@article{CM_1979__38_3_347_0,
author = {Globevnik, J.},
title = {Separability of analytic images of some {Banach} spaces},
journal = {Compositio Mathematica},
pages = {347--354},
year = {1979},
publisher = {Sijthoff et Noordhoff International Publishers},
volume = {38},
number = {3},
mrnumber = {535076},
zbl = {0406.46039},
language = {en},
url = {https://www.numdam.org/item/CM_1979__38_3_347_0/}
}
TY - JOUR AU - Globevnik, J. TI - Separability of analytic images of some Banach spaces JO - Compositio Mathematica PY - 1979 SP - 347 EP - 354 VL - 38 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - https://www.numdam.org/item/CM_1979__38_3_347_0/ LA - en ID - CM_1979__38_3_347_0 ER -
Globevnik, J. Separability of analytic images of some Banach spaces. Compositio Mathematica, Tome 38 (1979) no. 3, pp. 347-354. https://www.numdam.org/item/CM_1979__38_3_347_0/
[1] : Growth properties of pseudoconvex domains and domains of holomorphy in locally convex linear topological vector spaces. Math. Ann. 226 (1977) 229-236. | Zbl | MR
[2] : An extension of a theorem of Rosenthal on operators acting from 1∞(Γ). Studia Math. 57 (1976) 209-215. | Zbl
[3] : Un théoreme sur les opérateurs de 1∞(Γ). C. R. Acad. Sc. Paris, Ser A, 281 (1975) 967-969. | Zbl
[4] : On the range of analytic functions into a Banach space. Infinite Dim. Holomorphy Appl. (Matos Ed.) North Holland Math. Studies 12 (1977) pp. 201-209. | Zbl | MR
[5] : On the ranges of analytic maps in infinite dimensions. (To appear in Advances in Holomorphy, Barroso Ed., North Holland). | Zbl | MR
[6] : On the range of analytic maps on c0(Γ). (To appear in Boll. Un. Mat. Ital.)
[7] , : Functional Analysis and semi-groups. Amer. Math. Soc. Colloq. Publ. 31 (1957). | Zbl | MR
[8] : A counterexample in the Levi problem. Proc. Inf. Dim. Holomorphy. Lecture Notes in Math. 364, pp. 168-177, Springer 1974. | Zbl | MR
[9] : Some remarks on Banach valued polynomials on c0(A). Infinite Dim. Holomorphy Appl. (Matos Ed.) North Holland Math. Studies 12 (1977) pp. 231-238. | Zbl | MR
[10] , : Conditions under which all the bounded linear maps are compact. Math. Ann. 158 (1965) 1-5. | Zbl | MR
[11] : Topology on spaces of holomorphic mappings. Erg. der Math., Bd. 47, Springer 1969. | Zbl | MR
[12] : On relatively disjoint families of measures, with some applications to Banach space theory. Studia Math. 37 (1970) 13-16. | Zbl | MR





