COMPOSITIO MATHEMATICA

ARNOLD PIZER
Theta series and modular forms of level p>M

Compositio Mathematica, tome 40, n°2 (1980), p. 177-241
<http://www.numdam.org/item?id=CM_1980__40_2 177_0>

© Foundation Compositio Mathematica, 1980, tous droits réservés.

L’acces aux archives de la revue « Compositio Mathematica » (http:
/http://www.compositio.nl/) implique 1’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

NuMmbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=CM_1980__40_2_177_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

COMPOSITIO MATHEMATICA, Vol. 40, Fasc. 2, 1980, pag. 177-241
© 1980 Sijthoff & Noordhoff International Publishers — Alphen aan den Rijn
Printed in the Netherlands

THETA SERIES AND MODULAR FORMS OF LEVEL p’M

Arnold Pizer*

0. Introduction

Let p be an odd prime and M a positive integer prime to p. For a
positive integer N, denote by I'y(N) the congruence subgroup of level
N, ie. Ty(N)= {(g Z) e SLQ2,Z) | ¢ =0 (mod N)} and let Si(N, x)
denote the space of cusp forms of weight k and character x on I'((N),
x a character of (ZIN)~. If x=1, we write Si(N)= Si(N,1). The
purpose of this paper is to study the subspace of S,(N) generated by
theta series attached to orders of level N = p’M in quaternion al-
gebras (see [§2]) in the case N = p2M. The analogous question for the
case N =p¥*'M was studied in [13]. There we found for example
that all newforms in Sy(p”*'M) are linear combinations of theta
series attached to orders of level p¥*'M. The case N = p*M is quite
different. If N =p>M we can construct as linear combinations of
theta series attached to orders of level p?M all newforms in S,(p2M)
that are not obtained from forms in Si(pM, ¢?) by twisting by ¢ where ¢
ranges over all non trivial characters of (Z/p)* or from forms in S;,(M) by
twisting by the quadratic character ¢ mod p (see Proposition 8.5 below).
The most interesting case (since we can handle the non-square level case
by [13])is when N = p?M is a square. In fact the case N = p%contains all

the essential difficulties and new results.
In addition to identifying the subspace generated by theta series

and giving the action of the Hecke operators on this subspace, we

explicitly give the action of the R, operator (twisting by the quadratic
character (E» of Atkin-Lehner (see [1]). Also in §9 we define
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operators W, for € prime, ¢ l N which act on the space of theta series
by “ideal multiplication” (see Proposition 9.4). We show (Proposition
9.6) that the W, act just like the W, operators of Atkin-Lehner (see
[1D and in fact we conjecture (see Conjecture 9.24) that they are
essentially the W, -operators. We prove (Corollary 9.23) that the
product of the W, for ¢ | N is essentially equal to the product of the
W, for ¢ l N, i.e. essentially equal to the canonical involution. We
keep saying “essentially” because one of the W, (in fact W,,) differs
from the corresponding W, by a minus sign. The results of section 9
are applicable to the case of level p**'M and in that case they
generalize the results of [14] to arbitrary weight k =2 and also clearly
imply the existence of W, operators in the case of level p**'M. The
final section of the paper contains a very explicit discussion of the
case of level N = p2. Theorems 10.1 and 10.3 show that the subspace
S%p? of Si(p?) generated by newforms is a direct sum of a space of
theta series and spaces obtained by twisting certain spaces of forms
of level p and level 1 by appropriate characters. Also the results in
section 10 on multiplicity 2 may be related to recent results of
Labesse and Langlands giving counter examples to a ‘multiplicity
one’ theorem holding for the representation theory for certain inner
forms of SL(2), see Remark 10.6.

Jacquet and Langlands in §16 of [6] (see also §10 of [4]) give a
correspondence between automorphic representations attached to
quaternion algebras and certain automorphic representations of
GL(2). The latter correspond to the classical modular forms on I'y(N)
we consider in this paper. Our Theorem 8.2 should afford a concrete
realization of their correspondence in a special case.

The history of this paper began with Parry’s thesis [11] where he
considered the following problem. Can all newforms in S)(p?) come
from theta series? (As above we know that the answer is yes if the
level is not a perfect square). Parry obtained a negative answer by
explicitly constructing a basis for the subspace of cusp forms that do
come from theta series in the case p =13 and then comparing
dimensions. Atkin using Parry’s results was then able to determine
that the missing forms (i.e. those not obtained from theta series) in
the case p =13 where those obtained from forms in Sy(p, y?) by
twisting by the character ¢ where ¢ ran over the characters of (Z/p)*
with ¢?# 1. This and other calculations led him to the obvious
conjecture as to what the missing forms where in general for the case
S»(p?) and his questions to the author about this problem led directly to
the present paper.
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1. Local orders

In this section we begin to develop the theory of orders of higher
level in local quaternion division algebras. We are particularly inter-
ested in the case of orders of ‘level p? , see Definition 1.3 below.

Fix an odd prime p and let u € Z be a quadratic non residue mod p.
Q, has two ramified quadratic field extensions K = Q,(V p)and K' =
Q,,(\/u_p-). Using these we define

B={< a,, 'BU) a,BEK} where o denotes
uB’ «

conjugation of K/Q, and

B' = {( a,, B,,) a,BE K’} where o denotes
up’ «

conjugation of K'/Q,. Clearly B (resp. B') with the structure inherited
from Mat(2, K) (resp. Mat(2, K')) is an algebra of dimension 4 over
Q,. It is easy to check directly that B(resp. B’) is a division algebra
and that the reduced norm (N) and reduced trace (tr) of B (resp. B’)
are just the determinant and trace of Mat(2, K) (resp. Mat(2, K'))
restricted to B (resp. B’). Since there is a unique quaternion division
algebra over Q, up to isomorphism (see p. 154 of [8]), B and B’ are
isomorphic over Q,. Now let S =Z, + Z,Vp (tesp. S' = Z, + Z,\V up)
be the ring of integers of K (resp. K') and P = (Vp) (resp. P'=
(Vup)) be the maximal ideal of S (resp. S’). For non negative integers
r we define the orders

(1.1) M, = {(u‘;a £

and
= {(ucﬁ-;" f")

Direct computation shows that if x € B and N(x) € Z,, then x € M,
and similarly for Mi. Hence M, (resp. M}) is the unique maximal
order of B (resp. B’).

The notation introduced in the above paragraph will be used
throughout the rest of this section. In particular p is always an odd
prime.

aES,BEP'} of B

a€ES, BE P”} of B'.

ProposITION 1.1: Let C be a quaternion division algebra over Q,
and let M be an order of C. Then M is isomorphic to M; for some s if
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and only if M contains a subring isomorphic to S. Similarly, M is
isomorphic to M for some s if and only if M contains a subring
isomorphic to S'.

Proor: We recall that an order of C is a free Z, submodule of C of
rank 4 which is also a subring containing 1. We will prove the
statement concerning M, the proof of the statement concerning M
being similar. We need only show that if M contains a subring
isomorphic to S, then M is isomorphic to M, for some s as the
converse is obvious. C is isomorphic to B so we can identify C with
B. Then we can assume (by conjugating M if necessary by an element
of B*) that M contains S = {(g 0?,,)
we will show M = M, for some s. But since M, is the unique maximal
order, M C M, and letting s be the greatest integer with M C M;, we
have M = M,.

a € S}. Under this assumption

PROPOSITION 1.2: M, contains a subring isomorphic to S’ if and
only if s =1 or 2. Similarly M’ contains a subring isomorphic to S if
and only if s =1 or 2.

Proor: We again prove only the first statement. Clearly it suffices
to show that S’ can be embedded in M, but not in M;. S'=
Z,+ 2, \/LT, so S’ can be embedded in M; if and only if M, contains
an element y with tr(y) =tr(Vup)=0 and N(y)= N\ up)=—up.

. _( bVp cVp
For M, such an element is given by y = (_ Ny b \/E) where
b, ¢ € Z, satisfy b>— uc?= u. Such b and c exist since Q,(Vu) is an
unramified extension of @, and every unit of Z, is the norm of an

element  of Z,+Z,V u. Now suppose y=
( bVp — plc+ d\g—))) € M; has N(y)=—up. Then we have
up(c—dVp) —-bVp
u = b%(mod p), a contradiction.
Combining Proposition 1.1 and 1.2, we see that we have the following
arrangement of the orders M, and M in the quaternion division algebra
over Q,:

M, DM, DMD...

W m”> =

Mi{DM;DM;iD...
# # +
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and except for s =1 or 2, M, is never isomorphic to M. Also it is
obvious that M, can not be isomorphic to M if s # t. Thus consider-
ing s =2, we have a canonical choice for the definition of an ‘order
of level p?, so we give

DEeFINTTION 1.3: Let A be the quaternion division algebra over Q,,
p an odd prime. An order M of A is said to level p* if M is
isomorphic (over Z,) to the order M, in (1.1).

Henceforth we will be exclusively interested in orders of level p2.
We will show shortly that there is a unique order of index p in the
maximal order of A and it is the unique order of level p? in A. First
we need to give one last representation of A.

Let L= Q,,(\/;) be the unique unramified quadratic field extension
of Q,, R =Z,+ Z,\Vu its ring of integers, and o its conjugation over
Q,. We also let v = Vu. Then as is easily checked

=l 2)

is the (unique) quaternion division algebra over Q, and

M, :{(p;" aB")

is the unique maximal order of A. The notation being as above, we
have

mBEL}

mBER}

LEMMA 1.4: My, the maximal order of A, contains a unique suborder
of index p.

ProoF: Let M be a suborder of index p. We embed R into M, by

R 3at—><g ;)a)eM,. Then M N R is a subring of R, say T. Now

RIT=RIMNR=R+M/MCM/M as additive groups. Hence
|IRIT|<p and so either T=R=Z,+Zywor T=2Z,+Z,pv. If T=R,
then M contains R and so by Proposition 2 of [12], M must be an
order of level p>*! for some r =0 (see Definition 1 of [12]). Thus the
index of M in M; must be p%, a contradiction. Hence T = Z, + Z,pv.

a+ bv c+dv

p(c —dv) a—bv>€M with b a unit. Then

Now suppose y’=(
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_ < bv c+dv
Y= \pc—dv) —bv
—u(b*+ p(c*— d’u)/u) = —ud® for some unit § of Z, Hence R=
Z,+Z,y C M and again we have a contradiction as above. Now let
D= {B ER (p(;" f,,) € M}. D is an additive subgroup of R and it
followed from the above work that M = T @ D as an additive group.
But Mi=R&@R and [M;: M]=[R:T][R:D]=p[R:D]. Hence R =
D and we have

o el 8)

This completes the proof of Lemma 1.4.

)eM and  tr(y)=0 while N(y)=

aeT=Z,,+Z,,pv,BER}

THEOREM 1.5: Let A be the quaternion division algebra over Q,, p
an odd prime. Then A contains a unique order of level p*. In fact it is
the unique order of index p in the maximal order of A.

ProoF: Clearly an order of level p? has index p in the maximal
order of A. Since the maximal order is unique, Lemma 1.4 shows that
there is a unique order of level p? and it is given by (1.3) if A is given
by (1.2). Existence of an order of level p? is clear from the definition
or one can check directly that (1.3) gives an order of level p? by using
Proposition 1.1.

REMARK 1.6: From now on we will use exclusively the represen-
tation of the unique quaternion division algebra over Q, given by (1.2)
and the corresponding representation of its unique order of level p?
given by (1.3).

We will need to determine the structure of the unit group of the
maximal order modulo the unit group of the order of level p2. For any
ring S, denote by U(S) the unit group of S. Then we have the well
known

LEMMA 1.7: Let R=Z,+ Z,v and T = Z, + Z,pv. Then U(R)/U(T)
is cyclic of order p + 1. A set of coset representatives is given by v and
1+av,a=0,1,...,p— 1.

Proor: Let L(resp. 6,,) be the residue class field of L(resp. Q,). If
¢ and ¢ denote the maps to the residue class fields, we have the
commutative diagram
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eL —
R——L
Ul ul

Z, _® 5 Qp

Then ¢1'(Q,) = T so we have U(R)/U(T)= L*Q which is a cyclic
group of order p + 1. It is clear that the given set is a set of coset
representatives.

PROPOSITION 1.8: Let A be the quaternion division algebra over Q,,
p an odd prime. Let M, be the maximal order of A and M, the order of
level p*. Then U(M,)/U(M,) is cyclic of order p+1. A set of coset
1+av 0

0 1- av) ’

representatives is given by <(l; _Ov) and (
0,1,...,p—1.

PROOF: Let the notation be as in Lemma 1.7 above. Let ¢: M, > L
be given by & (p‘;” fu) =¢u(a). Then ¢ '(Q,)=M, and
UM)/U(M,) = ff‘/@f,. It is easy to see that the given set is in fact a
set of coset representatives.

2. Local optimal embedding theory

The major tool we will need in obtaining a trace formula for Brandt
Matrices is the optimal embedding theory for orders of level p2. Let ¢
be a prime. The analogous theory for orders of level ¢**' was
developed by Pizer in [12]. The optimal embedding theory for orders
in a split quaternion algebra over Q, was developed by Eichler
([21, [3]) and Hijikata ([5],82). Let K be a semi-simple algebra of
dimension 2 over Q, (i.e. K is a quadratic field extension of Q, or
K=Q,® Q) and let « be an order of K (with « ®z, Qs = K). Let C
be a quaternion algebra over Q, and let M be an order of C. Then we
have the

DEerFINITION 2.1: An embedding (injective Q, homomorphism)
¢:K - C is called an optimal embedding of +/K into M/C if ¢(K)N
M = p(2). Two such optimal embeddings ¢; and ¢, are equivalent
mod U(M) if there exists v € U(M) such that ¢(a) = v '¢x(a)y for
all « € K.
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REMARK 2.2: In this section we study optimal embeddings in the
case £ =p, C = A the unique quaterion division algebra over Q,, and
M= Mz.

Let us fix some notation which we will use for the remainder of the
paper. p is always an odd prime. u is a quadratic non-residue mod p
and v =Vu. L= Q,(v), R=Z,+Zv and T = Z, + Z,pv. We identify
A as in (1.2) and M; as in (1.3).

ProrosiTioN 2.3: Let K= Q,(g) be a semi-simple algebra of
dimension 2 over Q, where Z,+ Z,g is an order of K. Then an
isomorphism ¢ is an optimal embedding of Z, + Z,g/K into M,/A if
and only if ¢(g) = (p‘;" f,_.,) with « = a+ pbv € T and B € R where
either b or B is a unit.

Proor: Z,+Z,g is optimally embedded in M, if and only if
Z,+ Zp(g) = M,N(Q, + Q,¢(g)) and from this the proposition fol-
lows easily.

Let K, « be as in Definition 2.1. We denote by A(«) the discriminant
of o. A(e) is defined mod U(Z,)* and we write A(s)=d to mean
A()=dU(Z,). If K=Q,(g) and «=2Z,+Z,g then A(s)=
tr(g)’ —4N(g).

PROPOSITION 2.4: Let o, K be as in Definition 2.1. Assume there
exists an optimal embedding of </K into M,/A. Then A(e) = p, pu, or

piu.
ProOOF: Let ¢ be an optimal embedding of « = Z, + Z,g into M,.

Then by Proposition 2.3 ¢(g)=G = (pC[;" f,,) where a = a + pbv €

T, BER and either b or B is a unit. Thus A(«) =tr(G)*—4N(G) =
4p(BB° + pb?u) where either (i) B is a unit or (ii) p | B and b is a unit.
The first case gives discriminants p and pu, the second case gives p*u.

PROPOSITION 2.5: Let s be an order in a quadratic extension of Q,
with A(z)=p?u. Then « has exactly two inequivalent mod U(M>)
optimal embedding into M,.

Proor: We can assume «=Z,+Z,pv. Let ¢ be an optimal
embedding of « into M, and set ¢(pv) = G. Then G is conjugate by an
v 0

0 - D). Now any element of A* is in U(M,)

element of A* to p <
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0 1y
(p 0) for some ¢, so G is conjugate by an element of U(M,) to

p(o S)orer(p oo 20 W)= (G 2)

Hence G is conjugate by an element of U(M,) to some
*+pa (8 _Ov) a”! where a runs over a set of coset representatives
of U(M))/U(M,). By Proposition 1.8, a set of coset representatives is

. v 0 1+av 0 _ _
given by (0 —v) and ( 0 l—av)’ a=0,1,...,p—1. But
. v O . v O
these are all in Q, 0 —u)%° they commute with 0 —u/) Hence

G is conjugate by an element of U(M,) to =p (8 _Ov> p<8 _OU>

and —p (8 _Ov) are never conjugate by U(M,) since if y € U(M,),
then y(S _Ov>y" =—(8 _Ov) would imply (by reducing mod p)
that » = —v mod p, a contradiction. Finally both these representatives

yield optimal embedding by Proposition 2.3. This completes the
proof.

PROPOSITION 2.6: Let « be an order in a quadratic extension of Q,
with A(e) = p or pu. Then « has exactly p + 1 inequivalent mod U (M,)
optimal embedding into M,.

Proor: We can assume « = Z, + Z,g where g = \/;—7 or Vup. Let ¢
be an optimal embedding of « into M, and set ¢(g)=G. Then G is
conjugate by an element of A* to (pg" g) = H (say) where B €ER
and BB° =1 (if A(e¢)=p) or BB’ =u (if A(¢)=pu). Now N(H)=
—pBB° so H is a prime element of A. Hence any element of A* is
contained in U(M;)H' for some t € Z. Thus G is conjugate by an
element of U(M,) to H. Thus by Proposition 1.8 G is conjugate by an

element of U(M, to some aHa ' where a:(v 0) or

0 —v
1+ av 0
( 0 1—av
of U(M,) to one of

) a=0,1,...,p. That is G is conjugate by an element

(5 F)-com
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or

2

= Ggeiteaoy P00 )= DuGay a=01,. L p -1
Thus we have at most p + 1 inequivalent mod U (M,) optimal embed-
dings and all these representatives yield optimal embeddings by
Proposition 2.3. To show that we have exactly p + 1, we must only
show that no C or D, a=0,1,...,p—1 can be conjugate by an
element of U(M,) to some other C or D, First suppose C is

conjugate to some D, by y=<p);,, ;)e U(M,). Thus working

o .. 0 —x2B)_1_=(0 —B)=
mod p, yCy~' = D, implies (0 0 == 0 = D, (mod p).

2
Thus —-B=g (ll—js%z— (mod p) or a’u—1=1+2av+ a’u (mod p), a
contradiction. Now suppose D, is conjugate to D, by v &€ U(M,).
Again working mod p we see that this implies B(1+ av)’/1—a’u=
B(1+ bv)*/1— b%u. (mod p). This leads to

2.1 1+ a*uw)1—-b*u)y=(1+b*u)(1—a*u) (mod p)
and
2.2) 2a(1-b*u)=2b(1—a’u) (modp)

(2.1) implies either a =b which gives a =b and we are done or
a=—b which by (2.2) implies b =0 (mod p) which gives a=b =0
and again we are done.

Combining Propositions 2.4, 2.5 and 2.6 we obtain

THEOREM 2.7: Let o, K, A and M, be as in Definition 2.1. If
A(¢) = p or pu, there are exactly p + 1 inequivalent mod U(M,) opti-
mal embeddings of «/K into My/A. If A(2)= p*u, there are exactly 2
inequivalent mod U(M,) optimal embedding of +/K into M,/A. If
A(e) # p, pu or p®u, ¢/ K has no optimal embedding into M,/ A.

3. Orders of level p>M and the Mass formula

We fix some notation which we will use throughout the remainder
of the paper. p will always denote an odd prime. ¥ will always denote
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the (unique) quaternion (division) algebra over Q ramified precisely at
p and ». We let U, =A® oQ: for any prime ¢ of Q and also let
L,=LQ zZ, for any finite prime ¢ of Q and lattice L of . If ¢#p
or «, then U, is split, i.e. A, = Mat(2, Q,) and all maximal orders of A,
are conjugate by an element of A to Mat(2, Z,) (see e.g. [16],
Theorem 17.3). Thus for convenience we can and do assume from
now on that Y, £ # p or « is identified with Mat(2, Q,) in such a way
that there exists a maximal order of U, say D, such that D,=
Mat(2, Z,) for all £# p or «=. Let u € Z be a quadratic non residue
modp and let v =Vu. Then L= Q,(v) is the unique unramified
quadratic extension of Q, and R =Z, + Z,v is its ring of integers.
Then A, can and will be identified with (see (1.2)) A, =

i &)

denote a positive integer prime to p.

a,BE L} where o denotes conjugation of L/Q,. Let M

DEFINITION 3.1: Let p, M, and 9 be as above. An order # of U is
said to have level p>M if (i) M, is an order of level p? in %, and (ii) #,
Ze Ze
MZ, Z,
Let U be as above and let # be an order of level pM of U. Just as
in Eichler [3], chapter 2 or Pizer [14], §2 # has an ideal theory. The
ideal class number of left #-ideals is finite (see Proposition 2.13 of
[14]) and depends only on the level, not on the particular order /4 (see
Proposition 2.13 of [14] and Theorem 4.18 below) and is denoted by
H = H(p>M). Let I, ..., Iy be representatives of all the distinct left
M-ideal classes and let #; ={x € %(I Ix C I} be the right order of I.
The #; are all orders of level p>M (see e.g. [14], p. 103) and we have
the following

is isomorphic (over Z,) to ( ) for all primes ¢ # p.

DEFINITION 3.2: The Mass (p2M) (for J(-ideals, 4 an order of level
p*M) is

Mass(p*M) =2 2 1|U M)

REMARK 3.3: The Mass depends only on the level, not on the
particular order of level p>M or on the choice of ideal class represen-
tatives (see Theorem 3.4 below). The 2 in the definition comes from
that fact that we really should consider |U(A;)/U(Z)|, at least if we
want our definition to extend naturally to quaternion algebras over
totally real number fields.
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2
(L_-I_ZI—)M_J,-L(I+I/()

the product being over all primes ¢ of M.

THEOREM 3.4: Mass(p’M) =

Proor: This follows immediately by the same techniques as in
Pizer [12], Propositions 24 and 25 once we take into account Pro-
position 1.8 of this paper.

For convenience of exposition we give the following normalization.

DEFINITION 3.5: Let p be an odd prime and M a positive integer
prime to p. We denote by O the order of level p°M of U given by

. _( Z Zz)
@ O —(MZ( Z, forall ¢<o, €# p

o o-{( 2)

REMARK 3.6: It is clear that € is an order of level p>M. In general
an order # of U has level p>M if and only if #, = O, (over Z,) for all
¢ <. For the remainder of the paper # will denote some order of
level p2M of A while 0 will always denote the order given by
Definition 3.5. Note that by adjusting the identification of %, with
Mat(2, Q;), € # p, any preselected order of level p>M can be taken as

a.

aer=z,,+z,,pu,ﬁeR=z,,+z,,v}.

4. The Brandt Matrices and their traces

Let p, M, 0, and ¥ as in §3. Using 0, we define Brandt Matrices
B(n) = B,(n; p>, M) in exactly the same way as Eichler (see [3],
equation 15 and 15a on p. 105 or Pizer [15], Definition 2.13). For the
convenience of the reader we briefly recall the definition.

Let a— X;(a) denote the s + 1 dimensional matrix representation
of A* induced by taking the sth symmetric product of the two
dimensional representation A* C (AR C)* = GL(2,C). Xo(a) denotes
the trivial one dimensional representation, i.e. Xy(a) =1 for all a €
A*. Let I,,..., Iy be a set of representatives of all the left O-ideal
classes. Let 0; = {a € A* , Iia C I}} denote the right order of I; and let
¢;=|U(0;)|. By Proposition 5.12 below ¢ =2 or 6 and is often 2
(always if p >3). For n >0, let
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4.1 bi(n)=ei' 3 Xi(a)
P

where the sum is over all « € I;'I; with N(a) = nN(I;)/N(I;). Here
the superscript ¢t denotes transpose. Further let b%0)=1/e; and let
b§(0)=0, s >0. Then the bj(n) are s +1 by s +1 complex matrices
and the Brandt Matrix B,(n;p?, M) is the H(s + 1) by H(s + 1) matrix
given by

4.2 Bi(n; p?, M) = (bj(n))

that is the ith, jth block, 1=<i,j<H of By(n;p? M) is the s +1 by
s + 1 matrix bj(n).

REMARK 4.1: If s is odd, then Xi(—a)=—-X"%a) and it follows
from (4.1) that the Brandt Matrices B,(n;p? M) for s odd are
identically zero.

Note that the Brandt Matrices depend (slightly) on the choice of
ideal class representatives I;,..., Iy and also on the choice of the
order 0. We now show how this dependence works. Let J;,...,Jy be
another set of representatives of all the distinct left @ ideal classes.
Then J; = I;a; for some a; € A* and some permutation € of the
indices 1,..., H. Let Bi(n) (resp. BI(n)) be the Brandt Matrix cor-
responding to the choice of Iy,..., Iy (resp.Ji,...,Jy) as ideal class
representatives. Finally let P be the H(s+1) by H(s+ 1) matrix
consisting of blocks p; of s + 1 by s + 1 matrices where the ith, jth block

. AR
i = {i)(‘(a‘) l(f)t]her:v(ils)e' Then we have

PROPOSITION 4.2: In the above notation Bi(n) = PBi(n)P~' for all

n.

Proor: This follows easily from (4.1) and (4.2).

Let Jy be the idele group of . Jy acts transitively by conjugation
on orders of level p>M of ¥, the action being & : M +—a ' Ma. If M is
any fixed order of level p>M, then Jy acts transitively on left #-ideals,
the action being & : I — I&. For details see section 2 of [14].

PROPOSITION 4.3: The Brandt Matrices do not depend on the
particular order O of level p*M which is used to define them.

ProoOF: Let €@ and I,,..., Iz be as above. Let # be some other
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order of level p*M. Then # = @0a™' for some @ € Jy and it is clear
that al,, ..., aly is a complete set of representatives for the distinct
left #-ideal classes. By (4.1), the ith, jth entry block of the Brandt
Matrix associated to O (resp. ) is obtained by summing over all
a €I;'I; (resp.(al) '(al)). But (al)'(al;)=I;'L, so the Brandt
Matrices for @ and # are identical (if we choose corresponding sets
of ideal class representatives).

REMARK 4.4: It follows from Proposition 4.2 and 4.3 above that the
Brandt Matrices depend upto conjugation by a fixed matrix only on
the level p*M. In particular, if s =0 they are independent upto
conjugation by a permutation matrix of the particular order of level
p2M and the particular choice of ideal class representatives used to
define them.

The Brandt Matrices B,(n;p? M) with (n,pM)=1 generate a
commutative semi-simple ring (see [3] or [15]) and for (n,pM) =1,
Bi(n;p?, M) gives a matrix representation of the Hecke operator
T;.2(n) acting on a space of generalized theta series (see Proposition
2.23 of [15] and the Proposition on p. 138 of [3]. Our major result on
the representation of cusp forms on I'o(p2M) by theta series {see §8)
will follow from a relation involving the traces of Brandt Matrices.
For this we need the formula for the trace of Brandt Matrices given in

this section.
Eichler first obtained a trace formula for Brandt Matrices attached

to orders of square free level in [2]. Since then it has been implicit in
the literature that given the optimal embedding theory and the mass
formula for a particular kind of order, one can then obtain the trace
formula for Brandt Matrices attached to that kind of order by
methods similar to Eichler’s. We think it is worthwhile to make this
principle explicit. The proof of the trace formula given below is valid
for any order (with finite class number) in a definite quaternion
algebra over Q (in fact over any totally real number field with obvious
modifications) and does not require any knowledge of the two-sided
ideal theory of the order. For simplicity we will treat the case of the
order O of level p2M (which is what we really need), but we make no
essential use of the fact that © has level p?M (see Remark 4.15).

DEFINITION 4.5: Let A be a quaternion algebra over Q and let D be
an order of A. Let K be a semi-simple algebra of dimension 2 over Q
and let « be an order of K. An isomorphism ¢: K - A is said to be an
optimal embedding of «/K into D/A if ¢(«)= DN ¢(K). Two such
optimal embeddings ¢; and ¢, of «/K into D/A are said to be
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equivalent mod U (D) if and only if there exists a u € U(D) such that
@1(x) = ulgy)(x)u for all x € K.

REMARK 4.6: Note that this is just a global version of Definition 2.1.
Note in particular that now K denotes a global algebra and « a global
order.

REMARK 4.7: Let A be a quaternion division algebra over Q. Then
by the Brauer-Hasse—-Noether Theorem on splitting fields of central
simple algebras over global fields, we know that there exists an
isomorphism ¢ of K into A if and only if K is a quadratic field such
that no ramified prime of A splits in K. In particular if % is the
quaternion algebra over Q ramified precisely at p and «, there exists
an isomorphism ¢ : K -9 if and only if K is an imaginary quadratic
field such that p does not split in K, i.e. such that K, = K ® ¢Q, is a
field.

We need to set some notation. Let K be an imaginary quadratic
number field and ¢ an order of K. Let o be the quaternion algebra
over Q ramified precisely at p and © and D an order of level p*M of
A. Denote by A(e, D) the number of mod U(D) equivalence classes
of optimal embedding of «/K into D/9. Note that A(s, D) depends
only on the isomorphism classes of « and D. For a prime ¢, denote by
Ci(¢) the number of mod U(D,) equivalence classes of optimal
embedding of «/K, into D/, (see Definition 2.1). Note that C,(z)
depends only on « and the level of D, since all local orders of the
same level are isomorphic by definition.

Let O be an order of level p?M of A. Let I,,..., Iy be a set of
representatives of all the left O-ideal classes and let 0; be the right
order of I. The key result connecting the local optimal embedding
theory to the trace of the Brandt Matrices is

THEOREM 4.8: In the above notation we have

H
Zl A(s, 0;) = h(s) (UM Ci(o)

where h(c) is the class number of locally principal c-ideals and the
product is over all primes ¢ dividing pM.

Proor: Note that by the tables on p. 692-694 of [13] C.(0) =1 if
¢4 pM. Thus we will prove the more aesthetically pleasing result
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H
4.3) 21 A(e, 0)=h(s) [] Celo)

<o

If K can not be embedded in U, clearly (by Remark 4.7) both sides of
(4.3) are zero, so for convenience we assume K C ¥, hence K,C
ANV ¢ and Jx C Jy, where Jx denotes the idele group of K.

If ¢ is an optimal embedding of «,/K, into O/, then ¢(x)=
bxb~! for some b € A% with beb™'=0,N bKhb™'. Clearly conjugat-
ing by b or b’ gives the same optimal embedding if and only if
b’ € bK%. Also conjugating by b or b’ yield mod U(0,) equivalent
optimal embeddings if and only if b’ € U(0,)bK}. Thus C,(2) is equal
to the number of double cosets U(O,)bK?% in A% such that K,N
b~'0,b = s,. We need the little

LEMMA 4.9: Let o, K, © and U be as in Theorem 4.8. Then
KNO=¢ifandonly if KN Op =0, V€ <o,

ProoF: By the elementary divisor theorem we can choose a Z-
basis fi, fa, f3, f4 of @ such that f,, f, is a Z-basis for K N 0. From this
it follows that (K N 0), = K, N 0, and now the lemma is clear.

We continue with the proof of Theorem 4.8. From the above we see
that I1,... C/(e) is equal to the number of double cosets U(O)bJx in Ju
such that b=(b;) and K,Nb;'Ob,=0, V¢ Here UO)=
{ii = (uo) € Jy | us € U(O,)V € < }. Hence by Lemma 4.9

n C(e) is equal to the number of double cosets
<o

4.4) U(O)bJx in Jy with KN b'0b =«
Now let
h
(4.5) Je=U U)aK* (disjoint)
i=1

where h = h(s) is (by definition) the ideal class number of locally
principal o-ideals. Here (o) ={u = (u,) € Jx I U, € Ulap)VE < 0}
Consider a double coset U(0)bJx with K Nb™'0b = o. UO)bIx =

b wO)bU()EGK* = UM UO)baK* since «C bh'0b implies
bAU(s) C U(O)b. We claim that this gives h(o) I, C/(e) distinct dou-
ble cosets U(O)EK* such that K N é'0O¢ = 4. Clearly we have at most
this many. As above any two such double cosets must be of the form
U(O)baK* for some b in (4.4) and 4 in (4.5). If UO)bGK* =
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UO)b'GK*, then U(O)bJx=U(O)b'Jx hence b=05b". Thus
b~'U(O)bGK* = b~'U(O)baK* or a;=wiak with weE b 'UO)b =
U(b~'0b) and k € K. Thus w € Jx N U(b~'0b) = U(s) (since b~'0b N
K = 4), so a; = wak implies j = i.

We now give a bijective map from the h(e)Il,<x cs(¢) double
cosets U(0)éK* with K N é'0¢ =« onto the mod U(0;) equivalence
classes of optimal embeddings ¢ of «/K into O;/% as i ranges over
1,2,. .,H Let

(4.6) Jo=C) @)% (disjoint)

i=1

be the decomposition of Jy given by the ideals I,..., Iy, i.e. we let
I, = O%;.. Note that 0, = 37'07;. Let KN ¢ '0¢ =4 and consider the
map

4.7 U(O)CK* = (1, U(0))aK™)

where ¢ =iiya, 4 € U(O), a €N* in (4.6). We claim (4.7) is well
defined. U(0)éK* C U(O)¥; A%, so clearly v; is uniquely determined by
U(O)éK*. Suppose ¢ =iy,a and ock = i'ya’ with i, i', ® € U(O0);
a,a’'€W*; and k€ K*. Then a’k'a™'=3;'d"'oay; € U(O)NA* =
U(0)), hence a' € U(0;)aK* and so (4.7) is well defined.

Now KNéE'0é =, implies that KNa'0a =4, so ¢(x)=axa”
gives an optimal embedding of «/K into O;/% and clearly ¢ is well
defined upto equivalence mod U(0;) by the double coset U(0;)aK".
To complete the proof we need only show that the map (4.7) is a
bijection onto the set of double cosets U(0;)aK* with K Na™'0a =,
i=1,..., H
onto: KNa'0a = implies K Na™'97'0%a = ¢ so this comes from
U(O)y:aK* by (4.7).
one to one: Let U(O)éK* and U(O)dK* have the same image under
(4.7). Let ¢ = iya and d = é¥b with a,b € W%, i, & € U(O). Then
clearly i =j and U(0)aK* = U(0;)bK*. Thus for some u € U(0),
ub € aK* and U(O)¢K* = U(O)y,aK* = U(O)yubK* = U(O)ybK* =
U(0)dK* since u € U(O)=3:'U(O)¥; implies u € U(0)¥:. This
completes the proof of Theorem 4.8.

The following Corollary should be compared with Proposition 5 on
p. 102 of Eichler [3].

COROLLARY 4.10: Let the notation be as in Theorem 4.8. Let ai(¢)
denote the number of optimal embeddings of +/K into O}f. Then
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4 a0 _ ho)
& e "U@ Al <@

where ¢, = |U(0))|.

PROOF: Let ¢(x) = axa™" be an optimal embedding of «/K into 0;/9.
Then for each u € U(0}), ¢.(x) = uaxa™'u™" gives an optimal embed-
ding of +/K into O/ which is mod U(0;) equivalent to . Further
¢u(x) = @,(x) if and only if w'u€ e(K)NU(0)= ¢(U(e)). Thus
ai(e) = A(e, 0)ef|U(s)| and the Corollary follows directly from the
theorem.

We need one last

LEMMA 4.11: Let o € A* with tr(a) = s, N(a)=n and let x*>— sx +
s+1 _ 7s+l
n=(x - {)x — £) € Clx]. Then if af Q% tr(X,(a)) = 575:— while if

a € Q5 tr(X,(a)) = (s + Da’.
. . 0
ProOF: If o Q*, a as an element of A ® C is conjugate to (0 E>
) - s+l __ ys+l
and tr(Xs ({ Q)) =Y = é——{? If o€ Q* the result is
0 ¢ t=0 {-¢

obvious.

THEOREM 4.12: Let k be an even integer =2. The trace of the
Brandt Matrix By_,(n; p?, M) is given by

ter—Z(n;p2, M)=2 ak(s) 2 b(ssf) I'—[ C(s’f;()
s M

— k-1
revm oM [a+ue
12 iy
_ n*=?2 if n is a perfect square
where {(\/n) = f perf q
0 otherwise

The meaning of s, ay(s), f, b(s,f), and c(s,f, £) are given as
follows.

Let s run over all integers such that s>—4n is negative. Hence with
some positive integer ¢t and square free negative integer m we can
classify s>—4n into cases by
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(mod 4)

s2—4n={t2m m=1
m=2,3 (mod 4)

*4m

Let @,(X)= X%—sX +n and let x and y be the roots of ®,(X)=0
in C. Put a,(s) = 1/2(x*"' — y* ) (x — y)™L.

For each s (fixed), let f run over all positive divisions of t.

Let K denote the quotient field Q[X1/(®P,(X)) and ¢ the canonical
image of X in K. K is an imaginary quadratic number field and &
generates the order Z+ Z¢ of K. For each f there is a uniquely
determined order ¢; containing Z + Z¢ as a submodule of index f.
A(es) = s> —4n/f? = A(f) (say). Let h(A(f)) (resp. w(A(f))) denote the
class number of locally principal o-ideals (resp. 1/2|U(ss)|). Then
b(s, f) = h(A(f)]w(A(f)).

Finally let © be an order of level p*M of U. Then c(s, f, £) is the
number of inequivalent mod U(O® Z,) optimal embeddings of
af ®Z{ into 0®Z(

REMARK 4.13: The trace formula given in Theorem 4.12 is very
easy to evaluate. It is well known how to write h(A(f)) in terms of
‘standard’ class numbers of maximal orders (see Corollary 4.17
below). Also it is well known and trivial that w(A(f)) =1 with two
exceptions (w(—4) =2 and w(—3)=3). c(s, f, p) is given by Theorem
2.7 above and the c(s, f, £), £ # p were computed by Hijikata in [5]
and are given explicitly by Pizer in [13], p. 692—-694. Note that in [13]
c(s, f, €), € # p is denoted by c'(s, f, £) to distinguish the split case
from the ramified case.

REMARK 4.14: The great similarity between the formula for the
trace of the Brandt Matrix B »(n, p?, M) and the formula for the
trace of the Hecke Operator T(n) actings on cusp forms of weight k
on I'y(N), N =p>M (see Hijikata [5], p. 57) should be noted. This
similarity will be exploited in §7.

REMARK 4.15: To any order D (with finite class number) in a
definite quaternion algebra over Q one can associate Brandt matrices.
The trace of these Brandt matrices will be given by the formula of
Theorem 4.12 with the following changes: (i) The product I1,,) will be
replaced by Il4s where S is the product of all the finite primes € of Q
such that D, is not isomorphic with Mat(2, Z,); (ii) c(s, f, ) denotes
the number of inequivalent mod U (D;) optimal embeddings of «; Q Z,

. o (P2— DM .
into D,; and (iii) 1 {D (1+1/¢) is replaced by the Mass of D.
M
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PrROOF OoF THEOREM 4.12: Let a;(s, n) denote the number of a € 0;
with tr(a) = s and N(a) = n and with X2 — sX + n irreducible over Q.
Using the notation of (4.1), it follows from the fact that I;'I, = 6,
using (4.1), (4.2) and Lemma 4.11 that

k-1 _ k—]

trBesnp?, M) = 3 3 AN E 2

revm il (p*=DM [T (1+1/6)

k=2/2

n if n is a perfect square

where ¢ (\/;) = .
0 otherwise

The first sum is over all integers s. However, clearly a;(s, n) =0 if

s’—4n=0. The second term occurs only if n is a perfect square since

then & = +V'n € O; for all i and these give a contribution of

2k — n* 2/2(2 1/e,)— ek 1 . Lpr-m [Ta+ue

by Theorem 3.4 and Lemma 4.11. Let K = Q[X]/(X?- sX + n) and
let x be a root of X?—sX +n in K. Then a;(s,n) is equal to the
number of isomorphisms ¢ of K into U with ¢(x)E 0. Let 4=
Z + Zx and let o« be an order of K with ¢oC ¢ C K. If ¢ is an optimal
embedding of «/K into Oy, then ¢(e)=0;Ne(K) and x EoyC e
implies ¢(x) € 0. Thus every optimal embedding of some order
6,00C ¢ C K into @/ is an isomorphism that is counted in a;(s, n).
Conversely, if ¢: K - is an isomorphism with ¢(x) € 0;, then 0; N
o(K)= ' is an order of ¢(K) containing ¢(x). Hence ¢ '(¢’) is an
order of K which contains ¢y and such that ¢ gives an optimal
embedding of ¢7'(¢') into 0. Thus a(s, n) = =,5,, ai(e), the sum being
over all orders « of K which contain ¢ and a;(s) is as in Corollary
4.10. So we have

&ai(s,n) _ <« & ai(a)_ h(a)

i=1 €; 0o

by Corollary 4.10. Now A(sg) =s*—4n so A(s) = s*—4n/f* where
s2—4n/f>’=0 or 1 (mod4) and f >0, f € Z. Taking into account the
fact that K must be imaginary quadratic and that an order of K is
uniquely determined by its discriminant and writing h(A(s)) = h(s),
0(A(0)) =1/2|U(0)|, and c(s, f, €) = c(s) where A(e) = s*—4n/f* and
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noting the 1/2 in the definition of ax(s) we obtain the given formula.

LEMMA 4.16: Let K be an imaginary quadratic number field. Let o
be an order of K of discriminant A and let o' be the suborder of « of

index f. Then 1) () ¢ (1—{—} 1/¢)

(0' w(a) af
Ay [0 if | Aand £24=00r 1 (mod 4)
where {—(7} =

PROOF: h(s') =[Jx: U(YK*] = h(e)[U()K* : U () K*]

= h()[U(c)/U(a): U(')/ U(s")]. Therefore

h(s) _ h(o) O Ul

U] ™[O [ 1Ok Now

|U(e)] = 2w(s") and |U(s)| = 2w(e) by definition and

’ _— . ’ — — é

[”Il(a)-"lt(a)]—[ll [(Uer): U] =f Iﬂ]f (1 {f}llf)

(%), the Kronecker symbol, otherwise

COROLLARY 4.17: Let K be an imaginary quadratic number field.
Let o be the maximal order of K and o' a suborder of index f. Then

2613 1) () e

af

K 1 if ¢ splits in K
<7) =y 0 if € ramifies in K

—1 if € remains prime in K

is the Kronecker symbol. Note that h(c) is the ‘“‘standard” class
number of K.

THEOREM 4.18: Let p be an odd prime and let M be any positive
integer prime to p. The class number H(p*M) of orders of level p°’M is
given by the formula

Oif p#3
-3
43||<1+(—))' =
/{M 7 ifp=3
3

Note that (—_2—) =—1. (:;) is the Legendre symbol if € # 2.

H(pZM)=(”—21;—1)M Q{(1+1/f)+1

Proor: From the definition of the Brandt Matrices we see that
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H(p>M) = tr Bo(1; p%, M) (see Remark 2.20 of [15]) and the theorem
follows from Theorem 4.12 — just note Remark 4.13.

5. The structure of the Brandt Matrices

In this section we develop the structure of the Brandt Matrices for
orders of level p2M. The structure we study in this section is new (it
does not occur in the study of Brandt Matrices of level
p¥'M,p ¥ M-see e.g. [15] or [3]) and depends somewhat on
whether p =1 or 3 (mod 4). The difference between the cases p =1
and p =3 (mod 4) will become clearer when we study the action of
the W-operator W, in section 9 below.

PROPOSITION 5.1: Let M be an order of level p*M of U and let I be a
left M-ideal. Set S; ={c = N(x)IN(I) with p ¥ ¢ |x€I}. Then S;C
Z,S8; # ¢ and either S; consists entirely of residues modp or S;
consists entirely of non-residues mod p. Further whether S; consists of
residues or non-residues depends only on the class of I

Proor: Recall that N(I), the norm of I, is the positive rational
number that generates the fractional ideal of Q generated by
{N(x)|x€1I}. Hence N(x)/NI)EZ for x€I and the ideal
generated by {N(x)/N(I)IxEI} is Z, so S;CZ and S;# ¢. Now
I, = Mya for some a €A} and M, = B7'0,8 for some B EA;. Let
x€I with pt N(x)/N(I). Then xe€ICI,=B"'0Ba, so
N(x)/N(I)= N(y)N(a)/N(I) for some y= (p‘;: _b‘(’iz) ac:“:;’v)
0, where a, b, ¢, d € Z,. Thus N(y)=a’mod p is a quadratic residue
mod p. Since ord,(N(a))=ord,(N(I)), N(«)/N(I) is a unit of Z,
Further if we write I, = #,a’, then ' = ua for some unit u of #, and
as above N(u) is a quadratic residue mod p. Thus N(a)/N(I) is a unit
of Z, and whether it is a residue or a non-residue mod p depends only
on I Since N(x)/IN(I)=a’N(a)/[N(I), we see that S; consists
entirely of residues or non-residues mod p according as N(a)/N(I) is
a residue or a non-residue mod p. Finally, if J is in the same class as
I, then J =1Ib for some b €UA* and x €J if and only if x = yb for
some y € I. Hence N(x)/IN(J)= N(y)/N(I) and S; = ;.

DEFINITION 5.2: Let # be an order of level p2M and let I be a left
AM-ideal. I is said to be of positive character if S; consists entirely of
residues mod p and to be of negative character if S; consists entirely
of non-residues mod p.
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Note that the character of an ideal depends only on the class of the
ideal, so we can speak of the character of an ideal class.

REMARK 5.3: The phenomenon noted in Proposition 5.1 and
Definition 5.2 was discussed by Parry in his thesis [11] where in
section 3 he talks about the ‘quadratic residue symbol’ assigned to
certain quadratic forms-in our case the form would be q(x)=
N(x)/IN(I) as x varies over I. As in [11], we will see in Lemma 5.23
below that the character of an ideal will determine the behavior of its
associated theta series @;(7) = Z,¢; exp(7N (x)/N(I)) at the cusps of
I'(p*M).

v 0 o
9 =
0 _v)e A, while if p

-v (10
0 )€Y Let o=(p 1

w, ¢#p and let 8.=1€EN,. Recall v =Vu where u € Z, <§)= ~1.
Finally let § = (8,) € Jy.

DEFINITION S5.4: If p =1(4), let &, = (

34), let 3,,=<1?v )e%{, for all £<

LEMMA 5.5: Let M be an order of level p*M of U and let § be as in
Definition 5.4. Then §7'M5= M, ME*=Me and N(ME)=e where

B {1 if p = 1(mod 4)
“lpif p=3(mod4)

PROOF: & '#M5 =M if and only if 8§7' M7 = M, for all €<,
Clearly this is true for all ¢# p. Now by Theorem 1.5, #, is the
unique order of level p? in U,, so a ' M,a =M, for all a € M}, in
particular for 8,. For the second statement M52 = Me if and only if
MS% = Mee for all €< and this is clear. Finally if I = #&, then N(I)
is the positive rational number that represents the coset N(&)U(Z) in
JolU(Z). Here if &=(a,), then N(@)=(N(a,))EJ, and U(Z)=
{B=(B)EJo|B.€ U(Z,) for all £<x}. Now the third statement is
Clear.

PROPOSITION 5.6: Let M be an order of level p>M and I some left
M-ideal. Let & be as in Definition 5.4. Then 81 is also a left M-ideal
and I is of positive character if and only if 81 is of negative character.
Conversely I is of negative character if and only if 81 is of positive
character.

PrROOF: I = Md for some &€ Jy. Then 8I = éMa = Méa (by
Lemma 5.5) is again a left #-ideal. Now let € be as in Lemma 5.5.
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Then §°I = #5%& = Ie is in the same class as I and so the second
statement follows from the first. We prove the first statement. Note
that N(8I) = eN(I). Let I, = M,a,. Then by the proof of Proposition
5.1 the fact that I has positive character implies that N(a,)/N(I) is a
quadratic residue modp. Now (8I), = 8,1, = #,5,a, and so
N(6,,a,,)/N(5I)=(N(8,,)/e)(N(a,,)/N(I)) is a residue or non-residue
according as N(§,)/e is a residue or non-residue. But N(§,)/e =
{—u if p =1(mod 4)

u if p =3(mod 4)
position 5.1, we are done.

is a non-residue, so again by the proof of Pro-

REMARK 5.7: Clearly we do not have to consider the separate cases
p =1(mod4) and p =3(mod4) to prove the above resuit. It would
suffice to use the definition given for §, in the case p =3(mod 4) for
all cases. The reason we have chosen & as we have is so that the
action of the W-operator W, will be nice - see section 9 below.

COROLLARY 5.8: Let M be an order of level p*M and let I be a left
M-ideal. Then I and 8I are never in the same class.

Proor: Ideals in the same class have the same character.

THEOREM 5.9: Let M be an order of level p°M. Let I,,...,I; be a
set of representatives of all the distinct left #M-ideal classes of positive
character. Let § be as in Definition 5.4. Then 81,,. . ., 8I; represent all
the distinct left M-ideal classes of negative character. Also I,,. . ., I,
8I,,...,58I; is a complete set of representatives of all the distinct left
M-ideal classes.

Proor: Clearly the §Li=1,...,G represent distinct ideal classes
since 8I; = 8I,a with a € %* implies I, = [a which implies i = j. Thus
I,....Is &I, ..., 68l represent distinct ideal classes. Let I be any
left #M-ideal. If I is of positive character, then I = La for some
i,1<i=<G and some a € U~ If I is of negative character, then &I is
of positive character, so 8I = Ib for some j,l=j=G and some
be . Hence &6 =el=68lb or I=élbe'. Thus I,,...,I
81, ..., 8I; represent all the left .#-ideal classes.

COROLLARY 5.10: The ideal class number H(p*M) for orders of
level p>M is even.

REMARK 5.11: We have an explicit formula for H(p*M) given by
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Theorem 4.18 and it is easy to see from that formula that H(p2M) is
always even.

PROPOSITION 5.12: Let M be an order of level p>M. If p >3, then
[UUM)|=2. If p =3, then |U(M)| =2 or 6. Further if p=3 and M is
divisible by 2 or by a prime =2(mod 3), then |U(M)| = 2.

PRrOOF: Suppose u is a unit of # with u# +1 and consider Q(u),
the subfield of A generated by u. Q(u) is an imaginary quadratic
number field and u is a unit of that field. Hence u ~ *i or u ~
+1+V-3

2
Thus we can assume A contains an element ' with either o'~ i or
, —1+V=3

T2
we can assume O, contains an element o with either w ~i or

-1+V=-3 a+ bpv c+dv
B E— But then o= (p(c —’c)lv) a— bpv
a,b,c,d € Z,. In the first case tr(w)=0 and N(w)=1 imply 1=0
(mod p), a contradiction. In the second case tr(w)=—1 and N(w)=1
imply a = -1 and 4 = 4N(w) =1 (mod p), that is p = 3. Thus we need
only consider the case p =3. There is upto isomorphism only one
order of level 3?- 1. This is true since by Theorem 4.18, the class
number of an order of level 32- 1 is 2. Thus if # is an order of level
32.1 and § is as in Theorem 5.9, # and 64 = M5 are representatives
of the two left #-ideal classes. But then, by the proof of Proposition
2.15 of [14], any order of level 3? - 1 must be isomorphic to /. Now an
‘easy’ calculation (see [15]) shows that |U(M#)| = 6 if # has level 3% - 1.
Since any order of level 3°M, 3./ M is contained in an order of level
32- 1, |U(M)| =6 for any order .# of level 3°M. But # can not contain
an element ~i, so |U(M)| =2 or |U(M)| = 6. Now assume .# has level
-1+V-3

2

where ~ means ‘has the same minimal polynomial as.’

® . Now w'e#l C M, which is isomorphic to 0, so finally

) )e 0, for some

. Let ¢ be a prime

Zg Z()C ( Z( Z() ( Z[ Z(
MZ{ Z{ - KZ( Z( [Z( Z[
tains an element with trace —1 and norm 1, which implies —x(x + 1) =
1 has a solution in Z,, that is £ =1 (mod 3). This completes the proof.

32. M and A contains an element @ ~

dividing M. Then M{E( ) con-

REMARK 5.13: The reason we have given Proposition 5.12 is that
when |U ()| depends only on the level of ., not on its isomorphism
class, the Brandt Matrices become simpler and also isolating the two
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Eisenstein series in the case of weight 2 (see Remark 5.26 below)
becomes simpler. Also if |U(.#)| =2 for all orders of level p’M, then
for all weights k =2 all modular forms given in Theorem 5.31 below
are non-zero. Unfortunately it is not true in general that |U ()|
depends only on the level. The simplest possible example (taking into
account Lemma 5.12) p =3, M =7 provides examples of orders /(
and ', both of level 32 -7, with |U(#M)| =2 and [U(M")| =6.

We now begin to determine the structure of the Brandt Matrices
B,(n; p*, M)

DEFINITION 5.14: Let I,,..., I 81,,. .., 8I; be a complete set of
representatives of all the left O-ideal classes as in Theorem 5.9. Here
I, ..., I; represent the ideals of positive character and éI,, .. ., 51
represent the ideals of negative character. Let Ig,; =8I for i=
1,...,G. Letting bj(n) be as in (4.1) we define

Ci(n)=Ci(n; p>, M) = (bj(n)), 1=ij=<G
and

Di(n) = Dy(n; p*, M) =(bj(n)), G+1=i=<2G=H,
1=j=G

Note that C,(n) and D,(n) are G(s + 1) by G(s + 1) matrices.

THEOREM 5.15: Let O be an order of level p*M, and let 1,,. . ., I,
Igan=8L,..., Iy= 8I; be a set of representatives of the left O-ideal
classes as in Definition 5.14 above. Then the corresponding Brandt
Matrices By(n) = B,(n; p?, M) are composed of four blocks as fol-
lows:

_(Ci(n) | €Dy(n)
BS‘")‘<Ds(n) | cs(n)>

where the C;(n) and D,(n) are given in Definition 5.14

_[lifp=1(mod4)
and 6_{p if p =3 (mod 4).

ProoF: Note first that 0. = Iilslig=17'67'6I, = I;'I; = 0; for
j=1,..., G. We first show that bj(n) = bi.gj+¢(n) for all 1 <i,j=<G.
By (4.1) bii(n) = ¢j' =, X () where the sum is over all @ € I7'I; with
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N(a)=nN()/N). But I;'I; = I7'67'8L, = I;lcI,.¢ and ¢ = |U(0))| =
|U(0116)| = €j+6, s0 bi(n) = bigj+c(n). We next consider the relation
between bi.gi(n) and bi.s(n), 1=<i,j=G. Note that I;'Iug=
I;'8L, = I7'67'8’, = I;\sIe by Lemma 5.5. Thus « € IjlcI; with
N(a) = nN(I)/N(;:+g) = nN(I;)/eN(I)) if and only if ea € I;'I;.; with
N(ea) = nN(I;:c)/IN(I)). Hence bigi(n)=3,X(ea)= €3, Xi(a)=
€'bij+¢(n) where the sum is over all a €I;'s; with N(a)=
nN(Ii)/N(Ii+G)-

PROPOSITION 5.16: Assume p =1 (mod4) and p ,n. Then Cy(n) =
D,(n) for all n.

ProOOF: Note that as p=1 (mod 4), e = 1. We need to show that
bi(n)=bigi(n) for all 1 =i,j=<G in the notation of Theorem 5.15
above. We claim that a € I'I; with p l N(a)N(I)/N() if and only if
a €I;7' ;¢ with p lN(a)N(I,-)/N(IHG). Since N(I})) = N(;;g), we
need only show that for o € 9 with p IN (e)N(I)/IN(I), then a €
I7'I; if and only if @ € I'I;+6. Now « € I;'I; if and only if a € (I7'I)),
for all ¢ <co and similarly for I;'I;.¢. But (I7'L), = (I7'Iisg). for all
¢# p, so we need only worry about (I;'L), and (I;'I;s),. Letting
L, =0,y for k=1,...,G, we have (I;'L),=v30,v, and
U7 Loy = Y0l Odyyy where 8,= (0 _2)e 9% by Definition 5.4.
Thus « € (I;'L), if and only if @ = y};'By, for some B € 0,. Further
p l N(@)NI)IN(I) if and only if p l N(B). Similarly a € (I;'I1¢),
with p , N(a)NI)/N(I) if and only if a=1vy;'B'y;, with B'€ 0,8,
where p | N(B"). But it is easy to check using the definition of @, that
if p lN (B), then B € O, if and only if B8 € 0,8, and this proves our
claim. The proposition now follows easily from the claim and the
definition of the bf(n).

REMARK 5.17: If p =3(4), at least in several cases it is true that
Co(n) = Dy(n) when p l n. If it were true in general that D,(n)=
€"2C,(n) when p I n, then the statements of many results to follow
could be simplified. It seems that if D,(n) = e"*C,(n) when p l n is
true in general, then it should be easy to prove. However, we have
not found a proof.

THEOREM 5.18: Let C;(n) and D,(n) be as in Definition 5.14. If n is
a quadratic residue mod p, then Di(n)=0. If n is a quadratic non-
residuesmod p, then C,(n) =0.
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PrOOF: A typical entry block of C(n) is bj(n), 1=i, j=G.
ebi(n) =32, X (a) where the sum is over all a€I;'l, with
N(a)/N(I7'L) = n. Now I; and I; are both ideals of positive character
and so I;'[; is also an ideal of positive character. Hence if n is a
non-residue mod p, there are no a € I;'I; with N(a)/N(I;'I) = n and
so bji(n)=0. Thus Ci(n)=0 if n is a non-residue mod p. A typical
entry block of Di(n) is bfgi{(n) 1=1i,j=G. This corresponds to the
ideal I;'I;;s which is of negative character, so D;(n)=0 if n is a
residue mod p.

PROPOSITION 5.19: Let p be an odd prime and M a positive integer
prime to p. Let Ci(n) = C,(n; p?>, M) and D,(n) = D,(n; p*, M). Then
the entries of the matrix series X5.0Ci(n)exp(nt) and
35-0 Di(n) exp(nt) are modular forms of weight 2+s on I(N),
N =p?M. If s >0, they are cusp forms. Recall that exp(nt) =e*™".

Prookr: This follows by the methods used in the proof of Theorem
2.14 of [15]. See also Eichler [3], Theorem 1, on p. 105 and Ogg [10],
Theorem 20 on p. VI-22.

Now consider the case s =0, i.e. we consider modular forms of
weight 2. We want to show how to obtain cusp forms in this case also.

LEMMA 5.20: Let M be an order of level p*M and let I and J be left
M-ideals. Let @; =3 ,c; exp(tN(a)/N(I)) be the theta series attached
to I and similarly for J. If I and J have the same character, then
O1(7) — Oy(7) is a cusp form of weight 2 on I'(N), N = p*M.

PRrOOF: As in Proposition 5.19 @,(7) and ©,(7) are modular forms
of weight 2 on I'y(N). @;(7) is the theta series associated to the
quadratic form N(x)/N(I), x € I and similarly for @,;(r). Since I and
J have the same character, the quadratic forms N(x)/N(I), x € I and
N(x)/IN(J), x€J belong to the same genus, i.e. they are locally
equivalent for all primes ¢. This is clear if £ =o. If £ <, then fixing
¢ we have I, = M, and J, = M.b for some a, b € A% and

(CRY uN(b)IN(J) = N(a)/N(I)

for some unit u of Z,. If ¢# p, then every unit of Z, is the norm of
some unit of #, so N(u')=u for some u’'€ U(M,). Then letting
b' = u'b, we have J, = M’ and the map x+—>xa~'b’ is a local isometry
from I, to J, (i.e. N(x)/[N(I) = N(xa'b")/N(J)). If €= p, then by the
proof of Proposition 5.1, N(a)/N(I) and N(b)/N(J) are both residues
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or both non-residues mod p. Thus the unit « in (5.1) is a residue mod p
and hence u is the norm of some unit, say u’, of #,. So again letting
b'=u'b we have J,=.M,b' and the map x+—>xa”'b’ is a local
isometry. Now it is a classical result (see Siegel [18], p. 376) that theta
series associated to quadratic forms in the same genus have the same
behavior at all cusps, so the difference of two such theta series is a
cusp form. This completes the proof of the Lemma.

REMARK 5.21: If I and J are left #-ideals of different character,
then the quadratic forms N(x)/N(I), x €I and N(x)/IN(J), x € J are
in different genera (since one represents residues and the other
non-residues mod p) and their associated theta series have different
behaviors at the cusps (see Parry [11], section 3 and Theorem 5.34
below).

LeEMMA 5.22: The difference of two theta series appearing in the
same column of the matrix series Z,-oCo(n)exp(nr) (resp.
=0 Do(n) exp(nt)) is a cusp form.

Proor: In the notation of Lemma 5.20, the ith, jth entry of

-0 Co(n) exp(nr) is% O (7). Now I7'L and Ij'L for 1=i, j, k=
]

G are both left 0;-ideals of positive character, so the present lemma
follows from Lemma 5.20. Similarly the ith,jth entry of
=5-0 Do(n) exp(nt) is 1/€01;,,(7) and I;'I,g and I;'Lig for 1<
I, j, k = G are both of negative character, so again the lemma follows
from Lemma 5.20.

LeEMMA 5.23: Let Co(n) = (cii(n)), Do(n) =(dj(n)), 1 =i, j=G. Then
(a) eci(n) = ecji(n) and ed;(n) = ed;(n) forall i,j, 1<i,j=G and all
n=0.

(b) i cii(n) = c(n) (say) is independent of i and i di(n) = d(n) (say)
7= i=

is independent of i.
(©) c(0) = d(0).

PRrOOF: (a), (b), and (c) are clear for n =0. Thus we assume n = 1.
c;j(n) equals 1/¢; times the number of elements a € I;'I; with N(a) =
nN(I)/N(I)). But I;'=(1/N(I))I; where ~ denotes the canonical
involution of U. Hence e¢c;(n) is equal to the number of elements
B € LI, with N(B)=nN(L)N(I). Similarly ec;i(n) is equal to the
number of elements B' € I—in with N(B8') = nN(I)N(I;). But B € I, if
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and only if B € I—.-I,~, so ejcij(n) = ecj(n). Now consider Dy(n). dj(n) =
biigji(n) where b,,(n)=>b?,(n). The above argument shows that
ebi.cji(n) = ei.gbji+c(n). But from Theorem 5.15 we know that e, =
¢ and bj;.¢(n) = bj,ci(n), so we obtain ¢d;(n) = ed;(n) which finishes
the proof of (a). Now consider (b). If a€I;', with N(a)=
nN(I)/N(I)), then I;'Lia is an integral left O;-ideal (recall O; is the
right order of I;) of norm n. Integral means that I;'La C 0. Con-
versely all integral left 0;-ideals in the same class as I';'I; having norm
n must be of the form I;'Ia for some a €I;'l, with N(a)=
nN(I)/N(Ij). Further two such ideals I;'a and I;'I8 are equal if
and only if L = I8 if and only if « = 4B for some u € U(O;). Thus
cii(n) is precisely the number of integral left O;-ideals in the same
class as I;'I; which have norm n. It is clear that I;'I,,..., I;'I; are a
complete set of representatives of all the distinct left 0;-ideal classes
of positive character. Thus =, ¢;(n) is equal to the number of
integral left O;-ideals of positive character having norm n and we
need only show that this number depends only on the level, not on the
particular order 0; we happen to choose. Let ./ be an arbitrary order
of level p*M. Then M =a0a™' for some &@€EJy and the map
0B — a0Ba " = MapBa~" gives a bijection from integral left O-ideals of
positive character with norm n onto the set of integral left #-ideals
of positive character with norm n. This proves (b) for c(n). The proof
that =&, d;(n) is independent of i is completely analogous to the
above except that we must of course consider ideals of negative
character.

LEMMA 5.24: Let the notation be as in Lemma 5.23.

/
1 eer' ... eed
-1 0
Consider the matrix A = T
1 0 -1

that is A=(a;) where ay=1 for i=1,...,G, a;=ee;' for j=
1,..,G; ai=-1 for i=2,...,G and all other a; =0 (i#1, j#1,
i#j). Then

c(n) 0 ... O

0
ACo(n)A '= : Co(n)
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dn) 0 ... O
0

and ADy(n)A™' = : Dy(n)

0

where Ci(n) and Di(n) are G—1 by G —1 matrices. Further letting
Cin)=(cij(n)) and Dy(n)=(dij(n)), we have cj(n)=
Cirrj+1(n) — c1jri(n) and diy(n) = diyji(n) — dyju(n) for all ij, 1=
iLj=G—-1andall n=0.

PrOOF: Let m =%, ¢e;'. Then A™'=(1/m)F where F =(f;) is
given by fi=e;' if i#j; fu=ei'; and fi=e;'—=m for i=2,...,G.
The lemma now follows from Lemma 5.23 by an easy exercise in
manipulating summation symbols - if the reader needs help, he can
peek at the proof of Lemma 2.22 in [15].

REMARK 5.25: Note that by Theorem 2.21, c(n) =0 and Cy(n) =0 if
n is a non-residue mod p where as d(n) =0 and Dyn)=0 if n is a
residue mod p. Further if p =1 (mod 4) and p l n, then by Proposition
5.16, c(n) = d(n) and Cy(n) = Dy(n).

REMARK 5.26: If p >3 or M is divisible by 2 or by a prime =2
(mod 3), then it follows from Lemma 5.12 that all ¢ =2. Thus the
matrix A becomes quite simple in these cases.

Now we are finally able to obtain cusp forms in the case of weight
2. In fact they are given by

PROPOSITION 5.27: Let the notation be as in Lemma 5.24. Then the
entries of the matrix series X,.o Co(n)exp(nt) and Z;_, Dy(n)
exp(nt) are cusp forms of weight 2 on I'(N), N = p>M.

ProoF: This follows immediately from Lemmas 5.22 and 5.24.

PROPOSITION 5.28: Fix p, M, N = p>M, and s =0 as above. Then the
Ci(n) and D,(n) with (n, N)=1 generate a commutative semi-simple
ring. Similarly, the Cy(n) and Dy(n) with (n, N)=1 generate a com-
mutative semi-simple ring.

Proor: From Theorem 2 on p. 106 of Eichler [3], the B(n)=
B,(n; p?, M) with (n, N)=1 generate a commutative ring. Thus it
follows from Theorems 5.15 and 5.18 above that C,(n) and D,(n) with
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(n, N) =1 generate a commutative ring and clearly, by Lemma 5.24, so
do the Cy(n) and Dy(n) with (n, N) =1. By a proof similar to that of
Theorem 2 on p. 106 of [3] we see that the rings generated are in fact
semi-simple.

Fix p, M, N = p>M, and s = 0. Then by Proposition 5.28 there exists
a G(s +1) by G(s + 1) matrix E such that EC,(n)E™! and ED,(n)E™!
are simultaneously diagonal matrices for all n with (n, N)=1.
Similarly there exists G — 1 by G — 1 matrix E’ such that E'Cyn)E'"™"
and E'Dy(n)E'"! are simultaneously diagonal matrices for all n with
(n,N)=1.

LeEMMA 5.29: Fix p, M, N = p?’M and s an even positive integer as

t
above. Let E, denote the H(s +1) by H(s + 1) matrix (g _:,g)
where E is the G(s+1) by G(s+1) matrix given in the above

paragraph and t = s/2. Recall e =1 if p=1(mod4) ande=p if p=3
(mod 4). Finally let By(n)= B,(n;p*M), Ci(n)=Cs(n;p? M), and
Dy(n) = D,(n; p?, M). Then

a4 o (Cin) | eDy(n)\,._
EiB.(mET" = E(F 05— ET
_ (E(Cs(n)+e’Ds(n))E" | 0 )
0 | E(Ci(n)—€e°D,(n))E™"
= Bi(n) (say).

Further Bn)= BYn;p? M) is a diagonal matrix for all n with
(n,N)=1.

ProoF: The first equality is Theorem 5.15 above and the second
just follows by matrix multiplication. The fact that Bi(n) is diagonal
for (n, N) =1 follows from the definition of E.

LEMMA 5.30: Fix p, M, and N = p*M. Let E, denote the H X H
matrix given on the next page

where E' is the G — 1 by G — 1 matrix given in the paragraph preceed-
ing Lemma 5.29 above. Let E} denote the H X H matrix Ei=

Ez(_g 2) where A is the G X G matrix given in Lemma 2.27.

Finally let By(n) = By(n; p*, M), Ci(n)= Cyn)p*, M), and Dy(n)=
Di(n; p*, M).
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10 0
0
) E 0
E2= 0
10 ...0
0
0 ) E'
0
Then E,By(n)E;}™
cn)+dn) 0 ... 0
0
. E'(Ci(n)+ Dyn)E" 0
0
- cn)—dn) 0 ... 0
0
0 © E'(Ci(n)— Dy(n))E'"
0

= B{(n) (say). Bi(n) = By(n; p?, M) is a diagonal matrix for all n with
(n,N)=1.

Proor: The first statement follows from Lemma 5.24 and matrix
multiplication. The second follows from the definition of E'.
As in Atkin and Lehner [1] we define an operator R, (twisting by

the quadratic character (E)) acting on modular forms by: if f(r)=

S a(n) exp(nr), then f | R, (1) = (lﬁ))a(n) exp(nr). Here (;’—)) is the
Legendre Symbol. Then we have

THEOREM 5.31: Fix an odd prime p, a positive integer M prime to p
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and a positive even integer s. Let N = p’M. In the notation of Lemma
5.29 let

fi(r) *
x 0
° fr(T)
ZO Bi(n; p?, M) exp(nr) =
gi(7) *
0 £ .
'gr(T)

where r=G(s+1) and G = H(p*M)[2. * indicates that we are not

interested in any off diagonal entries. Then

(a) All f; and g; are cusp forms of weight 2+ s on I'y(N).

(b) All f; and g; are eigen forms for all the Hecke Operators Ty.(n)
with (n, N)=1.

(c) All non-zero f; and g; are normalized so that their first (not zeroth)
Fourier coefficient is 1. If p>3 or M is divisible by 2 or a
prime =2 (mod 3), then all f; and g; are non-zero.

(d) If p=1(4), theng,=f; | R, foralli=1,...,r.

() If p=3(4), let g—f;| R, ===, a(n) exp(nr). Then a(n)=0 if
pX n

(f) The off diagonal entries, if any, can have non-zero nth Fourier
coefficients only for n with (n, N) > 1.

REMARK 5.32: It is possible to modify the f; and g; in Theorem 5.31
so that in addition to satisfying all the above properties, they are also
eigen forms for the W,, and Wq, q l M operators. See Proposition 9.9
below. We will determine the subspace of the space of cusp forms
S;+2(N) of weight s +2 on I'y(N) spanned by {fi,...,f,g1,..., &} in
section 8 below.

Proor oF THEOREM 5.31:

(a): This follows from Proposition 5.19 and the definition of the
B/(n) in Lemma 5.29.

(b): This follows from the Proposition on p. 138 of [3] which states
that for (n, N)=1, B,(n) gives the action of the Hecke Operator
T,.»(n) on the entries of the matrix series X5 _q B,(m) exp(mr). So
Bi(n) gives the action of T,.»(n) on the entries of the matrix series
S o Bim) exp(m7). By Lemma 5.29, B!(n) is a diagonal matrix, so
the f; and g; are eigen forms.
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(c): B'(1) gives the action of the identity operator T, (1), so if
fi#0, T.o(1)f; = f; and the corresponding entry of B)(1) must be 1, i.e.
the first Fourier coeflicient of f; must be 1 and similarly for the g
Now assume p >3 or M is divisible by 2 or by a prime =2 (mod 3).
Then by Proposition 5.12, the only units in any order of level p>M are
+1. Consider the Brandt Matrix B,(1; p%, M). A left ideal I of some
order /# of level p2M contains an element a with N(a) = N(I) if and
only if I is in the same class as ./ (this is easy, see e.g. Corollary 1.20
of [15]). Thus letting B(1; p?>, M) = (b§(1)) as in (4.2) we see that the
only possible non-zero blocks are the diagonal blocks bj(1). By (4.1)
and the above bi(1) =3(Xi(1)+ X‘(=1)). Now X,(1) is the identity
matrix and so is X;(—1) since s is even. Thus all bj(1) are identity
matrices and so is B(1; p%, M) and hence also B(1; p2, M). Thus the
first Fourier coefficient of all f; and g; is 1, in particular they are all
non-zero.

(d): If p =1 (mod 4), it follows from Proposition 5.16 and Theorem

5.18 that (Ci(n)— €'Dy(n)) = (—)(Cs(n)+ €'D;(n)) for all n =0 and so

n
p
g =f:| R, for all i.
(e): If p =3 (mod 4), we know only (by Theorem 5.18) that (Cy(n) —

e‘Ds(n))=(g)(Cs(n)+e’Ds(n)) for all n with p4¥ n and thus we

obtain a weaker version of (d).
(f): B(n) is a diagonal matrix for all n with (n, N)=1.

REMARK 5.33: If p =3 and M is not divisible by 2 nor by a prime
=2 (mod 3), then by Proposition 5.12 the unit group of 0;=I;'[; is
either =1 or is isomorphic to the cyclic group of 6th roots of unity. If
U(0)) = £1, then as in the proof of part (c) above, the corresponding
block b{(1) of B,(1) always diagonalizes (in fact is) the identity
matrix. If |U(0;)| = 6, then since a unit of order six of O; is not in the
center of 9, its eigen values when represented as an element of
GL(2,C) are ¢ and & where ¢ is a primitive 6th root of unity. Now

diagonalizing X (g §5>, we obtain a matrix whose diagonal entries
are £71g% = ¢4 for j=0,...,s. Recall that s is an even positive

6 if s +4j=0 (mod 6)

0 otherwise so

integer. Now Doy (£ = {

1/6 =§_, (&4 = {(1) l(ftﬂ:;/izsém(’d 3). Thus if u is a unit of order 6

of O, the s+1 by s+ 1 matrix b;(1) = 1/6 Z§-, X’(u*) diagonalizes to

S

a matrix with 2 [ 6] + 1 ones on the diagonal and all other entries zero.
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Hence if precisely u of the orders 0,i=1,...,G have |U(0;)| =6,
then the H(s + 1) by H(s + 1) diagonal matrix B(1), which acts as the

identity matrix on fi,..., fs, &1, - - -, & has 2u (s -2 [%]) Zeros on its

diagonal and the remaining diagonal entries are 1’s. Hence 2u <s -

2[%]) of the fi,...,fs, &1,--., 8 are identically zero. Knowing the

dimension of Si(p2M), Theorem 8.2 below allows us to calculate wu.
Now we give the analogue of Theorem 5.31 for the case of forms of
weight 2, i.e. s =0.

THEOREM 5.34: Fix an odd prime p and a positive integer M prime
to p. Let N = p*M. In the notation of Lemma 5.30 let

" fo(r)

o

Bi(n; p*, M) =
n=0
gl(T) *
0 %

"g6(7)

where G =3H(p>M). * indicates that we are not interested in any off

diagonal entries. Then

(a) All f; and g; are modular forms of weight 2 on I'(N).

(b) f, is the transform of the zeta function of orders of level p*M of U. It
is not a cusp form. g, is a non-cusp form which is linearly
independent from f,.

©) f2--- fo 82 - - .» &G are all cusp forms.

(d) All f; and g; are eigen forms for all the Hecke Operators T,(n),
(n,N)=1.

(e) All f; and g; are normalized so that their first (not zeroth) Fourier
coefficient is 1.

(f) If p=1(mod 4),thengi=f;|R, foralli=1,...,G.

(g) If p=3(mod 4), let gi—f; | R, =33%-0 a(n) exp(nt). Then a(n)=0
ifpt n

(h) The off diagonal entries, if any, can have non-zero nth Fourier
coefficients only for n with (n, N)> 1.

REMARK 5.35: The content of Remark 5.32 also applies to the f; and
& in Theorem 5.34.
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PrROOF OF THEOREM 5.34:

(a): This follows from Proposition 5.19.

(b): fi(7) = Z5-0(c(n) + d(n)) exp(nt) is by definition the transform
of the zeta function. Its zeroth Fourier coefficient c(0) + d(0) is the mass
for orders of level p2M and is clearly non-zero — an explicit formula for
the mass is given by Theorem 3.4 above. Thus f,(7) is not a cusp form. By
part (f) or (g) of the present theorem, the nth Fourier coefficient of g,(7)

is (:’—’) times the nth Fourier coefficient of fi(7) for all n with p t n.

Hence the Fourier coefficients of g,(7) are too large for it to be a cusp
form. The zeroth Fourier coefficient of g,(7) is ¢(0) — d(0) which is zero
by Lemma 5.23, so g,(7) is linearly independent from f,(7).

(c): This follows from Proposition 5.27.

(d): This is the same as the proof of part (b) of Theorem 5.31 above.

(e): As in the proof of part (c) of Theorem 5.31 By(1) must be a
diagonal matrix. The entry b;(1) is just 1/e; times the number of units
of 0, i.e. b;(1) =1 always, so By(1) is the identity matrix.

): If p=1 (mod4), it follows from Remark 5.25 that (Cy(n)—

Dy(n)) = (%)(C(,(n)+D6(n)) for all n and so g =f; I R, for all i=

1,...,G.
(g): If p =3 (mod 4), we know only (by Remark 5.25) that (Cy(n) —

Dy(n)) = (;)'l)(C o(n)+ Dy(n)) for all n with p ¥ n and thus we obtain a

weaker version of (f).
(h): The Bi(n; p%, M) are diagonal matrices for (n, N) = 1.

6. The trace of the Hecke Operators and the Brandt Matrices

We now know how to construct some cusp forms on Iy(N),
N = p>M. The main question now becomes: what cusp forms have we
in fact constructed? The answer is given in section 8 and is a
consequence of a certain trace identity (see section 7) involving the
traces of the Hecke Operators and the traces of the Brandt Matrices.
In this section we reproduce the needed trace formulas. First we
introduce some notation.

Let Si(N, x) denote the space of cusp forms of weight k with
character y on I'o(N). x is a character on (Z/N)*. We will write
Sk(N) = Si(N, x) if x is the trivial character. We denote by try, Ti(n)
the trace of the Hecke Operator T(n) acting on the space Si(N, x).
Again we write tryT(n) if x is trivial.
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Hijikata in [5] has computed the traces of the Hecke Operators in a
quite general setting. We copy here the case of his Theorem (see [5],
p. 57) which we require.

THEOREM 6.1: (Hijikata): Let k be an even integer =2. Let x be an
even character mod N with x(n)=Ilgn x¢(n) where x, is a character
mod ¢’, r=ord,N). Then for (n,N)=1 we have

tI'N’XTk(n) =—Es a(S) 2]‘ b(S, f) HIIN C’(S, fa ()

+ 8(x) deg Te(n) + 3(\/2)% N T a+116 JT xVm

1 if k=2 and x is trivial

where 8(x) = {0 otherwise

k2= if n is a perfect square

n
and 8(Vn) = {0 otherwise

The meaning of s, a(s), f, b(s, f) and c'(s, f, €) are given as follows:

Let s run over all integers such that s>—4n is not a positive
non-square. Hence by some positive integer t and square free negative
integer m, s*—4n has one of the following forms which we classify
into the cases (p), (h), (el), or (e23) as follows:

0 ....(p)

N5 ... (h)
sP=dn =1, 0>m=1(mod4) ....(el) }(e)

tY4m 0>m=2,3(mod4) ....(e23)

Let #(X)= ®,(X)=X?*-5sX +n and let x and y be the roots in C
of @(X)=0. Corresponding to the classification of s put

|x|n*¥1(4N)! ()]
a(s) =) Min{lx|,|y[Hp*"lx=y[" ....()
12" = y*Dx-y) ....(e)

For each fixed s, corresponding to its classification, let f run over
the following set

f={1’2""’N ....(p)
all positive divisors of ¢ ....(h) and (e)
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1 ....(p
and let b(s, f) = [1/2<p((s2—4n)”2/f) e (h)
h(s*—4n/fHw(s*—4nlf) ....(e)

where ¢ is Euler’s function, h(d) (resp. w(d)) denotes the class
number of locally principal ideals (resp. 1/2 the cardinality of the unit
group) of the order of Q(Vd) with discriminant d.

For a pair (s, f) fixed and a prime divisor € of N, let » = ord,(N),
p=ordef) and put A={x€Z l d(x)=0 (mod ¢"*%), 2x=s
(mod ¢°)} and B ={x € A| ®(x)=0 (mod ¢"***")}. Let A= A(s, f, €)
(resp. B=B(s,f, £)) be a complete set of representatives of A
(resp. B) mod ¢***. Put

> xe(x) if s2—4n/f?#0 (mod ¢)

X

S xel(x)+ S xely) if s2—4n/f2=0 (mod ¢)

Put Cl(ss f, [) =

where x runs over all elements of A(s, f, ¢) and y runs over all s - z,
z € B(s, f, £).

REMARK 6.2: Our Ti(n) differ from Hijikata’s by a factor of n?!.

Z, Z
PROPOSITION 6.3: Let O, = (Né( Z:) and keep the notation of
Theorem 6.1 above. Assume x, is the trivial character. Then the
corresponding c'(s, f, €) is just the number of inequivalent mod U (O,)
optimal embeddings of an order of discriminant s®>— 4n/f? into O,.

ProOF: See section 2 of Hijikata [5].

For p an odd prime and y, the trivial character, it will be con-
venient to tabulate the corresponding c'(s, f, p). We write ci(s, f, p), to
denote c'(s, f, p) in the case y, is trivial and we are considering the
group I'o(N) with u = ord,(N). Then using Hijikata’s Theorem 6.1 (or
the tables on pp. 692-693 of [13]), we obtain the following tables.

Let p be an odd prime. Let u be a quadratic non-residue mod p. Set
A = s*—4n/f*mod U(Z,)>. Then the values of ci(s, f,p), for p =1
and 2 are given by the tables on the next page.

The trace formula for the Hecke operator T, (n) given by Theorem
6.1 is very similar to the trace formula for the Brandt matrix B_»(n)
given by Theorem 4.12. In fact the notation used in both theorems is
identical. The difference between c(s, f, €) and c'(s, f, £) is explained in
Remark 6.4.



216 A. Pizer [40]

ci(s, f,ph 2 2 2
C{(S, f’ p)2

N
<
+
N
]
+

C;(S, f’ p)l 0 2 2
ci(s, f,p) 0 p p+1
A=p™'g wherea=1oru

m=0 m=1 m>1

—

2 2
p+1 p+1

Ci(S, f, p)]
ci(s, f,p)

(=]

REMARK 6.4: Let © be an order of level p?M. Then according to
Theorem 4.12, c¢(s, f, £) is the number of inequivalent mod U(0,)
optimal embeddings of an order of discriminant s’ — 4n/f? into O,. But
for ¢#p, Op= ( Ze Zf) by definition where N = p2M. Thus letting
NZ, Z,

n =ord,(N) we have c(s,f, €)= ci(s, f, €), if €#p by Proposition
6.3. If ¢ =p, the value of c(s,f,p) is given by Theorem 2.7. We
tabulate those values here.

Let p be an odd prime. Let u be a quadratic non-residue mod p. Set
A =s*>—4n/f*mod U(Z,)*. Then the value of the c(s, f, p) appearing
in Theorem 4.12 is given by the table

p+1 if A=p orpu
c(s,f,p)=12 if A=p2u
0 otherwise
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7. The Trace Identity
We are now able to state the important

THEOREM 7.1 (The Trace Identity): Let p be an odd prime and let
M be a positive integer prime to p. Let N = p>M and let k be an even
integer =2. Then for all n >0, (n, N) =1 we have

2tr,2p Ti(n) — 2tr,p Ti(n) — tr By _o(n; p*, M)

. (1 + (g)) deg To(n) if k=2

7.1 0 if k>2

= ; P(n) trpp2 Ti(n)

where the sum is over all the p — 1 characters  of (Z|p)*.

REMARK 7.2: Note that in the sum we are taking the trace of T,(n)
on Si(pM, ¢ and since ¢’ is an even character, S;(pM, ) is (in
general) non zero. Also note that *()? is the trivial character, so that
if f(r)=2%.,a(m)exp(nt) is in S.(pM,¢?, then g(7)=
S=_; (n)a(n) exp(nr) is in Sy (p2M) (see [17], Proposition 3.64).

PrROOF OF THEOREM 7.1: The above formulas for tr,yTi(n),
tr,uTi(n), trBio(n; p?>, M), and tr,y,2Ti(n) all involve summations
over the same index set. We will show that the equality (7.1) holds
almost term by term. For simplicity we write M =11,y €.

First consider the deg T\ (n) terms. These do not occur in trB;_,(n)
and occur in trg,Ti(n) only if k=2 and y is the trivial character.
Hence the contribution of the deg T»(n) terms to the L.H.S. (left hand

side) of (7.1) is 2 deg To(n)— 2 deg Tx(n) + (1 + (g)) deg Ty(n). Since

Y2 is trivial if and only if ¢ is trivial or ¢ = <E>, the contribution of
the deg T»(n) terms to the R.H.S. (right hand side) of (7.1) is also

(1 + (%)) deg Tx(n).

Next we consider the ‘mass’ terms, i.e. those with 8(\/;). They
occur only if n is a perfect square. Their contribution to the L.H.S. of
(7.1 is
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k=1 k—1
2= M ﬂ,(” 110 (1 +1/p)~275- M ﬂ, (1+1/¢)- p(1+1/p)

k Mﬂ(l+l/() (p? —1)— Mﬂ(lﬂlf) P*-1

while the contribution to the R.H.S. of (7.1) is

2 s =ty H (1+1/6) - p(1+ 1/p)p*(V'n)

_k; 7
=5 M M{(Hl/f)-(pﬂ); PY(n)y(n)

k-1
= M [ a+10-@* -1

Next we consider the case where s is fixed and s?—4n =0. Then
@(X) = (X — s/2)%. The contribution to 2tr,2y Ti(n) is

S| . k21 1 R !
2[_ 2" ™™ f2=1 ﬂ@ st g)]
) oo 0]

since in this case c'(s, f, ) is independent of f. The contribution to
—2tr,,MTk(n) is

_2[ nt l(4171-’\'1) =1 (ﬂM c'(s.f, [)]
=2 ([ n(3) I1 cits.f. 0.2

The contribution to trB,_»(n) is zero (since A =0), so the total

contribution to the L.H.S. of (7.1) is _U nt?1 n cis, f, €), - (p—1).

M

2

The contribution to trpy 2 Ti(n) is

Isl  uiz-1

M‘z

1 ,
4p_M !—h!l C(S,f,{)

\_/&,.
It

= %nk& 1 ‘1‘ H ci(s,f, ()u'zt/!z(S/Z)
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since again in this case c'(s, f, €) is independent of f. Thus the total
contribution to the R.H.S of (7.1) is

_m ki2-1 ' 2 T
( $ne 11 c(s,f,f)y)gw(slz)w(m

= —l%' pk2! U ci(s, f, €), - (p — 1) since n = (s/2).
‘M

Now we consider the remaining terms, those classified into the
cases (h) and (e). Note that for these terms, once we fix s and f, the
a(s) and b(s, f) are independent of which particular trace formulas
they occur in. Note also that in case (h), A = s>—4n/f* is a square, so
c(s, f, p) = 0 always (by the table in section 6), and it does not matter
that we have not written down the contribution of the (h) terms in the
formula for trB,_(n; p>M) in Theorem 4.12 - they always contribute
nothing. Similarly by Remark 6.4, c'(s, f, )= c(s, f, O)=ci(s, f, €).
for all primes ¢ which divide M and hence these are also independent
of which particular trace formula they occur in. Thus if we fix s and f,
to show that the corresponding contribution to the L.H.S. and R.H.S.
of (7.1) are equal, we need only prove that

2C;(S,f,P)2_2Ci(S,f,p)l + C(S,f, p)

(7.2) = %: P(n)c'(s, f, P

where the ci(s, f,p);, i =1 or 2 and c(s, f, p) have been defined above
and we write c'(s,f,p), to denote the c'(s,f,p) occuring in the
formula for tr,p,2Ti(n). In fact with the exception of the last case
below, this is exactly what we will do. We shorten ci(s, f, p), to ¢,
ci(s, f,ph to ci, ¢(s,f,p) to ¢ and c'(s, f, p)y2 to cjz.

Case (1): s’—4n=w is a non-residue modp. Then P(X)=
2_
(X - sfr - £20
and c are all zero so (7.2) holds.
Case (2): s*—4n =d? (mod p) where d is a unit mod p. Then any f
must be a unit mod p. Fix one. From the tables in section 6 we find
that ¢3 =2, ci =2, and ¢ = 0. Hence the contribution to the L.H.S. of

(7.2) is zero. 4P (X)=4X’—sX +n)=Q2X —s5)*—d? (modp) has

has no solution mod p. Hence for any f, ¢5, ci, ¢,

t —
roots ——mod p. Thus by Theorem 6.1, cj>= (/12<S ; d> + w2<£2—d>.
. + - —d*
Letting a= std and b =2 d ab =2 d =n (modp) and the

2 2 4
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contribution to the R.H.S. of (7.2) is

% dab)(y(a) + y(b)) = % (¥(ab™) + ¢(a”'b)) = 0.

Case (3): p l s2—4n/f* but p® ¥ s®—4n/f’. From the tables we find
¢3=0, ci=1, and ¢ = p + 1. Hence the contribution to the L.H.S. of
(7.2)is p—1. 2&(X) = (2X — 5)*— (s>—4n) =0 has only the solution
s/2mod p™** and no solution mod p*** where p =ord,(f). Hence
cp=y*s/2) and the contribution to the R.H.S. of (7.2) is
S, b(PA(sI2) ==, P(n)P(n) =p - 1.

Case (4): (s>~ 4n)/f*= p"a where a is a unit mod p and r = 3. From
the tables we find c5=p + 1, ¢ =2, and ¢ = 0. Hence the contribution
to the L.H.S of (7.2) is 2(p — 1). We also find that in Theorem 6.1,
A(s, f, p) ={s/2} and B(s, f, p) ={s/2}, so ciz=2¢4(s/2). Thus the con-
tribution to the R.H.S. of (7.2) is =, ¢:(n)2¢*(s/2) = 2(p — 1).

Case (5): (s>~ 4n)/f*= p*d where d is a non-residue mod p. From
the tables we find c;=p, ¢; =2, and ¢ = 2. Hence the contribution to
the L.H.S. of (7.2) is 2(p —1). Again we find A(s, f,p)={s/2} and
B(s, f, p) ={s/2}, so cj2=2y*(s/2) and the contribution to the R.H.S.
of (7.2) is 2, ¥(n)2y*(s/2) =2(p — 1).

Case (6): p | (s?—4n) and (s>—4n)/f2= w is a non-residue mod p.
From the tables we find c;=cj=c =0, so the contribution to the
L.H.S. of (7.2) is zero. But (X)=0 (mod p"**), p = ord,(f) has no
solutions, so the contribution to the R.H.S. of (7.2) is also zero.

Case (7): The only cases remaining to be checked are (i) (s®>—
4n)/f*= p*d® for some unit d modp and (i) p | (s?—4n) and (s>—
4n)/f*= d? for some unit d mod p. These two cases always occur in
pairs, so we consider at the same time the pair of cases: (s2—4n)/f* =
p?d* and (s*-4n)/(pf)*=d* for some unit dmodp. Since
ci(s, pf, €), = ci(s, f, €), for all primes ¢# p, in order to show that
these cases give the same contribution to the L.H.S. and R.H.S. of
(7.1) it suffices to prove that

2(b(s, pf)ci(s, pf, p)+ b(s, fci(s, f,p)2)
—2(b(s, pf)ci(s, pf, ph + b(s, f)ci(s, f, )

(7.3) +b(s, pf)c(s, pf, p) + b(s, f)c(s, f, p)

= Ew‘, P(n)(b(s, pf)ci(s, pf, p)+ b(s, fici(s, f, p)).

From the tables we find ci(s,pf,p)=2, ci(s,f,p)=p+2,
ci(s, pf,pi =2, ci(s,f,ph=2 and c(s, pf,p)=c(s,f,p)=0. Hence
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the L.H.S. of (7.3) is 2pb(s, f). On the other hand it is easy to see that
c (s, pf, p) = ci(s, f, p) = 2¢4(s/2), so that the right hand side of (7.3)
is

% B(n)2¢7(sI2)(b(s, pf) + b(s, /) = 2(p — 1)(b(s, pf) + b(s, f).

Thus to show equality in (7.3) we must prove that

(7.4 b(s, f)=(p — Db(s, pf)

We must consider two cases: if s2—4n =1 is a perfect square,
then b(s,f)=1/2¢(t/f) and b(s, pf) = 1/2¢(t/pf).

But (p, ;tf—) =1 assumption, so b(s, f) = 112¢(t/f) = 112¢((p)(t/pf)) =

1/12(p — De(t/pf) = (p — 1)b(s, pf) which establishes the equality in
(7.4). If s*—4n is not a perfect square, then b(s, f) = h(a1)/w(s) and
b(s, pf) = h(e2)/w(2;) where o, is the order in the imaginary quadratic
number field Q(V'sZ—4n) with disc(e;) = (s2—4n)/p?f* and ¢, is the
unique suborder of ¢, of index p. But then by Lemma 4.16

h(a) _ p (1 - {A} l)M where A = s?>—4n/p%f* and

w(e) pJp/ w(s)
Al _[d_ i =(-1b
{p}_{p}—l, so again b(s, f) = (p — Db(s, pf).

This completes the proof of Theorem 7.1.

8. Representing modular forms by theta series

In this section we determine the subspace of Si(p>M) generated by
theta series. First if ¢ is a primitive character of (Z/sZ)*, we denote
by R, the operator ‘twisting by ¢’, i.e. if f(7) =25_; a(n) exp(n7), then
f|R, == ¢(n)a(n) exp(nr). Here exp(nt)=e>". If f& SN, x),
then f | R, € Si(N’, xp?) where N’ is the least common multiple of
N, cond(¢)?, and cond(¢) cond(x) (see Proposition 3.64 of [17]). Let
S%N, x) denote the subspace of S;(N, x) generated by newforms (see
[1] and [92]). We denote by Si(N, x)* (respectively SN, x)®) the
space {fIR,|f € Si(N, x) (respectively SYN, x))}. Note that
Si(N, x)? C Si(N’, x¢?).
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LeEMMA 8.1: Let the notation be as above. Then for (m, N') =1 the
trace of T(m) on SY(N, x)° considered as a subspace of S,(N', x¢?) is
equal to ¢(m) times the trace of T(m) on SN, x).

Proor: Let x=exp(r). If q(r)=2 c(n)x" € Si(M, ¢), then
q l T(m)=2 c'(n)x" where ¢'(n)=2;|mn ¥(a)a*'c(mn/a® (see p.
80 of [17] or p. 287 of [9a]). Hence if f€& SYUN, x), we have
(f | R) | T(m) = o(m)(f | T(m)| R,). Thus if f =S a(n)x" is a new-
form in SY(N, x) normalized so that a(1)=1 and (m, N’)=1, then
(f | R)| T(m) = o(m)(a(m)f) | R,) = a(m)o(m)(f | R,). Let fi,....f:
be a basis of SYN, x) consisting of normalized newforms. Then
fi| Ry, ... f. | R, are linearly independent since f; | R,# 0 and distinct
newforms have different eigenvalues for T(m) for infinitely many
m - see Theorem 5 of [9a]. Thus they form a basis of SYN, x) and the
lemma follows.

Note that Lemma 8.1 is not necessarily true if we replace S§ by S..

For example consider Si(p) and let ¢ = (17> If f € Sk(1), then g(r) =

f(p7) € Si(p), but g, R, =0. Since Si(p) is generated by newforms
and the oldforms f(7) and f(pr) where f ranges over a basis of eigen
forms in S(1), we see dim Sy(p)*® = dim S;(p) — dim S, (1) # dim Si(p)
in general, so that the Lemma fails for T(1). I wish to thank H.
Hijikata for pointing out to me my blindness on this point.

We can now state our main

THEOREM 8.2: Let p be an odd prime and M a positive integer prime
to p. Let k be an even integer =2. Let ¢ denote the quadratic

character (;) If k =2, then in the notation of Theorem 5.34 we have

285,(p>M) = (fT))D . . . B s(1)) D (gD . . . D{gs(7))
@8.1)
B3S(pM)D Y S:(pM, y»)* D %{ 8(Mla)(S3pa)® @ 25%a)*)

3
Ye#El
while if k > 2, we have in the notation of Theorem 5.31

28i(p°M) = {fi(t)D - . . DTN D(gI(THD . . . D(&r(7))
(8.2)
D3SpM)D 2 SpM, ) P % 8(Mla)(Sipa)® @ 2S5%(a)*)

y#1
Here the first sum is over all the p —3 characters § of (Z|pZ)* with Y
non-trivial and the second sum is over all positive divisors of M.
8(MJa) denotes the number of positive divisors of M/a. The isomor-
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phisms in (8.1) and (8.2) are as modules for the Hecke Algebra H
generated by the Hecke Operators Ti(n) with (n,pM)=1 acting on
Si(p>M). Finally 2S,(p>M) = Sy(p>M) D Sc(p*M), etc. and (f(7)) e.g.
denotes the 1-dimensional complex vector space generated by f)().
Also note that r = G(k —1).

Proor: First note that by Proposition 3.64 of [17] Si(pM, ¢?)?,
Si(pa)®, and Si(a)? are all contained in S;(p*M).

As H is a semi-simple ring we need only check (see e.g. Theorem 3,
p. 458 of [9]) that the trace of the transformations induced by the
Ti(n), (n,pM) =1 on both sides of (8.1) and (8.2) are equal. By the
proof of part (d) of Theorem 5.34 (resp. part (b) of Theorem 5.31) the
action of Ti(n) for k=2 on {fH()HD...P{s(r)) D
(@ATHD ... D{(gs(7)) (resp. for k>2 on (fi())D... D7) D
(g1(THP ... P{g.(7))) is given by the diagonal matrix

E(Cl(n)+ Din)E"! l 0

Bi(n) =
0 I E'(Cy(n)— Dy(n)E"!

(resp. Bi_»(n; p?, M)) where the notation is as in Lemma 5.30 (resp.
Lemma 5.29). By Theorem 5 of [1], Si(pM) =2, 6(Mla)(S}(pa) D
2S%a)) and it follows from Lemma 8.1 that ¢(n) times the trace of
T(n) on Si(pM) equals the trace of T(n) on Z,u 8(M/a)(S¥pa)® P
25%a)®). It is implicit in [9a], see p. 294, that if y? > 1, hence the
conductor cond(y?) = p, then S, (pM, ¢?) =2, 8(M/a)Sipa, ¥*) and
so by Lemma 8.1 ¢(n) times the trace of T(n) on Si(pM, ), ¥*># 1,
is equal to the trace of T(n) on Si(pM, ¢»)*. Now for k>2 (7.1)
provides exactly the equality of traces that is required to establish
(8.2). For k =2, we need to find the trace of Bj(n). Now Lemma 5.30
and Remark 5.25 imply that trBy(n) =

trBo(n) — (1+ (g))(c(n)-F d(n)). But c(n)+d(n) is the nth Fourier

coefficient of the zeta function and we have c(n)+ d(n) = deg T(n)
for all (n, pM) =1 (since c(€)+ d(£) = ¢+ 1 = deg T(¢) for all primes
¢, ¥ pM - see Shimura [17], p. 63 and Eichler [3], p. 94). Thus again
(7.1) provides exactly the equality of traces that is required to
establish (8.1).

ReEMARK 8.3: In section 10 below we determine explicitly the fi(7)
and g;(7) occurring in (8.1) and (8.2) in the case M = 1. In general
Theorem 8.2 is only strong enough to determine the nth Fourier
coefficients of f;(7) and g;(7) for (n, pM) = 1.
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LEMMA 8.4: Si(pM, y?)* = Si(pM, ¥»* as modules for the Hecke
Algebra H generated by T,(n), (n,pM)=1.

ProoF: We let complex conjugation act on modular forms by
acting on their Fourier coefficients: if f(7) =25-, a(n) exp(nt), then
f(r) =32, Mexp(m-) where of course a is the complex conjugate
of a. Then since f(r)=f(—7), it is easy to see that f—f maps
S«(pM, x) onto Sy(pM, %), hence it maps Si(pM, y»* onto Si(pM, )"
As Si(pM, y?) is invgriant under the Hecke operators T..x(n),
(n,pM) =1, Si(pM, *" is invariant under the Hecke Operators Ty(n),
(n,pM) =1 (of course we have already implicitly used this fact in
proving Theorem 8.2). It is now obvious that f — f is an isomorphism
of Su(pM, ¥?)* onto Si(pM, ¢»)* as H-modules.

PRrOPOSITION 8.5: All new forms in Sy(p*M) that are neither obtained
from forms in Si(pM, )" for ¢ a non-trivial character of (Z/p)* nor

from forms is S;(M)® where ¢ is the quadratic character (—) occur

among the f;(v) and g;(7) of Theorem 8.2 In particular, they all come
from theta series.

Proor: By Theorem 8.2 and Lemma 8.4 we have
285(p’M) = {(f()D ... (f(1)D{(&(THD ... D& (7))
D 3S(pM)D2 % Si(pM, 4)*)
wi#1

@ ; 8(M/a)(S%pa)® & 2S%(a)*) where
alM

| = {? g : ; ;, r = G(k — 1), ¢ is the quadratic character (;) and the
sum I, is over a set of representatives of the pairs {, §}, where
Y2 # 1. This shows immediately that all new forms in S,(p>M) that are
not contained in any Si(pM, (/12)'7‘ where # 1 must occur among the
fi(r) or gi(r).

Following Atkin we make the following

DEFINITION 8.6: A new form in S (N) is said to be primitive if it
can not be obtained from a form in S;(M, x), M < N by twisting by a
suitable character (x~'?).

REMARK 8.7: Note that our usage of the word ‘primitive’ is different
from the recent usage of the word ‘primitive’ by Serre. By ‘primitive’,
Serre just means a new form.



[49] Theta series and modular forms of level p2M 225

COROLLARY 8.8: All primitive forms in Sy(p*M), p odd, p+ M are
linear combinations of theta series. More precisely, they occur among
the fi(7) and g;(r) of Theorem 8.2.

Proor: This follows immediately from Proposition 8.5.

9. The W operators

In this section we define and study certain operators that act on the
space of theta series appearing in Theorem 8.2. They are analogous to
the W-operators of Atkin-Lehner (see [1]); in fact we conjecture that
they essentially are the W-operators —see Conjecture 9.24 below.

As always let p be an odd prime; M a positive integer prime to p
and @ an order of level p?M. Let I, . . ., Iy be a set of representatives
of all the distinct left O-ideal classes, H = H(p’M). Let J be a
two-sided 0-ideal (two-sided means that @ is both the left and right
order of J or equivalently, J = 08 for some B € Jy with 7108 = 0).
Then JI,, ..., JIy is also a set of representatives of all the distinct left
O-ideal classes. Thus JI; = I ;o; for some permutation € = e(J) of the
indices 1,..., H and some elements «; = a;(J) € ¥*. Note that the «;
are well defined upto multiplication on the right by an element of
U(0;) where 0; is the right order of I

DEFINITION 9.1: Let s be an even integer =0 and maintain the
notation as above. We define an H(s + 1) by H(s + 1) matrix W,(J) by
letting W,(J) = NW)™(py), 1 =i, j < H(p>M) where p; is the s + 1 by
s + 1 matrix

o {Xi(ai) if j=e(i)
7o otherwise.

PROPOSITION 9.2: Let J and L be any two two-sided O-ideals where

O is the order of level p*M. Then

(a) The product W.(J)B,(n), B,(n) = B,(n; p%, M) depends only on J,
not on the choice of a; used in Definition 9.1. Here B,(n) is defined
using the same set I, . . ., Iy of left O-ideal classes used to define
w.().

(b) W,(J) commutes with B,(n) for all n =0.

(©) W(HW(L) = W,(LJ).

(d) W,(J) is the identity matrix if J = Om, m € Q.
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PROOF:
(a): By (4.1), the ith, jth block of W,(J)B,(n) is

(N(J)”’zxi(a.-))<1/ei > Xﬁ(a)) =(1/e)N(I)™ 3 X'(aa)

where the sum is over all a € I7'L; with N(a) = nN(I;)/N (). But
Lo =JlLai', so N(I.s) = NO)NL)/N(«;) and « € I7'I = I T}’
with N(a)=nN(I)/N(I) if and only if aa; € I7'JI; with N(aa;) =
nN(J)N(I;)/IN(I;). Hence the ith,jth block of W.(J)By(n) is
(1/¢)N(J)™? 25 X(B) where the sum is over all g€ I;'JI; with
N(B)=nNU)NU;)/N(;) and so W.(J)B,(n) depends only on J.

(b): The ith,jth block of B,(n)W.(J) is (/e 2, Xia))
(N(J)™?X*(ax)) where k= €e7'(j) and the sum is over all « € I'I,
with N(a)=nNI)/N,). But I;'l; = 'Law)™'I; = ai'I7'JI, so the
ith, jth entry block of B.(n)W,(J) is (1/e.N(J)~" 325 X4(B) where the
sum is over all B €I;'JI; with N(B)=nNJ)N(L)/N(). Finally,
e, = e.\j = ¢ since JI; = I;a; implies that the right order 0; of JI; is
equal to a;'0.;a;, hence U(0)=U(O.;,) and e = e, for all i=
1,..., H. Thus taking into account the proof of part (a) above, part (b)
is proved.

(c): Let JI,=I.3a and LI =IB as in Definition 9.1. Then
(LI = Ly Beyri. Now W,(J)W,(L) has non-zero entry blocks only
for the (ith, pe(i)th) blocks and in these blocks the entries are
XY X {(Bew) = X {(Bewe)- Thus W, (LJ) = W,(J)Wi(L).

(d): Let J =0m, m € Q. Then N(J)?=m"*. Since € = €(J) is the
identity permutation and «; = m for all i, W,(J) consists of diagonal

blocks N(J)~2X"(m) = m“("(l)s ”‘l)) and (d) follows.

LEMMA 9.3: Fix p, M, and s as above. Let J be a fixed two-sided
O-ideal. Then W.(J) and the B.(n),(n, pM) =1 generate a com-
mutative semi-simple group.

Proor: By Theorem 2 on p. 106 of [3], the B,(n) generate a
commutative semi-simple ring. By Proposition 9.2 part (b), W,(J) and
the B;(n) generate a commutative ring. Thus we need only show that
W.(J) is a diagonalizable matrix. But this is obvious since X,(a),
a €U* is diagonalizable and a permutation matrix is diagonalizable
and W,(J) is composed of these two types of matrices.

The W,(J) act on theta series the same way the B,(n) do (see
Theorem 2.23 of [15)), i.e. W,(J) maps the ¢th, kth entry of the matrix
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series 25-9 Bs(n) exp(nt) to the ¢th, kth entry of the matrix series
S7-0 (W,(J)B,(n)) exp(nr). We unravel this action a bit. The ith, jth
block of 2.9 Bi(n)exp(nt) is 1/¢ £, Xi(a) exp(rN(a)N(I))/N(I}))
where the sum is over all @ € I7'I;. On the other hand by the proof of
part (a) of Proposition 9.2, the ith,jth block of
S-0 (W,(J)B,(n)) exp(nr) is

1/gN ()" ; X(B) exp(rN(B)N (I)/N(I)N (J))

where the sum is over all 8 € I;'JI. What is the relation between J,
I;'L, and I;'JL;? I;'L; and I7'JIL; are left Oj-ideals while J is a two
sided 0-ideal. We have to relate the 0-ideal J to the Oj-ideals. I; = Oy
and J=0a for some ¥,aEJy. Then 0;=5"'0y and $'Jy=
07 'ay=1J" (say) is a two sided Oj-ideal and I;'J =J'I;'. Thus
I;7'JI, = J'I;'I. We need to introduce the following notation. Let # be
an order of level p2M and I a left #-ideal. Then

9.1) O.(r) = ,SEQ, X'(a) exp(N(a)/N(I))

where the sum is over all a €I @;((7) is an s+ 1 by s+ 1 matrix
series all of whose entries are modular forms (cusp forms if s > 0) of
weight s+2 on I'W(N), N =p*M. Then thinking of W,(J) as an
operator on theta series we have

PROPOSITION 9.4: Let M be an order of level p>M and I a left
M-ideal. Let J be a two sided O-ideal and J' the two sided M-ideal
corresponding to J as above. Then W,(J) acts on @,,(t) as follows:
W,(J)(O.4(1)) = N(J)*O,,(7), i.e. the action of W,(J) is induced by
the ideal multiplication I+ J'I. Further W,(J) commutes with the
action of the Hecke Operators T;.,(n), (n, N)=1.

PrOOF: It is clear from the above discussion that the action of
W,(J) is as stated. The W,(J) commute with the Hecke Operators
since the action of the Hecke Operators is given by the Brandt
Matrices and the W,(J) commute with the Brandt Matrices.

Now we define operators analogous to the W-operators of Atkin
and Lehner. Let O be the ‘canonical’ order of level p?M given by
Definition 3.5 in the rational quaternion algebra % ramified precisely
; _Ov> €0, and m, = (;’y (1)) » = ordy(M)

for q l M. Let 7, = (a,) € Jy be given by a,=1if ¢#p and a, = m,.

at p andoo.Letvr,,=p(
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Similarly, let 7, = (a,) € Jy be given by a,=1 if ¢# q and a, = m,
Finally let J(p) = O#, and J(q) = O, for q l M. Now a left O-ideal I
is two sided if and only if I =0a, & =(a;) €Jy where a'0a =0
which if true if and only if az'0a, = O, for all £ <o, Then it follows
from 2.2 of [5] that J(q) is a two sided O-ideal for all g l M. Since 0,
is the unique order of level p? of A, (see Theorem 1.5), 7,'0,7, = 0,
and J(p) is also a two-sided O-ideal.

DEFINITION 9.5: In the above notation, let W,,,s= W.(J(p)) and
W,. = W.(J(q)) for q | M. _

If there is no possibility of confusion we will drop the s and write
W, and W,.

PROPOSITION 9.6: Fix s an even integer =0 and maintain the above
notation. Then
(a) W2=id and W2=id forq | M.
(b) W,,, the W,,, q l M, and the B,(n; p?, M) with (n, pM) =1 generate
a commutative semi-simple ring.

PRrROOF:

(a) This follows from Proposition 9.2 (d) as (J(p))’= Op? and
J(@))* = 0q*, v = ord,(M).

(b) It is clear that the #, and 7,, g l M commute with each other,
hence the J(p) and J(q) do and then by Proposition 9.2 (¢), so do the
W, and W,. Then (b) follows as in Lemma 9.3.

ReMARK 9.7: The properties of the W,, and Wq, qlM given in
Proposition 9.6 should be compared with the properties of the W-
operators of Atkin and Lehner (see [1]).

Let I,....Is, 8l,=Ig41,...,8Ic=L; be a complete set of
representatives of all the distinct left 0-ideal classes as in Definition
5.14. Recall that § is given by Definition 5.4. We need

LEMMA 9.8: With respect to the above set of ideal class represen-
tatives,

.F"

W, = if p=1 (mod 4)
0
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and W, = (H—“)) if p =3 (mod4) for some G(s +1) by G(s +1)

matrix V.

Proor: First consider the case p =1 (mod 4). Then it follows from
Definition 5.4 that O6p = J(p). Thus J(p)I;=I.gp for i=G and
J(P)iig=06pdl;=Ip for i=G by Lemma 5.5. Now Xi(p)=
(% . Ifs) and N(J(p))™*?= p~* and our result follows directly from
the definition of W, (J(p)). Now assume p=3 (mod4). From

Definition 5.4 we see that §, = (pov —ov). Recall that m, =

p (('; _°v>. Thus 38, = —8,m, which implies J(p)50 = §J(p)0

Also it is clear that J(p) is an ideal of positive character (since p =3
(mod 4)). Hence J(p)I; = I,;o; and J(p)liig = Iyi+ca; for some per-
mutation p of the indices 1,. .., G and some a; € A*. Thus we see from

the definition of W,(J(p)) that W,, = <X 3) for some G(s + 1) by
G(s +1) matrix V.

PROPOSITION 9.9: It is possible to modify the f; and g; of Theorems
5.31 and 5.34 so that in addition to satisfying all the properties listed
in those theorems, the f; and g; are also eigen forms for the W, and Wq,
q | M operators.

Prookr: This follows from Proposition 9.6 (b) and Lemma 9.8 since
it is clear that in Lemmas 5.29 and 5.30 we can simultaneously
diagonalize the W, and W,,, q | M along with the B;(n), (n,pM)=1.

The W, and W,, q | M induce linear transformations on the space

(D ... DF() D (g(T))D ... B{g,(7)) of cusp forms of weight

. . ._[2 ifs=0 _
s +2 appearing in Theorem 8.2. Here l—-{l #s>0 and r=
G(s+1). In the case of Wp, we can describe this action rather

explicitly.

THEOREM 9.10: Assume that as in Proposition 9.9, the f; and g; of
Theorems 5.31 and 5.34 are eigen forms for the W, and W, q l M.
Then the action of the W, operator is as follows: if p =1 (mod 4),
then W,(f)=f; and W,(g)=—g: if p=3 (mod4), then f; and g
always have the same eigen value under W,,, ie. W,,(f,-) = Af; if and
only if W,(g)) = Ag;. Here A = +1.
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Proor: First consider the case p =1 (mod 4). By Lemma 5.29 and
5.30, the action of W, on

fi(7)
f(7)

gi(7)

&:(1)

is given by the diagonal matrix E, VV‘,,E,‘1 if s >0 and by E{W,E;™" if
s =0. In both cases E; and E} have the block decomposition of the

form (f:' _5.) for some invertible G(s + 1) by G(s + 1) matrix F.
Hence by Lemma 9.8, E;W,E;' and E{W,E;™! both have the form

1 0

0 1

Now consider the case p =3 (mod 4). This works out the same as in
the case p=1 (mod4) except that by Lemma 9.8, E, W,,E.‘l and
S FVFE™! 0
E{W,E;{" both have the form ( 0 FVE
position 9.9 FVF™' is a diagonal matrix. Finally since Wf, =id, its

only eigen values are =1.

) where by Pro-

REMARK 9.11: Notice that in the case p =1 (mod 4), the f; and g;
appearing in Theorems 5.31 and 5.34 are automatically eigen forms
for the operator W,.

REMARK 9.12: It should be noted that while the W, and W,, g | M
induce linear transformations on the space

FND - .. DY) DB (@(T)D . . . Dlg(m)

. 2 ifS-—O )
(' {1 if s>0°" (s+1)
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appearing in Theorem 8.2, it is not clear that they induce linear
transformations on the subspace of Si(p*M), k = s +2 generated by
the fi(7) and g;(7). The reason for the difficulty is that the f; and g; are
not linearly independent—in fact they are not all distinct, see
Theorem 10.3 below. However we will show that the product
W, llymy W, is a linear transformation on the subspace of S,(p>M)
which is generated by theta series. In fact W, I,y W, = —E where E
is the canonical involution (see Corollary 9.23).

Recall that the canonical involution on Sy(N) is given by the matrix

E = ( I?I _(1)> The action on S;(N) (denoted by a vertical line l) is

given by

f | E(r) = (det E)**(N7)™%f(~1/Nr)
(9.2) = N—kIZT—kf(_ I/N’T)

DEFINITION 9.13: Let the notation be as in Definition 9.5. Put
L=J(p)J(q))...J(q,), where q,...,q, are all the distinct primes
dividing M. Put E, = E = W,(L).

Note that E = W,, gm Wq is an H(s + 1) by H(s + 1) matrix which
acts on the entries of the matrix series 25— B,(n; p2, M) exp(nr) by
sending the ¢th, kth entry of that matrix series to the £th, kth entry of
S%_o (E,Bs(n; p?, M)) exp(nt). Now let I be a left O-ideal. As in the
discussion preceeding Proposition 9.4, we see that E, acts on O1(7)
as follows: E, sends the ¢th, kth entry of O;(7) to the ¢th, kth entry
of N(L)™2@.;,(7). Note that if s =0, @(7) is just a single theta
series.

In order to show that E = — E, we need to translate some results in
Ogg’s book [10] into a co-ordinate free language. Let g(x) be a
positive definite quadratic form on a rational vector space V of even
dimension r=2k, i.e. q: V->Q such that q(Ax)= A2q(x) for x €
V,A € Q and {x, y)= q(x + y)— q(x) — q(x) is bilinear. We call (x, y)
the bilinear form associated to g. Note that (x, x) = 2q(x). A lattice I"
(free Z-submodule of V with I'®,Q = V) on V is said to be integral
with respect to q(x) if g(x) € Z for all x € I'. The dual of a lattice I,
denoted by I, is I"'={y € V l (x,y)E Z for all x €T'}. The level of I
is the least positive integer N such that Nq(x) € Z for all x € I"". Note
that choosing a basis e;,...,e, for I, A=((e,¢)) is a symmetric
integral matrix with even diagonal entries and the ‘level of I" is equal
to the classical level of A, i.e. the least positive integer N such that
NA™! is integral with even diagonal entries. Following Ogg (see [10],
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p. VI-10) we define for I' an integral lattice on V and x an element of
VRR, Or(r, x) =Z,er exp(q(y + x)7). Then we have

PROPOSITION 9.14:

> exp((y, x) = (y, y)/27)

2\ r2
9.3) @r(f,x)=(§) % >

where D is the discriminant of I.

ProoOF: This is just a co-ordinate free version of Proposition 23 of
[10], p. VI-10. Note that if I' has e,...,e, as a Z-basis, then
D= det((e;, e,-)).

We need a ‘nice’ set of generators for the set of homogeneous
‘spherical functions’ with respect to q(x). For the definition of
spherical see page VI-5 of [10]. Our set is given by

PROPOSITION 9.15: Let f(x) be a homogeneous polynomial function
of degree s on V Qo C. Polynomial means that if we choose a basis,
f(x) becomes a polynomial in the coefficients of the basis. Then f(x) is
spherical with respect to q(x) = 1/2(x, x) if and only if f(x) is a linear
combination of functions of the form (& x)* where £ €V Qo C and
& &€)=0.

Proor: See Theorem 18 on p. VI-6 of [10].

PROPOSITION 9.16: Let the notation be as above. Let £ €V ®QoC
with (£, £) =0 and let s be a non-negative integer. Then

;r (& v) exp(q(y)r)
4 =(ilt)™r* D" Y (£ v)* exp(—q(y)IT)

yEI

Proor: We mimic the proof of Theorem 19 of [10]. Let D, denote
the directional derivative,

(Df)(x) = lim L(zité;)_—f(x_)

Then D;(q(x)) =& x), D;({¢, x)) =0 and Dy({c, x)) = {c, £) where c is
any fixed constant. We apply D to the identity (9.3) obtaining
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> @mir) (¢ v + x)* exp(a(y + x)7)

yer

i\ 2
=(5) D 3 @mivn e expttn 1) v)i20.

T

Cancelling the (27i)°* and letting x = 0, we obtain (9.4).

We need to employ (9.4) in the case V=, q(x) = N(x)/N(I), and
I' = I where I is some left 0-ideal. Thus we need to determine I’ and
the discriminant of I. We do this in a series of lemmas.

LEMMA 9.17: Let @ be the canonical order of level p’M given in
Definition 3.5 in the quaternion algebra . Then the dual of O with
respect to the quadratic form N(x) is L™! where L is the ideal given in
Definition 9.13.

PrOOF: By the proof of Lemma 3.4 of Pizer [14], we need only

show that 0,=L,'=7,'0, = [7114_ ((1; _Ov> 0,. Choosing the obvious

. (1 0 _(pv 0 _(0 1) _(0 v)
basis e.—(o l)’ ez—(o —pv)’ &=\, 0,and ey= —pv 0

of 0, then f = m,'e;, fr=m;'e;, fy=m;"e,, and fy = 7, 'e; is a basis of
L;" and (e, f;) = tr(ef;) = £28; which establishes the result.

LEMMA 9.18: Let O be as in Lemma 9.17 and let I be a left O-ideal.
Then the dual of I with respect to the quadratic form N (x)/|N(I) is
given by I' = L™'I where L is as in Definition 9.13.

ProoF: The proof is identical to the proof of Lemma 3.5 of [14].
The final lemma we need is

LEMMA 9.19: Let the situation be as in Lemma 9.18 above. Then the
discriminant of I as a lattice on A with respect to the quadratic form
q(x) = N(x)/N() is given by disc(I) = p*M>.

ProoF: The proof is the same as the proof of Lemma 3.7 of [14].
Finally we are able to state

THEOREM 9.20: Let p be an odd prime and M a positive integer
prime to p. Let k be an even integer =2. Let O be the order of level
p*M given by Definition 3.5 and let L be the two sided O-ideal given in
Definition 9.13. Let ©x_»(r) be the matrix of theta series defined by
(9.1). Then the canonical involution E (acting on Si(N), N = p*M)



234 A. Pizer [58]

sends the ¢€th, kth entry of @ (1) to the ¢€th,kth entry of
—N-Slz@u,k_z(’r), where N =p2M

PRrOOF: Let s = k —2. By Proposition 9.15 and an argument similar
to that used in the proof of Theorem 2.14 of [15] any fixed entry of
O,,(7) is a linear combination of series of the form h(r)=
Tocr (& a) exp(tN(a)/N(I)) where (x,y)=NI)"'tr(x§) and &€
A ® Csatisfies (£, £) =0. Then

h | E(r) = N¥*(N7)™*h(~1/N7)

9.5 = N 2} (¢ a) exp(—N(a)/N(I)Nr).

On the other hand the corresponding (¢th, kth) entry of — N ~*?@y; (1)
is the same linear combination of series of the form

(9.6) - N~ Zu (¢, @) exp(TN(a)/N(LI))
By (9.4) and Lemmas 9.18 and 9.19, (9.6) equals
= N“%ijrPr*N" 3 (£ a) exp(~N(a)/N(LD7)

— Nk 21 (¢ a) exp(—N(a)/IN(I)N7)

which is equal to (9.5).

REMARK 9.21: Theorem 9.20 remains valid for any order . of level
p>M with the obvious changes. In particular, # = 7'07 for some
y € Jy so letting I be a left #-ideal, the canonical involution E sends
the ¢th, kth entry of @ ,_5(7) to the ¢th, kth entry of — N 2@, (1)
where L' = ¥7'L¥ is the two-sided .#-ideal that corresponds to L.

ReMArk 9.22: It follows from Remark 9.21 and the discussion
preceding Proposition 9.4 that the canonical involution sends the
¢th, kth entry of Eg_o By(n; p? M)exp(nr) to the ¢th, kth entry of
— 3 o (EBy(n; p, M)) exp(nr).

COROLLARY 9.23: As operators on the subspace of Si(p’M)
generated by the theta series f; and g; appearing in Theorem 8.2, we
have E=—E.
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Corollary 9.23 and Proposition 9.6 (and very little additional evi-
dence) induce us to make the

CONJECTURE 9.24: Let p be an odd prime and M a positive integer
prime to p. Then as operators on the subspace of Si(p2’M) generated
by the theta series f; and g; appearing in Theorem 8.2, we have
W,i2=—W, and W o= W, for all I M where W, and W,, q | M
and the W-operators of Atkin-Lehner.

Of course Corollary 9.23 proves the conjecture when M = 1.

REMARK 9.25: The analogue of Theorem 9.20 in the case of forms
of weight 2 and level p**'M, p ¥ M was proved by Pizer in [14]. It is
clear that the results of this section concerning the higher weight
cases and also the W,, and W,, can be easily transferred to the case
of level p**'M.

To conclude this section we now consider whether or not there are
any other interesting operators W.(J) other than the W,, and Wq,
q l M. We will find that there are some, but not many. Let ¥(0)=
{a € Jy , a~'0a = 0}. Then the mapping N¥(0) 3 ar—> 0a is clearly a
homomorphism from A (@) onto the group of all two-sided O-ideals.
The kernal is U(0). It follows that & (0)/U(0)Q* is isomorphic to the
group of two-sided O-ideals modulo ideals of the form Om, m € Q*.
By Proposition 9.2, we are interested in the structure of ¥(0)/U(0)Q*
and we have

PROPOSITION 9.26: N (0)/U(0)Q* = K X 11, m (Z](2)) where K is the
dihedral group of order 2(p +1).

PrROOF: Let N(0,) = {a €U}| aOx™' = 0,}. Then N(0)/U(O)Q* =
N(O)U(O) g =11, 1,m N(O)IU(O,)Q7% since N(O,) = U(O,)Q7% for all
¢+ pM. By the proof of Theorem 2.20 of [14], N(G,)/U(0,)Q% =
Z/(2) for all g , M and in fact N(O,) = U(0,)Q}; VU 7, ,U(0,)Q} for
q l M where m, is defined prior to Definition 9.5 above. We need now
only consider N(0,)/U(0,)Q5. As 0, is the unique order of level p* of
%, (see Theorem 1.5) a0,a™' =0, for all « €A, so N(G,)= UL
Let D be the (unique) maximal order of U,. Then A3/ U(D)Q; = Z/(2)

and if %, is identified as in (1.2), %X = U(D)Q% U <1(>) (1)) U(D)Q:.
Now U(D)Q;/U(0,)Q; = U(D)/U(G,) is a cyclic group of order p + 1
by Proposition 1.8.

If B € U(D) and B is its image in U(D)Q}/U(0,)Q%, then it is clear

(e.g. by Proposition 1.8) that <g z)> acts by conjugation on
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UD)Q:/U(0,)Q:  and (g (1))3(2 (1))*'=3-'. Thus K =

A;/A(0,)Q; is a semi-direct product of the group (= Z/(2)) generated
01
by (p 0) and the subgroup (= Z/(p + 1)) U(D)Q/U(6,)Qx.

By Proposition 9.26 the group of two-sided O-ideals modulo the
subgroup of ideals of the form Om,m € Q* is isomorphic to K X
M, M (ZI(2)). 1t is clear from the proof of Proposition 9.26 and the
definition of J(q) that J(q) for q lM correspond to the non-identity
element of Z/(2) in the copy to Z/(2) that comes from g. It is equally
clear that J(p) corresponds to the element of order 2 in the cyclic
subgroup U(D)Q;/U(0,)Q;. Thus the only interesting two-sided O-
ideals remaining are those corresponding to the elements of K. Thus
we have

PROPOSITION 9.27: There exists a set of operators which form a
dihedral group of order 2(p + 1) which act on the space of theta series

(D ... BE(D))B (gD . .. D{g.(7))

.2 ifs=0 .
(1—{1 ifs>0andr=G(s+l)> appearing in Theorem 8.2.

These operators commute with all the Hecke Operators T,.(n),
(n,pM) =1 and also with the operators Wq, q l M.

Proor: This follows from Lemma 9.3, Proposition 9.26, and the
above discussion.

REMARK 9.28: It would be interesting to identify this group of
operators independently of the theory of quaternion algebras.

10. The case of level p?

In this section we restrict our attention to the case of level p?, i.e.
we assume M = 1. Denote by SY(N) the space generated by the new
forms of weight k on I'y(N), see Atkin and Lehner [1]. Denote by
S%N)? the space of forms {f(dr) l f(r) € SYN)}. Then we have

ProprosiTION 10.1: Let p be an odd prime and let M = 1. Maintain
the notation as in Theorem 8.2 where we assume by Proposition 9.9
that all f;(v) and gi(7) are eigen forms for W,,. If k =2, then we have
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283 B S3P) = foA(D - . . DY(T) D (gATHD ... D
(10.1) (g6(T)) D Sp)* D2 ;} Sxp, ¥»)*
Pr#1

while if k > 2, we have

28Up") @ SiP) = (D ... DM B (D ... B
(10.2) @S2 D SHpy B2 5 Sulp, v
¥
$o#1

where r=G(k—1), G=12H(p)=p*—1/24if p=5and G=11if p =

3. In both cases ¢ is the quadratic character (;) and the sum % is
Ye#1

over a set of representatives of the pairs {¢, (/7}, ¥? # 1 of the charac-
ters of (Z|(p)*. The = in (10.1) and (10.2) is an isomorphism as
modules for the Hecke algebra H generated by T(n), (n,p) = 1.

Proor: It follows from Theorem S5 of Atkin-Lehner [1] that
Si(pH =3SU1) P 2SUp) D S?:(_PZ) and Si(p) =2S%1) D S¥p). Also by
Lemma 8.4 Si(p, ¥*)* = Si(p, ). Hence taking M = 1, (10.1) follows
from (8.1) and (10.2) follows from (8.2). The fact that H = p2—1/12

follows from Theorem 4.18.

ProposITION 10.2: Let W, denote the W,-operator of Atkin-Lehner
and maintain the notation and assumptions of Proposition 10.1. In
particular, the level is p®. Then for p =1 (mod 4) we have f; | W,=~f
and g | W, = g while for p=3 (mod4) we have f;| W, = \f; if and
only if g; I W, = Aigi. Here A; = =1.

PROOF: As the level is p?, W, is the canonical involution E and
W, = E, so by Corollary 9.23 W, = — W,. The proposition now follows
from Theorem 9.10.

THEOREM 10.3: Let N =p?, p an odd prime and maintain the
notation and assumptions of Proposition 10.1. Let H denote the
Hecke Algebra generated by the Ti(n),(n,p)=1. Assume p=1
(mod 4). Then we have
() a subset {f,,...,f,}, t =dim S)(p), of the f; appearing in (10.1) if

k=2 orin (10.2) if k>2 form a basis of a subspace of Si.(p?
which is H-isomorphic to SY(p).
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G) f,|W,=—f, fora=1,...,t
(iii) the gy, =f,|Rp....8,=f,|R» f, as in (i), are new forms in
S%p? and form a basis of SYp)® where ¢ is the quadratic

character (—) .
p

(iv) all other non-zero f; and g; (j&{iy, . . ., i,}) are new forms in S 0%
and each new form appearing in the set {f;, g; l JE&{ir, ..., ir}}
appears exactly twice.

Assume p =3 (mod 4). Then we have

() a subset {fi,....f 8- -8} pTVv= dim S%p) of the f; and g;
appearing in (10.1) if k =2 or in (10.2) if k >2 form a basis of a
subspace of Si(p?) which is H-isomorphic to SUp)

(ii") f,AIW =—fufora=1,..,u andg,AIW =—g forA=1,.

(iii') the g, = f,ll s -+ 8i, = iy IR,,, fii= g,,IR,,,.. =8, 'R are
all new forms in SY(p? and form a basis of S%p)® where ¢ is the

quadratic character (;)

(iv') all other non-zero f, and g, (n&{i,,..., i}, m&{j,...,j}) are
new forms in SY(p? and each new form appearing in the set
{f, &m I n&{iy, ..., i}, m&{j,...,J.}) appears exactly twice.

Proor: Following Atkin-Lehner we say that two forms h and A’ in
Si(L) are equivalent and we write h ~ h' if they are eigenforms for all
Tk(f) ¢4t L with the same eigen values. First we consider the case

=1 (mod4). If h is an eigen form in S%p), then by Lemmas 20 and
24 of [1], h is not equivalent to any other eigen form contained in the
L.H.S. of (10.1) or (10.2). Thus by (10.1) or (10.2), h must be
equivalent to a form in SYp)® or to some f; or g. By Theorem 6 of
[1], all eigen forms in S¥(p)® are new forms in SY(p?), so h must be
equivalent to some f; or g. But all g are eigen forms for all
Ti(€), ¢# p and for W,. Further if g;(7) = 27~ a(n) exp(nr), then by
Theorem 5.31 (d) or Theorem 5.34 (f), a(n)=0if p | n. Thus g | U, =
0 where U, is the U operator of Atkin-Lehner (see [1], p. 141). Thus
by Theorem 5 of [1], all the g; are new forms in S%(p?), so again by
Lemma 24 of [1], » must be equivalent to some f. Hence a subset
fi» - - - fi, of the f; appearing in (10.1) if k =2 or in (10.2) if k >2 form
a basis of a subspace of S;(p? which is H-isomorphic to S¥(p). This
proves (i). Part (ii) follows immediately from Proposition 10.2. Now
consider (iii). g, = f;, l R, by Theorem 5.31 (d) or Theorem 5.34 (f) and
they are new forms in S}(p?) as above. Since R, is just twisting by

o= (1—7), (iii) is clear. Now consider (iv). It follows from parts (i) and
(iii) that (10.1) and (10.2) yield
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252@2)5@% O 2 (2)B28(1)° B 2SUp)*
(10.3) @2% Si(p, ¥?)¥
#1

where A={2,...,G}—{iy,..., i} if k=2 and A=
{,...,r}={iy,..., i} if k>2. A new form in S¥(p? is just an eigen
form for all Ti(¢), ¢# p. Each new form in S%(p? occurs exactly
twice in the L.H.S. of (10.3) hence it occurs exactly twice in the
R.H.S. of (10.3) and this proves part (iv). Now consider the case p =3
(mod 4). The proof of (i) is exactly the same as the proof of part (i)
except that we can not say that h is not equivalent to some g;. Thus
we obtain a subset {f;, ..., fi, g, ..., &}, u+v=dim Si(p) which is
the basis of a subspace of S.(p? H-isomorphic to S¥(p). Consider
(ii'). By Theorem 5 of [1], f; | R, is a new form in Si(p?». By
Theorems 5.31 (e) or 5.34 (g), g, ~ f; I R,, so by Theorem 5 of [1],
g, = fi | R,. Now g; | R, ~ fi, 50 g I R, is not a new form in SY(p?).

Thus by Theorem 6 (ii) of [1], g, | W, = (71)&.] = —g, so by Pro-

position 10.2 f; | W, = — fi, also. Similarly for the other f; and g;. For
(iii'), we have already shown in (ii’) that g =f I R, etc. are all new
forms in SY(p? and the rest of (iii’) is clear. The proof of (iv') is
exactly the same as the proof of part (iv).

We now determine the old forms occurring among the f; and g of
Theorem 10.1.

THEOREM 10.4: Let N =p?, p an odd prime and maintain the
notation and assumptions of Theorem 10.3. Then the subset of old
forms occurring among the f; and g is precisely {h(1)—
A @)p*?h(pr) | h(r) a new form in SY(p)}. Here h(r)| W}, = X'(p)h(7)
where W, is the W,-operator acting on Si(p). Note that A'(p) = =1.
More precisely if p =1 (mod 4), then every f,(7) in part (i) of Theorem
10.3 is of the form f,(r)= h(r)— A'(p)p"*h(p7) for some new form
h(r) in S¥p) and conversely. If p=3(4), every f,(r) and g ()
occurring in part (') of Theorem 10.3 is of the above form and
conversely.

PrOOF: Let d(7) be a form occurring in part (i) or (i) of Theorem
10.3. Then d(7) is equivalent to some new form h(7) in S¥(p), so by
Theorem 5 of [1], d(7) = ah(7) + bh(p7) for some a, b € C. As the first
Fourier coefficient of d(7) is 1 (by Theorem 5.31 (c) or Theorem 5.34
(e)) and the first Fourier coefficient of h() is also 1 (by definition), we
see that a = 1. Equation 5.1 on page 149 of [1] shows that the eigen
vectors for W, in the space generated by h(7) and h(p7) are c(h(r) =
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p**h(p7)), c € C* and c(h(7) = p“*h(p7)) has eigen value +A'(p). Note
that our ‘k’ is twice Atkin and Lehner’s ‘k’. As d(7) is an eigen form
for W,, we must have d(r)=h(r)*+p**h(pr) and we need only
determine the correct sign. But by Theorem 10.3 parts (ii) and (ii"), we
know that d l W, = —d, hence =A'(p) = —1, so the correct choice of
sign is —A'(p).

REMARK 10.5: Theorems 10.3 and 10.4 effectively determine all the
entries of the diagonalized Brandt matrix series
-0 BAn; p?, 1) exp(nr) appearing in Theorems 5.31 and 5.34 in the
case N = p? where we can and do assume by Proposition 9.9 and 10.2
that the diagonal entries are also eigen forms for W, = —W,. If s =0,
i.e. if the weight is 2, the diagonal entries consist of the following: the
zeta function fi(7), a non cusp form, for orders of level p? i.e.

2_
fi(r) = Z5-0 b(n) exp(nt) where b(0)=p121 is the mass and b(n)

is the number of integral left 0-ideals of norm n, @ an order of level

p%; another non cusp form, the twist of fi(r) by (;) gi(n)=
h R (%)b(n)exp(m-); the forms h(r)—A'(p)ph(pt) where h(7)

varies over all new forms of level p in S%(p) and h(r)l W,=X(T)W,
where W), is the W,-operator on I'y(p) (A, = *1); also each new form

of level p%in SY(p)*, ¢ = (;)—), appears once; and finally each new form

in S%p? that is not contained in any S(p, ¥ or S,(1)® for any
character ¢ of (Z/p)* -i.e. each primitive form in the terminology of
Definition 8.6-appears exactly twice. Note here that of course
S»(1) = {0}. In the case s >0, i.e. the weight k = s +2>2, the story is
also the same. In this case all diagonal entries are cusp forms so the

zeta function and its twist by the quadratic character ¢ = (;) do not

occur. Also if p =3, some of the diagonal entries may be zero.
Otherwise we get exactly analogous diagonal entries in the case of
weight k > 2 as in the case of weight 2 — we just replace 2 everywhere
above by k (note that the old forms we obtain are h(r)—
A'(p)p“*h(pr) where h(r) ranges over all new forms in SY(p)).

REMARK 10.6: Parts (iv) and (iv') of Theorem 10.3 shows that
certain explicit new forms appear with ‘multiplicity’ 2 when we
diagonalize the Brandt matrix series Zj-o B(n;p?; 1) exp(nr). This
may be related to the result of Lebesse and Langlands (see [7]) which
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shows that a ‘multiplicity one theorem’ for the representation theory
fails to hold for certain ‘inner forms’, which come from quaternion
algebras, of SL(2).
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