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UNICITY OF THE LIE PRODUCT

Sebastian J. van Strien

1. Statement of the result

For a C” manifold M, ¥(M) denotes the linear space of C~
vectorfields on M. Let y: ¥(M) X ¥(M)—> X(M) be a bilinear opera-
tor, defined for every n dimensional manifold M. This operator is
called natural if for every smooth open embedding f: N> M the
following diagram commutes:

E(M)x X(M)— x> (M)

lftx!t J *

Z(N)XZ(N)—x—>Z(n)

where M, N are C” manifolds and f* is the composition ¥ (M) —
X (N)) —(f—_l)—> Z(N), r the restriction operator, i.e. f*X(x)=
df(x)" (X (f(x))) for X € F(M). In this note I shall prove that the
Lie-product ([X,Y]=X-Y-Y-X for X,Y € ¥(M)) is charac-
terised by this property:

THEOREM: Let x be a bilinear natural operator in the above sense,
then there exists a constant A ER such that (X, Y)=A-[X, Y], for
all X, Y € X(M).

Palais and others [3], [4], [5] prove analogous results for operations
on differential forms. Peetre [6] has a similar characterisation of
linear (not bilinear) differential operators. The formal techniques are
similar to those in [7]. I am indebted to my supervisor Prof. Floris
Takens, for suggesting the problem and for his encouragement.
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2. The proof

The naturality of y implies that it is a local operator, i.e. for U
open in M

x(X, Y)| U = x(X|U, Y|U).

Furthermore if U,VCM,U,V diffeomorphic and x(X,Y)=
A-[X,Y] for some constant and all X,Y € X(U), then also
x(X,Y)=2A-[X,Y] for all X,Y € (V). Therefore I may assume
M =R" It is sufficient to prove

x(X, Y)0) =2 -[X, Y]0), VX, Y € ZR"),

because y commutes with translations. Of course naturality implies
0y Fsex(X, Y)(0) = x(f«X, f+ Y )(0)

for every diffeomorphism f and every X, Y € Z(R").

The main step in the proof is x(X, Y)(0) = x(j'X(0), j'Y (0))(0).
(Where, for s €N, j*X(p) is the polynomial vectorfield of degree s
corresponding to the s-jet of X in p, that is, the first s terms of the
Taylor expansion of X in p.) In lemma 1 I use naturality to prove this
for polynomial vectorfields. In lemmas 2 and 3 this is shown for
arbitrary smooth vectorfields, by proving x(X, Y)(0) =0 if X(p) or
Y (p) has in p =0 a zero of sufficiently high order.

In lemma 4 I show that there exist constants y,,.. ., y4 such that:

X(X, Y)(0) = y1- VxY (0) + 72 V¥ X(0) + 5 - ((div Y)(0)) - X(0)
+ 74 ((div X)(0)) - Y (0).

aY; 9

(WhererY S X G e HX= SXom Y=3 "ax)

In these lemmas I use the naturality property, but only with affine
diffeomorphisms f in equation (1).

Finally in the proof of the theorem one needs non-linear
diffeomorphisms f in (1) to show that the constants vy,, ..., y4 satisfy
Y1="7, ¥3= v4=0; i.e.: x(X, Y) = yX, Y].
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LEMMA 1: For monomial vectorfields

X(x4, .. X)) =X, .. x50 aax,-’
Y(x1,...,x)=x51... x5 e
x(X, Y)0)=0if £ a;+3ZB;#1.
PROOF: Let
x(X, Y)0) = x (x‘," . aixi,x{’l X a‘;) ()

Ii]
=¢ | +--+¢
Vaxilo " 9x,

Define a diffeomorphism by @&(x)= A - x, A#0. Then
P X =\ X, P Y =2y,
hence, using (1),
Du(X(X, Y)) = (P4 X, D4 Y) = A2 y(X,Y).

However, the left side at 0 is equal to A - x(X, Y)(0). This proves the
lemma.

LEMMA 2: For X a C* vectorfield, there exists a C* vectorfield X
and sequences p; -0, q,—0 such that: (1) X | U =(X —j*X(ps)) ] U,
U, a neighbourhood of p.. (2) X I V,=0, V, a neighbourhood of q.

ProOF: In fact lemmas 2 and 3 use a classical theorem of E. Borel
and a technique of J. Peetre [6]. Take for example p;=

1/s,0,...,0), g, = —p,. Define a smooth function «: R" - R such that

_ [ 1for |x| <3}
a(x)= {o for [x| = 1.

and X, = X — j*X (ps), for every s €N. Choose €, > 0 so small that

1 1
§_+_1+€s+l<;—€s
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so that
"a (=) X" <27 fori=1,...,s—1;
1l = sup| D'f(x)].
i
Then

X=Fa (2%,

s eS
converges and has the desired properties.
LEMMA 3: Forall X, Y € Z(R")

x(X, Y)(0) = x(i'X(0), j' Y (0))(0).

Proor: This lemma can also be immediately deduced from Peetre
[6], because X —» x(X, Y) is a local linear operator. But for the sake of
completeness an elementary proof will be given here. Take X, Y as in
lemma 2.

First I shall prove that for all p ER":

@ x(xxm V) @)= x (5w Y 0) @),

x(Z, Y)(0) =0 for every Z € x(R"), because x(Z, Y)(q,) =0 and q,—>
0. Furthermore for a =(ay,...,a,) x{...x% can be considered as a
polynomial in x,—ay, ..., X, — a, and using lemma 1:

d
Bx,- >

x (xt . xi e 1Y G)) @) = x (x1 . x 2 1Y (6) ()

for every t EN.
But, for every s, j'Y(p,) is a linear combination of

a a

0xi9xk 6_x,’]’k’l=l’2""’n'

Since any linear operator on a finite dimensional vectorspace is
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continuous:

a o 0 . a w 0
x (¥ oz LY e)) @) x (30 xe L Y @) ),

for s » . This together implies that the limit of:

a a, ad a a, a 7
x(xn'..-x.."g, Y)(p,) =X (xl'--.x.." o Y)(ps)

a a, d i1
+x(x1'...x.. x| Y(ps)) (Pps)
is
x (x. xi 2= 'Y (@) ©
1'-..Xn ax;’ .

Translation gives (2) for any p € R". Therefore:
XX, Y)ps) = x(X, Y)(ps) + xG' X (D), J'Y (p:))(ps)

which goes to x(j' X (0), j' Y (0))(0) for s — .
Compare this with the proof of the continuity of local operators on
vectorfields in [2], XVIII. 13. problem 1.

LEMMA 4: There are constants v, . . ., v4 such that

XX, Y)0) = y1 - VxY (0) + 72 - V¥X(0) + 3 - (div Y )(0)) - X (0)
+ 74+ ((div X)(0)) - Y(0).

PrOOF: Lemmas 1 and 3 imply that y can be written as:
3) XX, Y)(0) = (M(dY(0))) - X(0)+(Mx(dX(0))) - Y(0)

with M; linear maps from the (n X n)-matrices to the (n X n)-matrices.
The lemma is proved when I show that for certain constants vy, y;:

“4) M(A)=y,-A+vy;-Tr(A) - L

for all matrices A.
Now take Y(0)=0, A=dY(0), f(x)=L-x (L a linear invertible
map) and use naturality (1) in equation (3). This implies:

o) M(L'-A-Ly=L"- M(A)- L.



84 S.J. van Strien [6]

Let L run over all diagonal and permutation matrices and deduce
from (5) that there exist constants vy, ys; such that (4) is true for all
diagonal matrices A. Therefore (4) is true for all diagonalisable
matrices A. But every matrix is a sum of diagonalisable matrices. This
proves (4).

Proof of the theorem
a) The constants in lemma 4 satisfy y, = —vy,, y3 = —v,. That is:

© XX, Y) =1y [X, Y]+ y;- ((div Y)X - (div X)Y).

To show this, it is now sufficient to prove yx is antisymmetric, i.e. that
x(X, X)=0VYX E€XR").

If X(0) =0, then lemmas 1 and 3 give x(X, X)(0)=0.

If X(0)# 0 the flow-box theorem [1] gives a local diffeomorphism
¢:(R",0)—>(R", 0) such that

0+X(0) = % exx(X, X)(0) = x (aix %) ©)=0

and again x(X, X)(0) = 0.
b) For n =1:(div Y)X —(div X)Y =[X, Y] and we are done.
¢) If n=2: The operator (X, Y)—(div Y)X —(div X)Y does not
commute with every diffeomorphism ¢ and therefore y; = 0 in equation
(6). To see this, take
X =3 Xt 5o ¥ = D Vil X) o

i=a+l i

and a (non-measure preserving) local diffeomorphism ¢&;: (R%,0)—>
(R%0) such that div X(0)=div Y(0)=0, Y0)#0 and
div ((¢1)+X) # 0.

Define @(x1,. . ., X,) = (@1(X15 - - - Xa)y Xat15 - - .5 Xu), then div(pX)(0)
#0, div(p4 Y) =0, that is (div Y)X — (div X)Y does not commute with
this ¢.
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