both ideals of positive character
and so I; ’I; is also an ideal of positive character. Hence if n is a
non-residue mod p, there are no a E I;’I with N(a)IN(Iî’Ii) = n and
so b ;(n ) = 0. Thus Cs(n) = 0 if n is a non-residue mod p. A typical
entry block of Ds (n) is bi+G,j(n) 1 _ i, j S G. This corresponds to the
ideal Ijlli+G which is of negative character, so Ds(n) = 0 if n is a

residue mod p.

PROPOSITION 5.19: Let p be an odd prime and M a positive integer
prime to p. Let C,(n) = Cs(n; p2, M) and Ds(n) = Ds(n; p2, M). Then
the entries of the matrix series En=o Cs(n) exp(nr) and

En’=o Ds(n) exp(nr) are modular forms of weight 2 + s on Fo(N),
N = p2M. If s &#x3E; 0, they are cusp forms. Recall that exp(nT) = e21Tin’T.

PROOF: This follows by the methods used in the proof of Theorem
2.14 of [15]. See also Eichler [3], Theorem 1, on p. 105 and Ogg [10],
Theorem 20 on p. VI-22.

Now consider the case s = 0, i.e. we consider modular forms of

weight 2. We want to show how to obtain cusp forms in this case also.

LEMMA 5.20: Let.11 be an order of level p 2M and let I and J be left
.11-ideals. Let OI = exp(,rN(a)IN(I» be the theta series attached
to I and similarly for J. If I and J have the same character, then
Oj (T) - Oj(,r) is a cusp f orm of weight 2 on Fo(N), N = p 2M.

PROOF: As in Proposition 5.19 Oj(,r) and Oj(,r) are modular forms
of weight 2 on To(N). Oj(,r) is the theta series associated to the

quadratic form N(x)/N(I), x E I and similarly for 0/(ï). Since I and
J have the same character, the quadratic forms N(x)/N(I), x E I and
N(x)/N(J), x E J belong to the same genus, i.e. they are locally
equivalent for all primes This is clear if e = 00. If t  00, then fixing
,e we have le =.11ea and Je =.,«,eb for some a, b EE 2fx and

for some unit u of Ze. If eO p, then every unit of Ze is the norm of
some unit of «e so N(u’) = u for some u’ E U(Me). Then letting
b’ = u’b, we have Je = .Jilb’ and the map x --&#x3E; xa -’b’ is a local isometry
from Il to Je (i.e. N(x)IN(I) = N(xa-1 b’)/N(J)). If e = p, then by the
proof of Proposition 5.1, N(a)IN(I) and N(b)IN(J) are both residues
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or both non-residues mod p. Thus the unit u in (5.1) is a residue mod p
and hence u is the norm of some unit, say u’, of .Álp. So again letting
b’ = u’b we have Jp = .Álpb’ and the map x - xa -’b’ is a local

isometry. Now it is a classical result (see Siegel [18], p. 376) that theta
series associated to quadratic forms in the same genus have the same
behavior at all cusps, so the difference of two such theta series is a

cusp form. This completes the proof of the Lemma.

REMARK 5.21: If I and J are left M-.ideals of different character,
then the quadratic forms N(x)/N(I), x E I and N(x)/N(J), x E J are
in different genera (since one represents residues and the other

non-residues mod p) and their associated theta series have different
behaviors at the cusps (see Parry [11], section 3 and Theorem 5.34
below).

LEMMA 5.22: The difference of two theta series appearing in the
same column of the matrix series En=oCo(n)exp(nr) (resp.
Y, n=o Do(n) exp(nT)) is a cusp form.

PROOF: In the notation of Lemma 5.20, the i th, j th entry of

Y- n =0 Co(n ) exp(nT) is 1 O,-ij,(,r). Now Iî ’Ii and Ii ’Ik for 1 s i, j, k
ej ] i 1

G are both left ûj-ideals of positive character, so the present lemma
follows from Lemma 5.20. Similarly the i th, j th entry of

É$=o Do(n) exp(nT) is IlejOI-ij, and Ii -’I i,G and IjlIk+o for 1 

i, j, k:5 G are both of negative character, so again the lemma follows
from Lemma 5.20.

LEMMA 5.23: Let Co(n) = ( ci; ( n )), DO(n) = (d;j(n)), 1:5 i, j  G. Then

(a) ejcij(n) = eicji(n) and ejdij(n) = eidji(n) for all i, j, 1 :! i, j:5 G and all
Aï&#x3E;0.
G G

(b) L cij(n) = c(n) (say) is independent of i and 1 dij(n) = d(n) (say)
7=1 j=l

is independent of i.
(c) c(O) = d(O).

PROOF: (a), (b), and (c) are clear for n = 0. Thus we assume n &#x3E;_ 1.
c;(n) equals llej times the number of elements a E Iî ’Ii with N(a) =
nN(I)/N(I;). But Iî 1 = (1/N(I;)); where denotes the canonical
involution of 9î. Hence ejcij(n) is equal to the number of elements
3 E I;Ii with N(f3) = nN(Ij)N(Ii). Similarly eicji(n) is equal to the

number of elements (3’ E IiIj with N(,S’) = nN(Ii)N(Ij). But 8 E !jIi if
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and only if 8 E Iijj, so e;c;;(n) = e;c;;(n). Now consider Do(n). d;;(n) _
bi+G,j(n) where b,,(n) = bol,(n). The above argument shows that

ejbi+G,j(n) = ei+Gbj,i+G(n). But from Theorem 5.15 we know that e;+G =
ei and bj,i+G(n) = bj+G,i(n), so we obtain ejdij(n) = eidji(n) which finishes
the proof of (a). Now consider (b). If a E Iî’Ii with N(a) =
nN(Ii)/N(Ij), then Iî’Ija is an integral left Ci-ideal (recall Ci is the

right order of Ii) of norm n. Integral means that I-’Ija C Ci. Con-
versely all integral left Oi-ideals in the same class as I¡l Iï having norm
n must be of the form IIIïa for some a E I;’I; with N(a) =
nN(I;)IN(Ij). Further two such ideals Ii’Ija and I¡IIïf3 are equal if

and only if Ijcï = Ij,8 if and only if a = u,8 for some u E U(ûj). Thus
c;;(n) is precisely the number of integral left Oi-ideals in the same
class as I;’I; which have norm n. It is clear that I;’h, ..., Iî’IG are a
complete set of representatives of all the distinct left Ci-ideal classes
of positive character. Thus c;; (n ) is equal to the number of

integral left Oi-ideals of positive character having norm n and we
need only show that this number depends only on the level, not on the
particular order Ci we happen to choose. Let ,M be an arbitrary order
of level p 2M. Then M = âOâ-1 for some à E J’JI and the map

Co i--&#x3E; âC,6â Alâl3â -1 gives a bijection from integral left 0 -ideals of
positive character with norm n onto the set of integral left M-ideals
of positive character with norm n. This proves (b) for c(n). The proof
that 1’]P=l d;;(n ) is independent of i is completely analogous to the
above except that we must of course consider ideals of negative
character.

LEMMA 5.24: Let the notation be as in Lemma 5.23.

Consider the matrix

that is where

and all other

Then
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and

where CÓ(n) and Do(n) are G - 1 by G - 1 matrices. Further letting
Cô(n) _ (cÍj(n» and DÓ(n) = (da;(n)), we have cÍj(n) =
Ci+l,j+l(n) - CI,j+l(n) and dÍj(n) = di+l,j+l(n) - dl,j+l(n) for all i, j, 1 

i, j _ G - 1 and ail n &#x3E;_ 0.

PROOF: Let m = 1£, ei. Then A-’ _ ( 1 /m )F where F = ( f ; ) is

given by f;; = e; ’ if  j; fll=ell; and fu=el-m for i = 2, ..., G.
The lemma now follows from Lemma 5.23 by an easy exercise in

manipulating summation symbols - if the reader needs help, he can
peek at the proof of Lemma 2.22 in [15].

REMARK 5.25 : Note that by Theorem 2.21, c(n) = 0 and CÓ(n) = 0 if
n is a non-residue mod p where as d(n) = 0 and Dô( n ) = 0 if n is a

residue mod p. Further if p ---1 (mod 4) and pin, then by Proposition
5.16, c(n) = d(n) and CÓ(n) = Dô(n).

REMARK 5.26: If p &#x3E; 3 or M is divisible by 2 or by a prime - 2
(mod 3), then it follows from Lemma 5.12 that all e; = 2. Thus the
matrix A becomes quite simple in these cases.
Now we are finally able to obtain cusp forms in the case of weight

2. In fact they are given by

PROPOSITION 5.27: Let the notation be as in Lemma 5.24. Then the
entries of the matrix series 1$=ocl(n)exp(nT) and 1$=oDé(n)
exp(nT) are cusp forms of weight 2 on ro(N), N = p2M.

PROOF: This follows immediately from Lemmas 5.22 and 5.24.

PROPOSITION 5.28: Fix p, M, N = p 2M, and s &#x3E;_ 0 as above. Then the
CS(n) and DS(n) with (n, N) = 1 generate a commutative semi-simple
ring. Similarly, the Cô(n) and Dô(n) with (n, N) = 1 generate a com-
mutative semi-simple ring.

PROOF: From Theorem 2 on p. 106 of Eichler [3], the B(n) =
Bs(n; p2, M) with (n, N) = 1 generate a commutative ring. Thus it
follows from Theorems 5.15 and 5.18 above that CS ( n ) and DS ( n ) with
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(n, N) = 1 generate a commutative ring and clearly, by Lemma 5.24, so
do the Cô( n ) and DÓ(n) with ( n, N) = 1. By a proof similar to that of
Theorem 2 on p. 106 of [3] we see that the rings generated are in fact
semi-simple.

Fix p, M, N = p2 M, and s &#x3E; 0. Then by Proposition 5.28 there exists
a G(s + 1) by G(s + 1) matrix E such that ECS(n)E-1 and EDS(n)E-1
are simultaneously diagonal matrices for all n with (n, N) = 1.
Similarly there exists G - 1 by G - 1 matrix E’ such that E’CÓ(n)E’-I
and E’Dô(n)E’-1 are simultaneously diagonal matrices for all n with
(n,N)= 1.

LEMMA 5.29: Fix p, M, N = p2M and s an even positive integer as

above. Let E, denote the H(s + 1) by H(s + 1) matrix

where E is the G(s + 1) by G(s + 1) matrix given in the above

paragraph and t = sl2. Recall E = 1 if p ---1 (mod 4) and E = p if p 3--- 3
(mod 4). Finally let Bs(n) = Bs(n;p2M), C, (n) = C, (n; p2@ M), and

Ds(n) = Ds(n; p2, M). Then

Further B (n ) = B s(n ; p 2, M) is a diagonal matrix for all n with

(n, N) = 1.

PROOF: The first equality is Theorem 5.15 above and the second
just follows by matrix multiplication. The fact that B s(n ) is diagonal
for (n, N) = 1 follows from the definition of E.

LEMMA 5.30: Fix p, M, and N = p 2M. Let E2 denote the H x H
matrix given on the next page

where E’ is the G - 1 by G - 1 matrix given in the paragraph preceed-
ing Lemma 5.29 above. Let EÍ denote the H x H matrix E, =

where A is the G x G matrix given in Lemma 2.27.

Finally let Bo(n) = Bo(n; p2, M), Cô(n) = Cô(n)p2, M), and Do(n)=
DÓ(n;p2,M).
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Then EÍBo(n)j

= B’(n) (say). B’(n) = B’(n; p2, M) is a diagonal matrix for all n with
(n, N) = 1.

PROOF: The first statement follows from Lemma 5.24 and matrix

multiplication. The second follows from the definition of E’.
As in Atkin and Lehner [1] we define an operator Rp (twisting by

the quadratic character acting on modular forms by: if f (,r) =

1 a (n ) exp(nT), then la(n) exp(nT). Here 1 is the

Legendre Symbol. Then we have

THEOREM 5.31: Fix an odd prime p, a positive integer M prime to p
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and a positive even integer s. Let N = p2M. In the notation of Lemma
5.29 let

where r = G(s + 1) and G = H(p2M)/2. * indicates that we are not
interested in any off diagonal entries. Then
(a) All fi and gi are cusp forms of weight 2 + s on Fo(N).
(b) All fi and gi are eigen forms for all the Hecke Operators T2+s(n)

with (n, N) = 1.
(c) All non-zero fi and gi are normalized so that their first (not zeroth)

Fourier coefficient is 1. If p &#x3E; 3 or M is divisible by 2 or a

prime --- 2 (mod 3), then all fi and gi are non-zero.
(d) If p 1(4), then gi = fi 1 Rp for all i = 1,..., r.
(e) If p 3(4), let gi - fi 1 Rp = 1,’ , a(n) exp(nT). Then a(n) = 0 if

p h n.

(f) The Ofl diagonal entries, if any, can have non-zero nth Fourier
coefficients only for n with (n, N) &#x3E; 1.

REMARK 5.32: It is possible to modify the fi and gi in Theorem 5.31
so that in addition to satisfying all the above properties, they are also
eigen forms for the Wp and Wq, q 1 M operators. See Proposition 9.9
below. We will determine the subspace of the space of cusp forms
S,12(N) of weight s + 2 on FO(N) spanned by ffi, ..., fr, 91, grl in
section 8 below.

PROOF OF THEOREM 5.31:

(a): This follows from Proposition 5.19 and the definition of the
B’(n) in Lemma 5.29.

(b): This follows from the Proposition on p. 138 of [3] which states
that for (n, N) = 1, Bs(n) gives the action of the Hecke Operator
TS+2(n) on the entries of the matrix series 1#=o B,(m) exp(mT). So
BAn) gives the action of Ts+2(n) on the entries of the matrix series
 m =o B s(m ) exp(mT). By Lemma 5.29, B s(n ) is a diagonal matrix, so
the fi and gi are eigen forms.
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(c): B’( 1 ) gives the action of the identity operator Ts+2(1), so if

fi 9 0, Ts+2(1)fi = fi and the corresponding entry of Bs(l) must be 1, i.e.
the first Fourier coefficient of fi must be 1 and similarly for the gi.
Now assume p &#x3E; 3 or M is divisible by 2 or by a prime --- 2 (mod 3).
Then by Proposition 5.12, the only units in any order of level p 2M are
± 1. Consider the Brandt Matrix Bs(l; p2, M). A left ideal I of some
order M of level p 2M contains an element a with N(a) = N(I ) if and
only if I is in the same class as .Ji (this is easy, see e.g. Corollary 1.20
of [15]). Thus letting BS ( 1; p 2, M) = (b$(1)) as in (4.2) we see that the
only possible non-zero blocks are the diagonal blocks bii(I). By (4.1)
and the above bii(l) = 2(X s(1) + X s(-1)). Now Xs(l) is the identity
matrix and so is Xs(-1) since s is even. Thus all b ii( 1) are identity
matrices and so is BS ( 1; p 2, M) and hence also BXI; p 2, M). Thus the
first Fourier coefficient of all fi and g; is 1, in particular they are all
non-zero.

(d): If p = 1 (mod 4), it follows from Proposition 5.16 and Theorem

5.18 that for all n - 0 and so

&#x26; = /. ) I Rp forall i.

(e): If p =3 (mod 4), we know only (by Theorem 5.18) that (C,(n) -

for all n with p, n and thus we

obtain a weaker version of (d).
(f): B s( n ) is a diagonal matrix for all n with (n, N) = 1.

REMARK 5.33: If p = 3 and M is not divisible by 2 nor by a prime
--- 2 (mod 3), then by Proposition 5.12 the unit group of Ci= I i ’Ii is

either ± 1 or is isomorphic to the cyclic group of 6th roots of unity. If
U(Ci) ± l, then as in the proof of part (c) above, the corresponding
block b ; ( 1 ) of BS ( 1 ) always diagonalizes (in fact is) the identity
matrix. If 1 U(Ci)l = 6, then since a unit of order six of Ci is not in the
center of U, its eigen values when represented as an element of
GL(2, C) are e and ç5 where e is a primitive 6th root of unity. Now

diagonalizing we obtain a matrix whose diagonal entries

are çs-j ç5j = çs+4j for j = 0, ..., s. Recall that s is an even positive

integer. Now

Thus if u is a unit of order 6

of Ci, the s + 1 by s + 1 matrix bii(l) = 1/6ks ) diagonalizes to

a matrix with ones on the diagonal and all other entries zero.
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Hence if precisely u of the orders Ci, i = 1,..., G have U(G)) = 6,
then the H(s + 1) by H(s + 1) diagonal matrix Bs(I), which acts as the

identity matrix on fi, ..., fc, gl, ..., gc has zeros on its

diagonal and the remaining diagonal entries are l’s. Hence :

of the fi, ..., fG, gl, ..., go are identically zero. Knowing the

dimension of S4(p 2M), Theorem 8.2 below allows us to calculate IL.
Now we give the analogue of Theorem 5.31 for the case of forms of

weight 2, Î.e. s = 0.

THEOREM 5.34: Fix an odd prime p and a positive integer M prime
to p. Let N = p2M. In the notation of Lemma 5.30 let

where G = 2H(p2M). * indicates that we are not interested in any off
diagonal entries. Then
(a) All fi and gi are modular forms of weight 2 on Fo(N).
(b) fi is the transform of the zeta function of orders of level p’M of %. It

is not a cusp form. gl is a non-cusp form which is linearly
independent from fi.

(c) f2,..., fG, g2, ..., go are all cusp forms.
(d) All fi and gi are eigen forms for all the Hecke Operators T2(n),

(n, N) = 1.
(e) All fi and gi are normalized so that their first (not zeroth) Fourier

coefficient is 1.

(f) If p ---1 (mod 4), then gi = fi Rp for all i = 1, ..., G.
(g) If p --- 3 (mod 4), let gi - fi , Rp = 2 n=o a(n) exp(nT). Then a(n) = 0

if p ’ n.

(h) The off diagonal entries, if any, can have non-zero nth Fourier
coefficients only for n with (n, N) &#x3E; 1.

REMARK 5.35: The content of Remark 5.32 also applies to the fi and
gi in Theorem 5.34.
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PROOF OF THEOREM 5.34:

(a): This follows from Proposition 5.19.
(b): fl(,r) = Y-n=o (c(n ) + d(n» exp(nT) is by definition the transform

of the zeta function. Its zeroth Fourier coefficient c(0) + d(0) is the mass
for orders of level p 2M and is clearly non-zero - an explicit formula for
the mass is given by Theorem 3.4 above. Thus fl(,r) is not a cusp form. By
part (f) or (g) of the present theorem, the nth Fourier coefficient of gl(T)

is 1 times the nth Fourier coefficient of fi(T) for all n with p h n.

Hence the Fourier coefficients of gl(T) are too large for it to be a cusp
form. The zeroth Fourier coefficient of gl(,r) is c(O) - d(O) which is zero
by Lemma 5.23, so gl(T) is linearly independent from f 1(T).

(c): This follows from Proposition 5.27.
(d): This is the same as the proof of part (b) of Theorem 5.31 above.
(e): As in the proof of part (c) of Theorem 5.31 Bo(l) must be a

diagonal matrix. The entry bii(l) is just llei times the number of units
of (9,, i. e. bii(l) = 1 always, so Bo( 1 ) is the identity matrix.

(f): If p ---1 (mod 4), it follows from Remark 5.25 that (CÓ(n)-

DO, (n» = (n )(C’(n) + D’(n» for all n and so gi = fi 1 Rp for all i =
p 

0 0

1,...,G.
(g): If p --- 3 (mod 4), we know only (by Remark 5.25) that (Cl(n) -

D’O(n» = (n p )(C’ 0( n) + DÓ(n)) for all n with p h n and thus we obtain a
weaker version of (f).

(h): The BÓ(n; p2, M) are diagonal matrices for (n, N) = l.

6. The trace of the Hecke Operators and the Brandt Matrices

We now know how to construct some cusp forms on To(N),
N = p2M. The main question now becomes: what cusp forms have we
in fact constructed? The answer is given in section 8 and is a

consequence of a certain trace identity (see section 7) involving the
traces of the Hecke Operators and the traces of the Brandt Matrices.
In this section we reproduce the needed trace formulas. First we

introduce some notation.

Let Sk(N, X) denote the space of cusp forms of weight k with
character X on To(N). X is a character on (Z/N)x. We will write
Sk(N) = Sk(N, X) if X is the trivial character. We denote by trN,xTk(n)
the trace of the Hecke Operator T(n) acting on the space Sk(N, X).
Again we write trNTk(n) if y is trivial.
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Hijikata in [5] has computed the traces of the Hecke Operators in a
quite general setting. We copy here the case of his Theorem (see [5],
p. 57) which we require.

THEOREM 6.1: (Hijikata): Let k be an even integer 2. Let X be an
even character mod N with X(n) = l1e/N Xe(n) where Xe is a character
mod ér, r = orde(N). Then for (n, N) = 1 we have

The meaning of s, a(s), f, b(s, f) and c’(s, f, t) are given as follows:
Let s run over all integers such that s2 - 4n is not a positive

non-square. Hence by some positive integer t and square free negative
integer m, s2 - 4n has one of the following forms which we classify
into the cases (p), (h), (el), or (e23) as follows:

Let O(X) = 0,(X) = X 2 - sX + n and let x and y be the roots in C
of (X) = 0. Corresponding to the classification of s put

For each fixed s, corresponding to its classification, let f run over
the following set
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where ç is Euler’s function, h(d) (resp. w(d» denotes the class
number of locally principal ideals (resp. 1 /2 the cardinality of the unit
group) of the order of Q(1/d) with discriminant d.

For a pair (s, f) fixed and a prime divisor e of N, let v = ord(N),
p = ordt(f) and put À = (x G Z ) 4l(x) - 0 (mod e-+2P), 2x - s

(mod eP)l and B = {x E À ) 10 (x) 0 (mod é"+2"+’)I. Let A = A(s, f, e)
(resp. B=B(s,f,,e» be a complete set of representatives of A
(resp. B) mod fV+P. Put

where x runs over all elements of A(s, f, t) and y runs over all s - z,
zEB(s, f, ’e).

REMARK 6.2: Our Tk ( n ) differ from Hijikata’s by a factor of nk/2-1.

PROPOSITION 6.3: Let and keep the notation of

Theorem 6.1 above. Assume Xe is the trivial character. Then the

corresponding c’(s, f, f) is just the number of inequivalent mod U(C,,)
optimal embeddings of an order of discriminant s2 - 4nlf’ into Ce.

PROOF: See section 2 of Hijikata [5].
For p an odd prime and X, the trivial character, it will be con-

venient to tabulate the corresponding c’(s, f, p). We write cl(s, f, p),,, to
denote c’(s, f, p) in the case X, is trivial and we are considering the
group To(N) with 1£ = ordp(N). Then using Hijikata’s Theorem 6.1 (or
the tables on pp. 692-693 of [13]), we obtain the following tables.

Let p be an odd prime. Let u be a quadratic non-residue mod p. Set
a = s2 - 4n/f 2 mod U(Zp)2. Then the values of cas, f, p), for IL = 1

and 2 are given by the tables on the next page.
The trace formula for the Hecke operator Tk(n) given by Theorem

6.1 is very similar to the trace formula for the Brandt matrix Bk-2(n)
given by Theorem 4.12. In fact the notation used in both theorems is
identical. The difference between c(s, f, 6) and c’(s, f, e) is explained in
Remark 6.4.
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REMARK 6.4: Let 6 be an order of level p2 M. Then according to
Theorem 4.12, c(s, f, t) is the number of inequivalent mod U(tJ1)
optimal embeddings of an order of discriminant s2 - 4n/f 2 into 0,,. But

for by definition where N = p2 M. Thus letting

IL = orde(N) we have c(s, f, t) = cl(s, f, te), if p by Proposition
6.3. If t = p, the value of c(s, f, p) is given by Theorem 2.7. We

tabulate those values here.

Let p be an odd prime. Let u be a quadratic non-residue mod p. Set
4 = S2 -4n lf2 mod U(Zp )2. Then the value of the c ( s, f, p ) appearing
in Theorem 4.12 is given by the table
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7. The Trace Identity

We are now able to state the important

THEOREM 7.1 (The Trace Identity): Let p be an odd prime and let
M be a positive integer prime to p. Let N = p2M and let k be an even
integer ? 2. Then for all n &#x3E; 0, (n, N) = 1 we have

where the sum is over all the p - 1 characters Ji of (Z/p)x.

REMARK 7.2: Note that in the sum we are taking the trace of Tk(n)
on Sk(pM, 03C82) and since 03C82 is an even character, Sk(pM, 03C82) is (in
general) non zero. Also note that 03C82(03C8)2 is the trivial character, so that
if f (,r) = 1§J= 1 a(n) exp(nT) is in Sk(pM, 03C82), then g(T) _
1§J=1 1 03C8(n) a (n) exp(nT) is in Sk(p2M) (see [17], Proposition 3.64).

PROOF oF THEOREM 7.1: The above formulas for trp2MTk(n),
trpMTk ( n ), trBk-2(n; p 2, M), and trpM,.,2Tk(n) all involve summations

over the same index set. We will show that the equality (7.1) holds
almost term by term. For simplicity we write M = nel Mev.

First consider the deg Tk(n) terms. These do not occur in trBk-2(n)
and occur in trR,XTk(n) only if k = 2 and X is the trivial character.

Hence the contribution of the deg T2(n) terms to the L.H.S. (left hand

side) of (7.1 ) is 2 deg T2(n) - 2 deg deg T2(n). Since

03C82 is trivial if and only if t/1 is trivial or the contribution of

the deg T2(n) terms to the R.H.S. (right hand side) of (7.1) is also

deg T2(n).

Next we consider the ’mass’ terms, i.e. those with 5(Vn). They
occur only if n is a perfect square. Their contribution to the L.H.S. of
(7.1) is
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while the contribution to the R.H.S. of (7.1) is

Next we consider the case where s is fixed and S2 - 4n = 0. Then

-P (X) = (X - s/2)2. The contribution to 2trp2MTk(n) is

since in this case c’(s, f, t) is independent of f. The contribution to

-2tr,mTk(n) is

The contribution to .trBk-2(n) is zero (since à = 0), so the total

contribution to the L.H.S. of

The contribution to trpm,4,,Tk(n) is
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since again in this case c’(s, f, e) is independent of f. Thus the total

contribution to the R.H.S of (7.1) is

Now we consider the remaining terms, those classified into the

cases (h) and (e). Note that for these terms, once we fix s and f, the

a(s) and b(s, f ) are independent of which particular trace formulas

they occur in. Note also that in case (h), à = S2 - 4nlf2 is a square, so

c(s, f, p) = 0 always (by the table in section 6), and it does not matter

that we have not written down the contribution of the (h) terms in the

formula for trBk_2( n ; p 2M) in Theorem 4.12 - they always contribute

nothing. Similarly by Remark 6.4, c’(s, f, 6) = c(s, f, 6) = c ((s, f, 6)
for all primes 6 which divide M and hence these are also independent
of which particular trace formula they occur in. Thus if we fix s and f,
to show that the corresponding contribution to the L.H.S. and R.H.S.

of (7.1 ) are equal, we need only prove that

where the c ((s, f, p );,1 = 1 or 2 and c(s, f, p) have been defined above
and we write c’(s, f, p)03C82 to denote the c’(s, f, p) occuring in the

formula for trpM03C82Tk(n). In fact with the exception of the last case
below, this is exactly what we will do. We shorten cÍ(s,f,p)2 to C2,
cÍ(s, f, p)1 to ci, c(s, f, p) to c and c’(s, f, P )1/J2 to C03C82.

Case (1) : s2 - 4n = w is a non-residue mod p. Then O (X) =

has no solution mod p. Hence for any f, c2, CI, c,

and c:’; are all zero so (7.2) holds.
Case (2): s2 - 4n = d2 (mod p) where d is a unit mod p. Then any f

must be a unit mod p. Fix one. From the tables in section 6 we find

that C2 = 2, CI = 2, and c = 0. Hence the contribution to the L.H.S. of

(7.2) is zero. 4 O (X) = 4(X- sX + n ) - (2X - s ) - d (mod p ) has

roots mod p. Thus by Theorem 6.1 

Letting (mod p ) and the
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contribution to the R.H.S. of (7.2) is

Case (3): p S2 - 4nlf2 but p2, S2-4nlf2 . From the tables we find
c2 = 0, cl = 1, and c = p + 1. Hence the contribution to the L.H.S. of
(7.2) is p - 1. 2 0 (X) = (2X - s )2 - (s 2 - 4n ) --- 0 has only the solution
sl2 mod p 1+2P and no solution mod p 2+2p where p = ordp(f). Hence
c03C82_ lp2(s/2) and the contribution to the R.H.S. of (7.2) is

203C803C8(n)03C82(s/2) = t/J;fr(n)f/1(n) = p - 1.
Case (4) : (s2 - 4n)/f 2 = p ra where a is a unit mod p and r &#x3E; 3. From

the tables we find c2 = p + 1, c 1= 2, and c = 0. Hence the contribution
to the L.H.S of (7.2) is 2(p -1). We also find that in Theorem 6.1,
A(s, f, p) = Isl2j and B(s, f, p) = Isl2l, so c03C82 = 203C82(s/2). Thus the con-
tribution to the R.H.S. of (7.2) is 20 03C8(n)203C82(s/2) = 2(p - 1).
Case (5): (S2 - 4n)/f 2 = p2d where d is a non-residue mod p. From

the tables we find c2 = p, c 1 = 2, and c = 2. Hence the contribution to
the L.H.S. of (7.2) is 2(p - 1). Again we find A(s, f, p) = {sI2} and
B(s, f, p) = {sI2}, so c 03C82 = 2,p2(s/2) and the contribution to the R.H.S.
of (7.2) is 11, (n)21j’(sl2) = 2(p - 1).

Case (6): p I (s2 - 4n) and (s2 - 4n)/f 2 = w is a non-residue mod p.
From the tables we find c2 = c = c = 0, so the contribution to the
L. H. S. of (7.2) is zero. But (X)==0 (mod p 1+2p)@ p = ordp(f) has no
solutions, so the contribution to the R.H.S. of (7.2) is also zero.
Case (7): The only cases remaining to be checked are (i) (s2 -

4n)/f 2 = p2d2 for some unit d mod p and (ii) p (s2 - 4n) and (s2 -
4n)/ f 2 = d2 for some unit d mod p. These two cases always occur in
pairs, so we consider at the same time the pair of cases: (s2 - 4n)/f 2 =
p2d2 and (s2 - 4n)/(pf )2 = d2 for some unit d mod p. Since

cas, pf, t), = c 1(s, f, é), for all primes é’O p, in order to show that

these cases give the same contribution to the L.H.S. and R.H.S. of
(7.1) it suffices to prove that

From the tables we find 3ci(s, pf, p)2 = 2, cl(s, f, p)2 = p + 2,
cas, pf, p), = 2, c’,(s, f, p), = 2 and c(s, pf, p) = c(s, f, p) = 0. Hence
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the L.H.S. of (7.3) is 2pb(s, f). On the other hand it is easy to see that
c ’,¡;(s, pf, p) = c ’,¡;(s, f, p) = 2tJ¡2(s/2), so that the right hand side of (7.3)
is

Thus to show equality in (7.3) we must prove that

We must consider two cases: if s2 - 4n = t2 is a perfect square,

then b(s, f ) = 1/2cp(t/f ) and b(s, pf ) = 1/2cp(tlpf).

But assumption, so b(s, f) = 1/2cp(tlf) = 1/2p((p)(t/pf )) =

1/2(p -1)p(t/pf ) _ (p - I)b(s, pf) which establishes the equality in

(7.4). If s2 - 4n is not a perfect square, then b(s, f) = h(a.l)/w(a,) and
b(s, pf) = h(I-2)/W(112) where a2 is the order in the imaginary quadratic
number field Q(,BIS2-4n) with disc«(J2) = (S2 - 4n)/p2f 2 and a1 is the

unique suborder of a2 of index p. But then by Lemma 4.16

This completes the proof of Theorem 7.1.

8. Representing modular forms by thêta series

In this section we determine the subspace of Sk(p2M) generated by
theta series. First if ç is a primitive character of (Z/Z)", we denote
by R the operator ’twisting by cp’, i.e. if f (T) _ n- 3 a (n ) exp(nr), then
f ) R_ = 1 ç(n)a(n) exp(nT). Here exp(nr) = e27Tim". If f E Sk(N, X),
then f , 3R_ E Sk(N’, Xc(2) where N’ is the least common multiple of
N, cond(ç), and cond(p) cond(X) (see Proposition 3.64 of [17]). Let
Sk(N, X) dénote the subspace of Sk(N, X) generated by newforms (see
[1] and [9a]). We dénote by Sk(N, X)CP (respectively Si(N, x)°) the
space lflRcplf E Sk(N, X) (respectively Si(N, x))). Note that

Sk(N, X)CP ç Sk(N’, Xc(2).
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LEMMA 8.1: Let the notation be as above. Then f or (m, N’) = 1 the
trace of T (m ) on Si(N, x)lp considered as a subspace of Sk(N’, .Xcp2) is
equal to cp(m) times the trace of T(m) on Sk(N, x).

PROOF: Let x = exp(T). If q(T) = 1 c(n)xn E Sk(M, (03C8), then

q I T(m) _ c’(n)x" where c/(n) = a I(m.n) (a)ak-lc(mnla2) (see p.

80 of [ 17] or p. 287 of [9a]). Hence if fG Si(N, x), we have
(f R",) , T(m) = cp(m )«(f , T(m) , R",). Thus if f = 1 a(n)x" is a new-

form in Sk(N, X) normalized so that a(1) = 1 and (m, N’) = 1, then
(f ) R) T(m) = w(m )((a(m )f) ) R) = a (m )w(m )(f ) R). Let fn ..., fr
be a basis of S,°(N, X) consisting of normalized newforms. Then
f 1  ( jRp,...,/J R_ are linearly independent since fi , I R 0 and distinct
newforms have différent eigenvalues for T(m) for infinitely many
m - see Theorem 5 of [9a]. Thus they form a basis of S(N, X) and the
lemma follows.

Note that Lemma 8.1 is not necessarily true if we replace Si by Sk.

For example consider Sk (p ) and let Cf) = (2013). If f E Sk(1), then g (T) _p
f (pT) E Sk(p), but g ) R", = 0. Since Sk(p) is generated by newforms
and the oldforms f (T) and f(pT) where franges over a basis of eigen
forms in Sk(1), we see dim Sk(p) = dim Sk(p) - dim Sk( 1) # dim Sk(p)
in general, so that the Lemma faits for T(1). 1 wish to thank H.

Hijikata for pointing out to me my blindness on this point.
We can now state our main

THEOREM 8.2: Let p be an odd prime and M a positive integer prime
to p. Let k be an even integer &#x3E; 2. Let p denote the quadratic

character - . If k = 2, then in the notation of Theorem 5.34 we havep

while if k &#x3E; 2, we have in the notation of Theorem 5.31

Here the first sum is over all the p - 3 characters tp of (ZIpZ)x with «/12
non-trivial and the second sum is over all positive divisors of M.

5(MI a) denotes the number of positive divisors of MI a. The isomor-
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phisms in (8.1) and (8.2) are as modules for the Hecke Algebra H

generated by the Hecke Operators Tk(n) with (n, pM) = 1 acting on

Sk(p2M). Finally 2Sk (p 2M) = Sk(p2M)EB Sk(p2M), etc. and (f2(T) e.g.
denotes the 1-dimensional complex vector space generated by f2(T).
Also note that r = G(k - 1).

PROOF: First note that by Proposition 3.64 of [17] Sk(pM, (03C82)w,
Sk(pa), and Sk(a) are all contained in Sk(p2M).
As H is a semi-simple ring we need only check (see e.g. Theorem 3,

p. 458 of [9]) that the trace of the transformations induced by the
Tk(n), (n, pM) = 1 on both sides of (8.1 ) and (8.2) are equal. By the
proof of part (d) of Theorem 5.34 (resp. part (b) of Theorem 5.31) the
action of Tk(n) for k = 2 on (f2(T»EB ... e)(fG(,r) q)
(92(’r)ED ... (D(gG(,r) (resp. for k &#x3E; 2 on (fl(T))Q9 ... Q9(fr(T)) 61
(gl( T»61 ... ®(g,(T))) is given by the diagonal matrix

(resp. B k_2(n ; p 2, M)) where the notation is as in Lemma 5.30 (resp.
Lemma 5.29). By Theorem 5 of [1], (pM)-X.jM à(Mla )(S?(pa) 3
2S,°(a)) and it follows from Lemma 8.1 that ç(n) times the trace of
T(n) on Sk(pM) equals the trace of T(n) on aM (M/a)(Sk(pa) ®
25?(a)°). It is implicit in [9a], see p. 294, that if «/12 ¥: 1, hence the
conductor cond(/I2) = p, then Sk(pM, «/12) == aM s(Mla)Sk(pa, 03C82) and
so by Lemma 8.1 gi(n) times the trace of T(n) on Sk(pM, 03C82), 03C82 =/ 1,
is equal to the trace of T(n) on Sk(pM, 03C82)’03C8. Now for k &#x3E; 2 (7.1)
provides exactly the equality of traces that is required to establish
(8.2). For k = 2, we need to find the trace of Bi(n). Now Lemma 5.30
and Remark 5.25 imply that trBi(n ) =

But c(n) + d(n) is the nth Fourier

coefficient of the zeta function and we have c(n) + d(n) = deg T2( n )
for all (n, pM) = 1 (since c(,e) + d(t) = t + 1 = deg T2(t) for all primes
6, 6h pM - see Shimura [17], p. 63 and Eichler [3], p. 94). Thus again
(7.1) provides exactly the equality of traces that is required to

establish (8.1 ).

REMARK 8.3: In section 10 below we determine explicitly the f; (T)
and gi( r) occurring in (8.1) and (8.2) in the case M = 1. In general
Theorem 8.2 is only strong enough to determine the nth Fourier
coefficients of fi(T) and gi(,r) for (n, pM) = 1.
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LEMMA 8.4: Sk(pM, t/J2);j, == Sk(pM, 03C82)03C8 as modules for the Hecke

Algebra H generated by Tk(n), (n, pM) = 1 -

PROOF: We let complex conjugation act on modular forms by
acting on their Fourier coefficients: if f( T) = :=I a(n) exp(nT), then

where of course à is the complex conjugate
of a. Then since f (T) = f (-T), it is easy to see that f ---&#x3E; i maps
Sk(pM, X) onto Sk(pM, j), hence it maps Sk(pM, 03C82)03C8 onto Sk(pM, 03C82)03C8.
As Sk(pM, 1/12) is invariant under the Hecke operators Tk_,03C82(n),
(n, pM) = 1, Sk(pM, tp2)e is invariant under the Hecke Operators Tk(n),
(n, pM) = 1 (of course we have already implicitly used this fact in
proving Theorem 8.2). It is now obvious that /-&#x3E;/ is an isomorphism
of Sk(pM, onto Sk(pM, 03C82)’03C8 as H-modules.

PROPOSITION 8.5: All new forms in Sk (p 2M) that are neither obtained
from forms in Sk(pM, 03C82) for qi a non-trivial character of (Z/p)x nor
from forms is Sk(M)° where cp is the quadratic character - occurp

among the fj(,r) and gj( T) of Theorem 8.2 In particular, they all come
from theta series.

PROOF: By Theorem 8.2 and Lemma 8.4 we have

is the quadratic character 1 and the

sum L{03C8} is over a set of representatives of the pairs {03C8, 03C8}, where
0 1. This shows immediately that all new forms in Sk(p2M) that are
not contained in any Sk(pM, 03C82)03C8 where liO 1 must occur among the
fi(,r) or gi(,r).

Following Atkin we make the following

DEFINITION 8.6: A new form in Sk(N) is said to be primitive if it

can not be obtained from a form in Sk(M, X), M  N by twisting by a
suitable character (X-’/2 ) -

REMARK 8.7: Note that our usage of the word ’primitive’ is different
from the recent usage of the word ’primitive’ by Serre. By ’primitive’,
Serre just means a new form.
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COROLLARY 8.8: All primitive forms in Sk(p2M), p odd, p,f’ M are
linear combinations of theta series. More precisely, they occur among
the fj(T) and gj(T) of Theorem 8.2.

PROOF: This follows immediately from Proposition 8.5.

9. The W operators

In this section we define and study certain operators that act on the
space of theta series appearing in Theorem 8.2. They are analogous to
the W-operators of Atkin-Lehner (see [1]); in fact we conjecture that
they essentially are the W-operators - see Conjecture 9.24 below.
As always let p be an odd prime; M a positive integer prime to p

and 0 an order of level p 2M. Let II,..., IH be a set of representatives
of all the distinct left O-ideal classes, H = H(p2M). Let J be a
two-sided C-ideal (two-sided means that C is both the left and right
order of J or equivalently, J = Cfi for some 3 E JB}{ with fi-’Cfi = 0).
Then JII, ..., JIH is also a set of representatives of all the distinct left
C-ideat classes. Thus Jli = IE(i)ai for some permutation E = E(J) of the
indices 1,..., H and some elements ai = a;(J) E Ux. Note that the ai
are well defined upto multiplication on the right by an element of
U(Ci) where Ci is the right order of Ii.

DEFINITION 9.1: Let s be an even integer ±0 and maintain the
notation as above. We define an H(s + 1) by H(s + 1) matrix WS (J) by
letting WS (J) = N (J) -Sr2( p; ), 1  i, j  H ( p 2M) where pij is the s + 1 by
s + 1 matrix

PROPOSITION 9.2: Let J and L be any two two-sided (J-ideals where
(J is the order of level p 2M. Then
(a) The product Ws(J)Bs(n), B,(n) = B,(n; p2, M) depends only on J,

not on the choice of ai used in Definition 9.1. Here BS (n ) is defined
using the same set Il,..., IH of left 6-ideal classes used to define
WS3 (J).

(b) W,(J) commutes with B,(n) for all n - 0.
(c) WS (J) WS (L) = Ws(U).
(d) W,(J) is the identity matrix if J = (Jm, m E Q’.



226

PROOF:

(a): By (4.1), the ith, jth block of WS(J)BS(n) is

where the sum is over all a E IjIIE(i) with N(a) = nN(IE(i»IN(Iï). But
IE(i) = Jlial, so N(IEi)) = N(J)N(I;)I N(«;) and a E IjIIE(i) = IjIJLa1
with N(a) = N(7-))/N(7,.) if and only if aai E IgJà with N(aa;) =
N(y)N(7,.)/N(7,-). Hence the ith, jth block of WS(J)BS(n) is

(1Iej)N(J)-s/2 f3 X(f3) where the sum is over aIl f3 E IjlJli with

N(/3) = nN(J)N(L)IN(Iï) and so WS(J)BS(n) depends only on J.
(b): The ith, jth block of BS(n) WS(J) is ( 1 lek 1« X s(«))

(N(J)-s/2X(ak» where k = E-’(j) and the sum is over all a E Iï;IIi
with N(a) = nN(I;)IN(Ik). But Iï;IIi = (J-lIïak)-IIi = aï;IIjIJli, so the
ith, jth entry block of BS(n)WS(J) is (1IekN(J)-s/2 ip XE(Q) where the
sum is over all (3 E IjlJli with N(Q) = nN(J)N(à)/N(%). Finally,
ek = eE-l(j) = e; since Jli = IE(i)ai implies that the right order (9, of JIi is

equal to aI(JE(i)ai, hence U(6;) ééé U(fl«;» and ei = eE(i) for all i =

1,..., H. Thus taking into account the proof of part (a) above, part (b)
is proved.

(c): Let Jli = IE(i)a and Lli = Ip(i){3i as in Definition 9.1. Then

(7.7)7, = lpE(i)f3E(i)ai. Now WS(J) WS(L) has non-zero entry blocks only
for the (ith, pE(i)th) blocks and in these blocks the entries are

Xk(a;)Xk(Q«;» = Xk(Q«;&#x3E;a;). Thus Ws(LJ) = Ws(J) Ws(L).
(d): Let J = 6m, m E Q. Then N(J)-s/2 = rn-S. Since E = E(J) is the

identity permutation and ai = m for all i, WS(J) consists of diagonal
blocks and (d) follows.

LEMMA 9.3: Fix p, M, and s as above. Let J be a fixed two-sided
6-ideal. Then WS (J) and the Bs(n), (n, pM) = 1 generate a com-
mutative semi-simple group.

PROOF: By Theorem 2 on p. 106 of [3], the BS(n) generate a
commutative semi-simple ring. By Proposition 9.2 part (b), Ws(J) and
the BS(n) generate a commutative ring. Thus we need only show that
WS (J) is a diagonalizable matrix. But this is obvious since Xs(a),
a E 9F is diagonalizable and a permutation matrix is diagonalizable
and Ws(J) is composed of these two types of matrices.
The WS (J) act on theta series the same way the BS (n ) do (see

Theorem 2.23 of [15]), i.e. WS(J) maps the fth, kth entry of the matrix
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series 1§J=o BS(n) exp(nT) to the éth, kth entry of the matrix series
1§J=o (WS(J)BS(n)) exp(nT). We unravel this action a bit. The ith, jth
block of 1§J=o B(n) exp(nT) is llej 1« XE(a) exp(TN(a)N(§)/N(%))
where the sum is over all a E I;’I. On the other hand by the proof of
part (a) of Proposition 9.2, the ith, jth block of

1§J=o ( À(J)B(n)) exp(nT) is

where the sum is over all 8 E Ij’JIi. What is the relation between J,
Ij’Ii, and Ij’JIi? Ij’Ii and IIJIi are left Oj-ideals while J is a two
sided C-ideal. We have to relate the 0-ideal J to the Oj-ideals. Ij = 600FF
and J = tià for some , â E J9I. Then Oj = 1’-101’ and -’J00FF =

Ojy-Iay = J’ (say) is a two sided Oj-ideal and IIJ = J’l; ’. Thus
IjlJIi = J’Iî’Ii. We need to introduce the f ollowing notation. Let M63 be
an order of level p2M and I a left M-ideal. Then

where the sum is over all a E 7. Oj,S(T) is an s + 1 by s + 1 matrix
series all of whose entries are modular forms (cusp forms if s &#x3E; 0) of

weight s + 2 on To(N), N = p 2M. Then thinking of WS (J) as an

operator on theta series we have

PROPOSITION 9.4: Let « be an order of level p2 M and I a left
M3-ideal. Let J be a two sided C-ideàl and J’ the two sided «-ideal

corresponding to J as above. Then W,(J) acts on Oj,s(T) as follows:
WS(J)(Ol,s(T)) = N(J) -sl2oj,,,S(,r)@ i.e. the action of Ws(J) is induced by
the ideal multiplication I-J’I. Further Î7s(J) commutes with the
action of the Hecke Operators Ts+2(n), (n, N) = 1.

PROOF: It is clear from the above discussion that the action of

Ws(J) is as stated. The WS (J) commute with the Hecke Operators
since the action of the Hecke Operators is given by the Brandt
Matrices and the Ws(J) commute with the Brandt Matrices.
Now we define operators analogous to the W-operators of Atkin

and Lehner. Let 6 be the ’canonical’ order of level p 2M given by
Definition 3.5 in the rational quaternion algebra ?l ramified precisely

at p and 00. Let and

for q M. Let iip = (al) E Jpj be given by ae = 1 if tO p and ap = lrp.
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Similarly, let ii q = (ae) E J 91 be given by ae = 1 if 6# q and a, = 7T q-
Finally let J(p) = Ci-rp and J(q) Ci-r, for q ) M. Now a left 6-ideal I
is two sided if and only if I Cà, êe = (ae) E J?t where à-’Câ = C
which if true if and only if a -’C,,aé, = Ce for all t  00. Then it follows

from 2.2 of [5] that J(q) is a two sided 6-ideal for all q M. Since (Jp
is the unique order of level p 2 of 2Ip (see Theorem 1.5), 7r-. ’0 Ir = Op
and J(p) is also a two-sided (9-ideaL

DEFINITION 9.5: In the above notation, let Wp,s = WS (J(p )) and
Wq,s = Ws(J(q» for q ) M.

If there is no possibility of confusion we will drop the s and write

Wp and Wq.

PROPOSITION 9.6: Fix s an even integer &#x3E;0 and maintain the above

notation..Then

(a) W P = id and W q = id rqlm.
(b) Wp, the Wq, q , M, and the Bs(n; p 2, M) with (n, pM) = 1 generate

a commutative semi-simple ring.

PROOF:

(a) This follows from Proposition 9.2 (d) as (J(p))2 = 6p2 and
(J(q»2 = 6q v, v = ordq(M).

(b) It is clear that the irp and iiq, q ) M commute with each other,
hence the J(p) and J(q) do and then by Proposition 9.2 (c), so do the
Wp and Wq. Then (b) follows as in Lemma 9.3.

REMARK 9.7: The properties of the Wp and Wq, q M given in
Proposition 9.6 should be compared with the properties of the W-
operators of Atkin and Lehner (see [1]).

Let I,, ..., IG, âI, = 10+1’ ..., 510 = I2c be a complete set of

representatives of all the distinct left 0-ideal classes as in Definition
5.14. Recall that à is given by Definition 5.4. We need

LEMMA 9.8: With respect to the above set of ideal class represen-
tatives,
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and (mod 4) for some G(s + 1) by G(s + 1)

matrix V.

PROOF: First consider the case p = 1 (mod 4). Then it follows from
Definition 5.4 that 6ép = J(p). Thus J(p)l; = II-,GP for 1 S G and

J(p )I;+G = (J5p5Ii = Iip for 1 S G by Lemma 5.5. Now XE(p ) =

and N(J(p »-sl2 = p -s and our result follows directly from

the definition of Ws(J(p ». Now assume p = 3 (mod 4). From

Definition 5.4 we see that Recall that 7Tp =

Thus 7Tp8p = - 8p7Tp which implies J (p )50 = ÎJ(p)t
Also it is clear that J(p ) is an ideal of positive character (since p = 3
(mod 4)). Hence J(p )Ii = Ip(i)ai and J(p )Ii+G = Ip(i)+Gai for some per-
mutation p of the indices 1,..., G and some ai E Ux. Thus we see from

the definition of Ws(J(p» that for some G(s + 1) by

G(s + 1 ) matrix V.

PROPOSITION 9.9: It is possible to modify the fi and gi of Theorems
5.31 and 5.34 so that in addition to satisfying all the properties listed
in those theorems, the fi and gi are also eigen forms for the Wp and Wq,
q I M operators.

PROOF: This follows from Proposition 9.6 (b) and Lemma 9.8 since
it is clear that in Lemmas 5.29 and 5.30 we can simultaneously
diagonalize the Wp and Wq, q M along with the Bs(n), (n, pM) = 1.
The Wp and Wq, q M induce linear transformations on the space

(fi ( ’T »EB ... EB(f,( ’T» ® (gi( ’T »EB ... Q9(grT)) of cusp forms of weight

s + 2 appearing in Theorem 8.2. Here i = 12+ if s &#x3E; 0 and r =

G(s + 1). In the case of Wp, we can describe this action rather

explicitly.

THEOREM 9.10: Assume that as in Proposition 9.9, the fi and gi of
Theorems 5.31 and 5.34 are eigen forms for the Wp and Wq, q I M.
Then the action of the Wp operator is as follows : if p == 1 (mod 4),
then Wp(fi)=fi and Wp(gi)=-gi; if p = 3 (mod 4), then fi and gi
always have the same eigen value under Wp, i. e. Wp(fi) = Afi if and
only if Wp(g;) = Agi. Here À = ± 1.
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PROOF: First consider the case p = 1 (mod 4). By Lemma 5.29 and
5.30, the action of Wp on

is given by the diagonal matrix El WpEI’ if s &#x3E; 0 and by E, WE’,-’ if
s = 0. In both cases Bi and E, have the block decomposition of the

f orm 
F F 

f or some invertible G ( s + 1 ) by G ( s + 1 ) matrix F.form F F) for some invertible G(s + 1) by G(s + 1) matrix EF -F

Hence by Lemma 9.8, El WEî and E,’W-,E,’-’ both have the form

Now consider the case p = 3 (mod 4). This works out the same as in
the case p --- 1 (mod 4) except that by Lemma 9.8, E, WpE 1 ’ 1 and

E1 WpE1-’ both have the form where by Pro-

position 9.9 FVF-’ is a diagonal matrix. Finally since W’ p = id, its

only eigen values are ± 1.

REMARK 9.11: Notice that in the case jp = 1 (mod 4), the fi and gi
appearing in Theorems 5.31 and 5.34 are automatically eigen forms
for the operator Wp.

REMARK 9.12: It should be noted that while the Wp and Wq, q ) M
induce linear transformations on the space
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appearing in Theorem 8.2, it is not clear that they induce linear

transformations on the subspace of Sk(p2M), k = s + 2 generated by
the fi(,r) and gi(,r). The reason for the difhculty is that the fi and gi are
not linearly independent - in fact they are not all distinct, see

Theorem 10.3 below. However we will show that the product
Wp flqjm Àq is a linear transformation on the subspace of Sk(p2M)
which is generated by theta series. In fact Wp ll,lm W, = -E where E
is the canonical involution (see Corollary 9.23).

Recall that the canonical involution on Sk(N) is given by the matrix

, The action on Sk(N) (denoted by a vertical line I) is

given by

DEFINITION 9.13: Let the notation be as in Definition 9.5. Put
L = J(p)J(ql) ... J(q,,), where ql,..., q, are all the distinct primes
dividing M. Put É, = É = Ws(L).
Note that É = Wp rl,lm Wq is an H(s + 1) by H(s + 1) matrix which

acts on the entries of the matrix series n=o Bs(n; p2, M) exp(nT) by
sending the eth, kth entry of that matrix series to the eth, kth entry of
En’=o (ÉsBs(n; p 2, M)) exp(nT). Now let I be a left 0-ideal. As in the
discussion preceeding Proposition 9.4, we see that ES acts on (11,s( ’T)
as follows: És sends the eth, kth entry of Ol,s(T) to the éth, kth entry
of N(L)-s/2(1Ll,s(T). Note that if s = 0, Oj, o(T) is just a single theta
series.

In order to show that É = - E, we need to translate some results in
Ogg’s book [10] into a co-ordinate free language. Let q(x) be a
positive definite quadratic form on a rational vector space V of even
dimension r = 2k, i.e. q: V---&#x3E; Q such that q(Àx) = À2q(x) for x E

V, À E Q and (x, y) = q (x + y) - q(x) - q (x ) is bilinear. We c all (x, y)
the bilinear form associated to q. Note that (x, x) = 2q(x). A lattice Il
(free Z-submodule of V with r0zQ = V) on V is said to be integral
with respect to q(x) if q(x) E Z for all x Ei F. The dual of a lattice 7",
denoted by r’, is r = {y E V (x, y) E Z for all x Er}. The level of r
is the least positive integer N such that Nq(x) E Z for all x E r’. Note
that choosing a basis el, ..., er for T, A = ((e;, ej» is a symmetric
integral matrix with even diagonal entries and the ’level of T’ is equal
to the classical level of A, i.e. the least positive integer N such that
NA-’ is integral with even diagonal entries. Following Ogg (see [10],
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p. VI-10) we define for Il an integral lattice on V and x an element of
V 0 R, Or(T, x) = i yer exp(q(y + X)7). Then we have

PROPOSITION 9.14:

where D is the discriminant of F.

PROOF: This is just a co-ordinate free version of Proposition 23 of
[10], p. VI-10. Note that if r has el,..., e, as a Z-basis, then

D = det((e;, ej)).
We need a ’nice’ set of generators for the set of homogeneous

4spherical functions’ with respect to q(x). For the definition of

spherical see page VI-5 of [ 10]. Our set is given by

PROPOSITION 9.15: Let f(x) be a homogeneous polynomial function
of degree s on V 0Q C. Polynomial means that if we choose a basis,
f(x) becomes a polynomial in the coefficients of the basis. Then f (x) is
spherical with respect to q(x) = 1/2(x, x) if and only if f(x) is a linear
combination of functions of the form (1, x)S where e E V 0Q C and
(el 1) = o.

PROOF: See Theorem 18 on p. VI-6 of [10].

PROPOSITION 9.16: Let the notation be as above. Let e E V 0Q C
with (e, e) = 0 and let s be a non-negative integer. Then

PROOF: We mimic the proof of Theorem 19 of [10]. Let De denote
the directional derivative,

Then De(q(x» = (e, x), De(e, x)) = 0 and Dj((c, x» = (c, ç) where c is
any fixed constant. We apply Dé to the identity (9.3) obtaining
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Cancelling the (27Ti)S and letting x = 0, we obtain (9.4).
We need to employ (9.4) in the case V =U, q(x) = N(x)/N(I), and

r = I where I is some left t-ideal. Thus we need to determine I’ and

the discriminant of 1. We do this in a series of lemmas.

LEMMA 9.17: Let C be the canonical order of level p2M given in
Definition 3.5 in the quaternion algebra U. Then the dual of (J with
respect to the quadratic form N(x) is L-’ where L is the ideal given in
Definition 9.13.

PROOF: By the proof of Lemma 3.4 of Pizer [ 14], we need only

show that Choosing the obvious

basis

of 0,, then fi = 7T;le2, f2 = ir P’el, f3 = 1T;le4, and f4 = 1T;le3 is a basis of
L p’ and (ei, fj) = tr(efj) = --t2&#x26;ij which establishes the result.

LEMMA 9.18: Let C be as in Lemma 9.17 and let I be a left 0-ideal.
Then the dual of I with respect to the quadratic form N(x)IN(I) is
given by I’ = L-’I where L is as in Definition 9.13.

PROOF: The proof is identical to the proof of Lemma 3.5 of [3 14].
The final lemma we need is

LEMMA 9.19: Let the situation be as in Lemma 9.18 above. Then the

discriminant of I as a lattice on 2( with respect to the quadratic form
q(x) = N(x)IN(I) is given by disc(I) = p4M2.

PROOF: The proof is the same as the proof of Lemma 3.7 of [ 14].
Finally we are able to state

THEOREM 9.20: Let p be an odd prime and M a positive integer
prime to p. Let k be an even integer &#x3E;2. Let C be the order of level
p2Mgiven by Definition 3.5 and let L be the two sided C-ideal given in
Definition 9.13. Let OIk-2(,r) be the matrix of theta series defined by
(9.1). Then the canonical involution E (acting on Sk(N), N = p2M)
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sends the tth, kth entry of @I,k-2( T) to the 6th,kth entry of
-N-s/2@LI,k-2(T), where N = p 2M.

PROOF: Let s = k - 2. By Proposition 9.15 and an argument similar
to that used in the proof of Theorem 2.14 of [15] any fixed entry of
@I,s(T) is a linear combination of series of the form h(T) _
LaEI (g, a)S exp(TN(a)IN(I» where (x, y) = N(I)-l tr(x00FF) and 1 G
3t 0 Csatisfies (g, g) = 0. Then

On the other hand the corresponding (fth, kth) entry of - N-sI2@LI,s(T)
is the same linear combination of series of the form

By (9.4) and Lemmas 9.18 and 9.19, (9.6) equals

which is equal to (9.5).

REMARK 9.21: Theorem 9.20 remains valid for any order .Á1 of level

p2M with the obvious changes. In particular, .Á1 = -y-l(]-y for some
y E JU so letting I be a left M-ideal, the canonical involution E sends
the fth, kth entry of OI, k_2(T) to the fth, kth entry of _ N -,12 OL’I, k-2(,r)
where L’ = -’ Lÿ is the two-sided .Á1-ideal that corresponds to L.

REMARK 9.22: It follows from Remark 9.21 and the discussion

preceding Proposition 9.4 that the canonical involution sends the

fth, k th entry of E:=o BS ( n ; p 2, M) exp( nT) to the fth, k th entry of
- 1 §J=o (ÉsBs(n; p2, M)) exp(nT).

COROLLARY 9.23: As operators on the subspace of Sk(p2M)
generated by the theta series f i and gj appearing in Theorem 8.2, we
have É = -E.
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Corollary 9.23 and Proposition 9.6 (and very little additional evi-

dence) induce us to make the

CONJECTURE 9.24: Let p be an odd prime and M a positive integer

prime to p. Then as operators on the subspace of Sk (p 2M) generated
by the theta series fi and gj appearing in Theorem 8.2, we have

Wp, k-2 = - Wp and Wq, k-2 = Wq for all q M where Wp and Wq, q M
and the W-operators of Atkin-Lehner.
Of course Corollary 9.23 proves the conjecture when M = 1.

REMARK 9.25: The analogue of Theorem 9.20 in the case of forms
of weight 2 and level p2r+lM, p h M was proved by Pizer in [14]. It is
clear that the results of this section concerning the higher weight
cases and also the WP,S and Wq,s can be easily transferred to the case
of level p 2r+ 1 M.
To conclude this section we now consider whether or not there are

any other interesting operators WS (J) other than the WP and Wq,
q, M. We will find that there are some, but not many. Let .N( 0) =
{a E J91 , a-IOa = O}. Then the mapping N(fl) i à - fià is clearly a

homomorphism from .N(O) onto the group of all two-sided O-ideals.
The kernal is 6IL(O). It follows that JV(O)I6IL(O)Qx is isomorphic to the

group of two-sided (9-ideats modulo ideals of the form Om, m E QX.
By Proposition 9.2, we are interested in the structure of .N(O)I6IL(O)Qx
and we have

PROPOSITION 9.26: JV(O)16I1(O)Qx == K x flq j M (Z/(2)) where K is the
dihedral group of order 2(p + 1).

PROOF: Let N(Of) = {a E lê’ aOea-1 = Ot}. Then .N(O)I6IL(O)QX =
JV(O)I6IL(O)JQ == iltlpM N(Ot)IU(Ot)Qê since N(Ot) = U(Ot)Qê for all
t,( pM. By the proof of Theorem 2.20 of [14], N(Ùq)/U(Ùq)Q§ z
Z/(2) for all q ) M and in fact N(Cq) = U(tJlq)Q§ U wqU(Ùq)Q§ for
q ) M where 7Tq is defined prior to Definition 9.5 above. We need now
only consider N(Op)IU(Op)Q. As Op is the unique order of level p2 of
UP (see Theorem 1.5) aOpa-1 = Op for all a G lll), so N«(Jp) = .
Let D be the (unique) maximal order of Up Then lll)/ U(D)Q) z Z/(2)
and if 9îp is identified as in (1.2), 2(; = U(D)Q; u (¿) U(D)Q;.
Now U(D)Q)Î U(Ùp)Q) * U(D)/ U(P) is a cyclic group of order p + 1
by Proposition 1.8.

If f3 E U(D) and Q is its image in U(D)Qp/ U(P)Qp, then it is clear

(e.g. by Proposition 1.8) that 0 ) acts by conjugation on
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G1 p/ü(lVp)Qp is a semi-direct product of the group (= Z/(2» generated

by1 and the subgroup = Z + 1)) uD&#x3E;Q&#x3E;/ uop&#x3E;Q&#x3E;.

By Proposition 9.26 the group of two-sided O-ideals modulo the
subgroup of ideals of the form Om, m E QX is isomorphic to K x

IIq 1 M (Z/(2)). It is clear from the proof of Proposition 9.26 and the
definition of J(q) that J(q) for q , M correspond to the non-identity
element of Z/(2) in the copy to Z/(2) that cornes from q. It is equally
clear that J(p ) corresponds to the element of order 2 in the cyclic
subgroup U(D)Qp/U(p)Qp. Thus the only interesting two-sided 0-
ideals remaining are those corresponding to the elements of K. Thus
we have

PROPOSITION 9.27: There exists a set of operators which form a
dihedral group of order 2(p + 1) which act on the space of theta series

These operators commute with all the Hecke Operators T,12(n),
(n, pM) = 1 and also with the operators Wq, q I M.

PROOF: This follows from Lemma 9.3, Proposition 9.26, and the
above discussion.

REMARK 9.28: It would be interesting to identify this group of

operators independently of the theory of quaternion algebras.

10. The case of level p 2

In this section we restrict our attention to the case of level p 2, i.e.
we assume M = 1. Denote by S’(N) the space generated by the new
forms of weight k on To(N), see Atkin and Lehner [1]. Denote by
S2(N)d the space of forms {f(dT)’ f(T) E Sk(N). Then we have

PROPOSITION 10.1: Let p be an odd prime and let M = 1. Maintain
the notation as in Theorem 8.2 where we assume by Proposition 9.9
that all fi(T) and g (T) are eigen forms for Wp. If k = 2, then we have
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while if k &#x3E; 2, we have

where r = G(k - 1), G = 1 /2H(p2) = p2 - 1 /24 if p 2:: 5 and G = 1 if p =

3. In both cases cp is the quadratic character p and the sum ’ is

over a set of representatives of the pairs f , (pl@ t/J2 -:;é 1 of the charac-
ters of (Z/(p )x. The == in ( 10.1 ) and (10.2) is an isomorphism as
modules for the Hecke algebra H generated by Tk(n), (n, p) = 1.

PROOF: It follows from Theorem 5 of Atkin-Lehner [1] that

Sk(p2) -- 3S2(1) EB 2 So (p) EB S2(p2) and Sk(p) = 2S2(1) EB S2(p). Also by
Lemma 8.4 Sk(p, 03C82)03C8 = Sk(p, 03C82)03C8 Hence taking M = 1, (10.1) follows
from (8.1 ) and (10.2) follows from (8.2). The fact that H = p 2 - 1 / 12
follows from Theorem 4.18.

PROPOSITION 10.2: Let Wp denote the Wp-operator of Atkin-Lehner
and maintain the notation and assumptions of Proposition 10.1. In

particular, the level is p 2. Then for p ---1 (mod 4) we have fi Wp = -fi i
and gi , 1 Wp = gi while for p --- 3 (mod 4) we have fi I Wp = Àif; l if and
only if gi , 1 Wp = Agi. Here Ai = ::t 1.

PROOF: As the level is p 2, Wp is the canonical involution E and

Wp = É, so by Corollary 9.23 Wp = - Wp. The proposition now follows
from Theorem 9.10.

THEOREM 10.3: Let N = p2, p an odd prime and maintain the
notation and assumptions of Proposition 10.1. Let H denote the

Hecke Algebra generated by the Tk(n), (n, p) = 1. Assume p===1
(mod 4). Then we have
(i) a subset {fit’ fil, t = dim S2(p), of the fi appearing in (10.1) if

k = 2 or in (10.2) if k &#x3E; 2 form a basis of a subspace of ,Sk(p2)
which is H-isomorphic to S2(p).
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(ii) fi, 1 Wp = -fi). for À = 1, ..., t.
(iii) the git = fil Rp, ..., git = f;, ) Rp, fa as in (i), are new forms in

S’k(p’) and form a basis of S’(p)" where cp is the quadratic

character (p).character (p). 
SO (p 2)(iv) all other non-zero fi and gi (je {il, itl) are new forms in Sk(p )

and each new form appearing in the set {fi, gj 1 je fil, .., ii))
appears exactly twice.
Assume p = 3 (mod 4). Then we have

(i’) a subset {fit’..., filLgjt’ ..., gj,,}, IL + v = dim SÎ(P ) of the fi and gj
appearing in (10.1) if k = 2 or in (10.2) if k &#x3E; 2 form a basis of a

subspace of Sk(p2) which is H-isomorphic to S’(p)
(ii’) fi, Wp = -fi). for À = 1, ..., IL andgj, Wp = - gi). for k
(m ) the gil = fil Rp, ..., gilL = filL Rp, fit = gjl Rp, ..., fiv = giv 1 Rp are

all new f orms in Sk(p 2) and form a basis of S’(p)" where cp is the

quadratic character (p)-
(iv’) all other non-zero fn and gm (n EE {il, ..., iIL}’ me fjl, ..., iv}) are

new forms in SI(p2) and each new form appearing in the set
ffn, gm ne f il, ..., m e {jl, ..., jv}) appears exactly twice.

PROOF: Following Atkin-Lehner we say that two forms h and h’ in
Sk(L) are equivalent and we write h - h’ if they are eigenforms for all
Tk(,e), 6§ L with the same eigen values. First we consider the case
p n 1 (mod 4). If h is an eigen form in St(p), then by Lemmas 20 and
24 of [11, h is not equivalent to any other eigen form contained in the
L.H.S. of (10.1) or (10.2). Thus by (10.1) or (10.2), h must be

equivalent to a form in St(p )° or to some fi or gi. By Theorem 6 of
[1], all eigen forms in Si(p)° are new forms in Sk(p2), so h must be
equivalent to some fi or gi. But all gi are eigen forms for all

Tk (t), t-4 p and for Wp. Further if g;(T) = 1 §J= a(n)exp(n’T), then by
Theorem 5.31 (d) or Theorem 5.34 (f), a(n) = 0 if p 1 n. Thus gi Up =
0 where Up is the U operator of Atkin-Lehner (see [11, p. 141). Thus
by Theorem 5 of [11, all the gi are new forms in SO(pl), so again by
Lemma 24 of [1], h must be equivalent to some fi. Hence a subset
fil, - - ., f it of the fi appearing in ( 10, 1) if k = 2 or in (10.2) if k &#x3E; 2 form
a basis of a subspace of Sk (p 2) which is H-isomorphic to S2(p). This
proves (i). Part (ii) follows immediately from Proposition 10.2. Now
consider (üi). gi" = fi,, Rp by Theorem 5.31 (d) or Theorem 5.34 (f) and
they are new forms in S’(p’) as above. Since Rp is just twisting by

ç = - , (üi) is clear. Now consider (iv). It follows from parts (i) andp
(üi) that (10-1) and (10.2) yield
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where 4 = {2, ..., G}- {ïi,..., it} if k = 2 and 4 =

{1,..., r} - {il, ..., it} if k &#x3E; 2. A new form in Sk(p2) is just an eigen
form for all Tk(n, 6# p. Each new form in S(p2) occurs exactly
twice in the L.H.S. of (10.3) hence it occurs exactly twice in the
R.H.S. of (10.3) and this proves part (iv). Now consider the case p --- 3
(mod 4). The proof of (i’) is exactly the same as the proof of part (i)
except that we can not say that h is not equivalent to some g;. Thus
we obtain a subset {/,,,..., fip.’ giI’ ..., giJJ, IL + v = dim S2(p) which is
the basis of a subspace of Sk(p2) H-isomorphic to Sk(p). Consider
(ii’). By Theorem 5 of [ 1 ], fit’ Rp is a new form in S k(p 2). By
Theorems 5.31 (e) or 5.34 (g), git --- fit 1 Rp, so by Theorem 5 of [ 1 ],
git = fit Rp. N ow git 1 Rp --- fit’ so git Rp is not a new form in S(p 2).
Thus by Theorem 6 (ii) of [ 1 ], gi. Wp = p 1 g - g, so by Pro-
position 10.2 fit Wp = - f;l also. Similarly for the other fiA and giA. For
(iii’), we have already shown in (ii’) that git = fit’ I Rp, etc. are aIl new
forms in Sk(p 2) and the rest of (iii’) is clear. The proof of (iv’) is
exactly the same as the proof of part (iv).
We now determine the old forms occurring among the fi and g; of

Theorem 10.1.

THEOREM 10.4: Let N = p2, p an odd prime and maintain tne
notation and assumptions of Theorem 10.3. Then the subset of old
forms occurring among the fi and gj is precisely {h( T)-
A/(p)pk/2h(pT) 1 h(T) a new form in Si(p)). Here h(T) 1 W; = À’(p)h(T)
where W p is the Wp-operator acting on Sk(p). Note that À’(p)= ± 1.
More precisely if p =1 (mod 4), then every fiA (T) in part (i) of Theorem
10.3 is o f the form fiA(T)=h(T)-A/(p)pk/2h(pT) f or some new form
h ( T) in S?(p) and conversely. If p=3(4), every fiA ( T) and giA ( T)
occurring in part (i’) of Theorem 10.3 is of the above form and
conversely.

PROOF: Let d( T) be a form occurring in part (i) or (i’) of Theorem
10.3. Then d(T) is equivalent to some new form h(T) in S2(p), so by
Theorem 5 of [1], d(T) = ah(T) + bh(pT) for some a, bEC. As the first
Fourier coefficient of d (T) is 1 (by Theorem 5.31 (c) or Theorem 5.34
(e)) and the first Fourier coefficient of h (T) is also 1 (by definition), we
see that a = 1. Equation 5.1 on page 149 of [1] shows that the eigen
vectors for Wp in the space generated by h (T) and h(pT) are c ( h (T) ±
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p k/2h ( p,r)), c E ex and c (h (T) -±- p k/2h ( pT )) has eigen value ±À ’(p). Note
that our ’k’ is twice Atkin and Lehner’s ’k’. As d(T) is an eigen form
for Wp, we must have d(,r)=h(,r):tpkl’h(pr) and we need only
determine the correct sign. But by Theorem 10.3 parts (ii) and (ii’), we
know that d ) Wp = - d, hence ±À’(p) = -1, so the correct choice of
sign is -,k’(p).

REMARK 10.5: Theorems 10.3 and 10.4 eff ectively determine all the
entries of the diagonalized Brandt matrix series

Y- n=o BXn; p’, 1) exp(nT) appearing in Theorems 5.31 and 5.34 in the
case N = p 2 where we can and do assume by Proposition 9.9 and 10.2
that the diagonal entries are also eigen forms for Wp = - Wp. If s = 0,
i.e. if the weight is 2, the diagonal entries consist of the following: the
zeta function f i(T), a non cusp form, for orders of level p2, i.e.

fl(T) " I lll=0 b(n) exp(nT) where b(O) = p 1 is the mass and b(n)

is the number of integral left (9-ideals of norm n, (j an order of level

p2; another non cusp form, the twist of fi(T) by - gl(,r) =
P

=o n b (n ) exp(nT); the forms h(T)- À’(P)ph(pT) where h (T)
p

varies over all new forms of level p in S2(p ) and hT&#x3E; ) 1 W’ = k(,r) W’ p
where WP is the W, -operator on l’o(p) (À) = ± 1); also each new form

of level p 2 in S’(p)P, cp = - , appears once; and finally each new formp
in S2(p 2) that is not contained in any S2(P,1/12)’" or S2(1)(/’ for any

character 1/1 of (Z/p )x - i.e. each primitive form in the terminology of
Definition 8.6 - appears exactly twice. Note here that of course

S2(1) = 101. In the case s &#x3E; 0, i.e. the weight k = s + 2 &#x3E; 2, the story is
also the same. In this case all diagonal entries are cusp forms so the

zeta function and its twist by the quadratic character p = (2013) do notp
occur. Also if p = 3, some of the diagonal entries may be zero.
Otherwise we get exactly analogous diagonal entries in the case of
weight k &#x3E; 2 as in the case of weight 2 - we just replace 2 everywhere
above by k (note that the old forms we obtain are h (T) -
A/(p)pk/2h(pT) where h(T) ranges over all new forms in S k(p )).

REMARK 10.6: Parts (iv) and (iv’) of Theorem 10.3 shows that

certain explicit new forms appear with ’multiplicity’ 2 when we

diagonalize the Brandt matrix series 2 n=o B(n; p’; 1) exp(nr). This
may be related to the result of Lebesse and Langlands (see [7]) which
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shows that a ’multiplicity one theorem’ for the representation theory
fails to hold for certain ’inner forms’, which come from quaternion
algebras, of SL(2).
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