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WEIGHTED INTERSECTION NUMBERS ON HILBERT
MODULAR SURFACES

Yue Lin Lawrence Tong*

§1. Introduction

In [5] Hirzebruch and Zagier computed the intersection numbers
among a series of curves T,,, m = 1,2, ... in the non-compact Hilbert
modular surface with quotient singularities X = H2/SL,(0) where O is
the ring of integers of Q(\/E) and p=1 (mod 4) is a prime. We
abbreviate their result in the form T, : T, = 2;er,n1, Hp(z) where
T.NT, is the set theoretical intersection and H,(z) counts the
multiplicity which may be a rational number if the intersection occurs
at a singular point. The H,(z) are given by number theoretical
functions and assuming mn is not a square the intersections are all
transversal.

In [10], [5] the authors also constructed a series of cusp forms
0% € S;,,(SLy(0)) for any even k +2=2 (the index k +2 is neces-
sitated by conventions in §2). By compactifying X at the cusps and
resolving the corresponding singularities there is a surface X, and the
cusp forms of weight 2 give rise to a series of forms (and cohomology
classes) of type (1,1) j(@®) on X with compact support in X. From
numerous evidences it is conjectured that, on X, j(0?) is the Poin-
caré dual of T;;, essentially the “finite part” of the completion of T,
inX A possible proof is sketched in [11]". This would imply that up to
some universal constants

L @ rj@D)=Tw -TY= 3 H/(2)

2€T,,NT,

+ (intersection at cusps).

* Supported by “Sonderforschungsbereich Theoretische Mathematik™ at Bonn Uni-
versity and N.S.F. grant MCS 75-07986.

! This has been proved by T. Oda: On modular forms associated with indefinite quadratic
forms of signature (2, n —2), Math. Ann. 231, 97-144 (1977).
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Now for k > 0 it is proved in [11] that the Petersson product of w*?
and 0%*? can be expressed as an analogous sum

—k+1
¢)) > Hy(2) p__::_+ (extra terms)

z€T,, NT,

where p, p are invariants at the intersection points. A natural question
then arises whether there is a geometric interpretation of this number
as in the case of weight 2 (cf. [11], p. 167 Remark 2).

In the language of distributions or currents, the duality of j(w®?)
and T, means that as currents these two give the same cohomology
class. Our purpose here is to show that by generalizing the formalism
of Shimura [8], one can introduce a vector bundle E on X for each
k +2, and we construct a canonical section s,, for E l T, so that the
corresponding current §,, that it defines is the exact analogy of T,, for
k =0. Namely with respect to a canonical metric w:E — E* and
modulo some constants

+1 —k+1
I (sms Sy = 2 H, S il ik g
Note that X, E and integrals should be taken here in the sense of
V-manifolds of Satake and Baily [1] because of the quotient sin-
gularities. The proof of the above relation makes use of the formalism
developed in [9].

Next the bundle E is extended to a bundle over X and j is
generalized to a map Si+2(SL»(0))—> H"'(X, E). The remaining ques-
tion is to show that over X j(w%*?) is in the same cohomology class as § 5
(cf. §5), which would lead to intersection interpretation of the Doi
Naganuma Lifting for forms of higher weight. By making use of a formal
computation of Zagier this is reduced to a question about the
cohomology of H"'(X, E).

I wish to thank Hirzebruch and Zagier for some discussions and
particularly to the latter for posing the question to me.

§2. Shimura’s formalism and the map j

k>0 will be a fixed even integer from here on. Let M be the
representation of GL(2,R) in the vector space V of k fold symmetric
tensors on R2. There exists a unique symmetric bilinear form P on V
(cf. [6], [8]) such that if (¥)* denotes the k fold symmetric power of
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the vector (¥) €ER?, then P in matrix form satisfies

0)) ()P = (uz — ow)* for all (3), (¥) ER.

This implies that

A3) M(c)'PM (o) = (det o)*P for all ¢ € GL(2,R).

In particular M (o) is an automorphism of the form P for all o €
SL,(R).

Now SL,(0) operates on H? the 2 fold product of the upper half
plane in the standard way, and it operates on V X V by the represen-
tation o - M () ® M(c’). The quotient (H*X V ® V)/SL,(0) has a
natural vector bundle structure over the surface X in the sense of [1]
(cf. [7]) which will be denoted by E. From the invariance of the
symmetric bilinear form P @ P under SLy(0) we get a canonical
metric u on the bundle E. n may be viewed equivalently as a bundle
isomorphism of E to its dual u:E S E*.

Henceforth we shall consider only the complexification of the
vector bundle E, still denoted by E, obtained by complexifying V. u
is naturally extended to a Hermitian metric on the complex bundle E
which is the same as extending it to a conjugate linear isomorphism
w: E— E*, These bundles are obviously holomorphic of rank (k + 1)°.

On X' let AP9(X’, C) denote the smooth forms of type (p, q). The
natural metric of X’ defines the Hodge * operator A”(X’,C)—
AYP¥9(X’ C). This coupled with i gives rise to a duality operator
£,:APY(X', E)—> A*P?79(X’, E*). Finally the trace or contraction map
E ® E*— 0y is denoted by (, ).

By generalizing the Shimura procedure we define a map
j 1 Ski2(SLA(0) > AY(X', E) as follows. (z1, z;) € H? being the stan-
dard coordinates, we put for simplicity z{® as the vector (§)* then for
o €EGL2,R), o = (%5

“ (0 °2)%d(0 ° 2) = det(0)J (0, 2)* (M (0)2{")dz

where J(o, z) = (cz + d)™". This implies that for F € S;.2(SL»(0)) and
n =F(zy, 2z Q z2¥dz, A dz;, then

n - (02,0'2) =M(0)QM(c') - n.

7 therefore descends to an E valued holomorphic 2 form on X. Now
to get forms of type (1, 1) and the map j, we imitate the recipe in [5].
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Let € be a fundamental unit for Q(Vp)e > 0> €', and put
) (F)(z1, z2) = F (€2, €' 7))z ® 2dz; A dZ,.

Note that €'z, is in the upper half plane and the above expression is
invariant under SL,(0). It is also possible to have jF symmetric in
Z1, 22 as in [5] by symmetrizing the right hand side. From (2) and (3) it
follows that

(2P ® 29, n(z° ® 24)) = (const.)ytys.
Therefore given F, G € Sy+2(SLA(0).

6) (JF, #,jG) = (const.)F(ezy, €'2,)G(ezy, €'Z,)
X yfysdxidy,dx,dy,

(zi = xi+V —1y) so that the pairing may be related to the Petersson
product.

§3. A canonocal section of E l T,

For our purpose the definition of the curves T, is most con-
veniently described in the form in [11] §6. Let

o ={A € My0) | A* = A%}

where A* = (det A)A™! and A’ has for entries the conjugates of A.
The group G = SLy(0)[{%x1} acts on &/ by B-A=B*AB'. Each
A € o with det A > 0 defines a curve in H? via its graph {(z, Az) I zE
H} and T, consists of the images in H*/SLy(0) of these graphs for all
A withdet A =m. Let A;i =1,...,r denote the representatives of the
SL,(0) equivalence classes of A with det A =m. and G; the isotropy
groups

) G:={BEG|B*AB' =+A}.

Then T, = U;., H/G; where the ith component is embedded by
z—(z, Aiz) and we denote it by Th,.

In this setting we define a canonical section of the bundle E over
the curve T, as follows. The bilinear pairing P of §2 may be
considered as a linear map P € Hom(V, V*) we have the composition
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(PM(A))'=M(A)'P'€Hom(V*, V)=V ® V, which is a fiber of
the bundle E. We now assign the constant real matrix M(A;)"'P™!
over the graph {(z, Aiz) | z€H} and we want to show that this
descends to a section of E | T%,. It amounts to showing the invariance
of M(A;)'P! under the isotropy group.

LEMMA: M(A;)"'P™! considered as a tensor in V® V is invariant
under G,.

PrOOF: Let B € G;, then the action M(B) @ M(B)(M(A)'P™) is
given in matrix products as M(B)M(A;) P 'M(B’). Using the
symmetry of P and the relation (3) we get

P'M(BY =M(B)'P".

And for B € SL,(0)B™!=B* so that the total product above is
M(B)M(A)'M(B’)*P . Finally by (7) this is just M(A;)'P "' which
proves the lemma.

We denote by si, the section of E IT,; defined above and s, the
totality of these in E | 1, Note that applying the operator u on s, we
get a section in E* | 1 i which in matrices has the formula

® w(sh)=PM(A)™".

§4. Intersections with coefficients in a bundle

We describe briefly how to compute the intersection numbers of
currents supported on submanifolds with coefficients in a vector
bundle. Let X" be an n-dim. complex manifold Y" and Y’ complex
submanifolds of codimensions s and r respectively so that r+s =n.
Let E—» X be a holomorphic vector bundle with sections sy €
I'(Y,E | v), sy €Y', E* | v?). These sections define currents Sy, §y:
where e.g. for any form with compact support ¢ € AZ'(X, E*)

) Svlol= L (sv. ¢ | v)EC.

§y represents a cohomology class in H**(X, E) which assuming Serre
duality is uniquely characterized by the equation (9) for all ¢ €
H(X, E*). §y is also the image of sy by the so called Gysin map
associated to the embedding i1y : Y - X. By taking smooth represen-
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tatives the cohomology classes §y and §y- have an “intersection
number” defined by [x (§y, §y) assuming the integrand has compact
support. Our purpose is to describe a method of computing this
number geometrically in terms of the data at points of the intersection
Z=Y NY'. We describe the method following [9] which uses Cech
cohomology, and this may be related to Dolbeault cohomology by the
standard isomorphism. In [9] X is compact, but it is readily extended
to cohomology classes with compact support on open X.
We express (9) by the commutative diagram

Gvr )

Sy €EHY(X,E*® NY) Hi(X, 2%)

(10) B4 C

(sy,") /
H'(YVEMy®0) — o prxayn”

Now suppose Z consists of isolated points, then there is a compatible
sequence of maps by the Grothendieck duality theory,

Sy

m i (sv) I
H'(X,E*®05()—>H'(Y,E*|y®ﬂ'y)—y-)HZ(Y,ﬂ?) 5 ¢

a e

(sy,)
Ext'(X; Oy, E*® 0%)—— Ext'(Y; 0z E* | y ® %) —— EXti(Y; 07, 0%)—— HY(Y, Ext'(07, 2%))
w
Sy

and our problem is to find a geometric description of the maps and
objects in the bottom row. For submanifolds with codimension
greater than one and for higher dimensional Z there is an analogous
sequence which requires the elaborate machinery developed in [9].
The Holomorphic Lefschetz formula also follows from such a
sequence where the coefficients are slightly more subtle.

For the application at hand, we need n =2, r =5 =1 and it is easy
to write down explicitly this sequence as follows: consider the com-
plex of length one (the dual Koszul complex)

50 vy
K(Y)—— KY(Y")

where K"(Y’) = Ox the structure sheaf, K 1(Y’) = Ly the line bundle
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of the divisor Y’ and dy- is given in each open set by multiplication by
the defining function of Y'. Suppose ¥ is a Stein covering of X and
consider é*(ou, K *) the bicomplex of Cech cochains with coefficients
in K*. The cohomology of the associated total complex is
Ext*(X; Oy, Ox). Now if we tensor K* with the coefficients 2% ® E*
then we are computing Ext*(X; Oy, 2% ® E*). In this group there is a
class §y- which goes to §y by the first vertical map in (11) and which
we describe in detail. Being of total degree 1, §y- has two components
($y)" + (By)'® with the superscripts indicating the bidegree. In an
open set U, € AU.

(§Y’)g'1 = (§Y')a ® dfa ® €q

where (5y), is an extension of sy € I'(Y'NU,, E* | y) to a section
over U, f, is the defining function for Y' in U, and e, is a generator
of Lyy,. In any overlap U, N Usz# ¢ it is easily checked that the
restrictions of (§y)%' and (§y)%' to Y’ N U, N U, agree (the transition
functions of df and e being inverse to each other on Y’). This implies
that the Cech coboundary (8(5%))).s vanishes on Y’ and so must be
equal to some dy(m). This term 7 gives (§}").s and we have con-
structed §y-. (Although we do not use it here, §y;— §}? = §y. is the first
vertical map in (11)).

Next we construct 1%. By restriction we have a chain map
K*(Y)->K*(Y") | y, and we need to find a chain map K*(Y')I Yy —>
K*(Z). It amounts to finding u in the commutative diagram

i* u

Ly' VLY'IY — Lz
oy l vy z
Ox " Oy L—,

Assuming the covering U sufficiently fine so that at most one point of
Z is contained in any open set, then if g, is a holomorphic function on

Y N U, defining the point z€ Z, u, = fg,‘, . We conclude that the
alY

component of type (0,1) in 1}§y evaluated on U,NY is

((§y)e R df.) | Yy ® f ‘I"Y €, Where ¢, is a basis of Lz|y,ny. Contracting

with the section sy we get ((Sy)e (5v)a)dfaiv ® fg‘l’ €,. The third
alY

horizontal arrow in bottom of (11) asserts that this (0, 1) component is
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all we need for the residue map. To an element h,e, €

r(UNY,2%QL;) the residue map assigns Resz{i.ﬂ} the usual

2mi g,
Cauchy residue of mg*“ at z. For our intersection number we get
therefore
12) Res, { 1 {(5v)e (sYr)a)dfaly}
2mi fﬂ'y

Combining with (10) and (11) we have derived the following result.

S Res, {L {(Sy)as By )a )dfaLy}

€2<¥ny’ 2 faly

PROPOSITION: f {8y, Sy =
X

REMARKS: 1. The Proposition is applicable to intersection with
higher multiplicities which will arise when one tries to deal with the
cusps.

2. When Z consists of isolated points an alternative method for
computing such intersection numbers is to use harmonic theory and
de Rham’s formulas representing these numbers in terms of Green’s
kernel of the Laplacian.

We now apply this formula to the bundle and sections constructed
earlier. Let Y =T, Y' =T, s\, = M(A)'P, u(si) = PM(B;)™! by
(8).

We will assume that mn is not a square so that the intersections are
transversal and Resl{f;—-i %}‘}1} =1, and the multiplicity of the inter-
section is just described by the functions H,(z) in §1. Note that at a
quotient singularity according to the definition of integrals on V
manifolds [1], [ (§y, §y;) is defined by lifting to a local uniformizing
neighborhood integrating and then dividing by the order of isotropy
group. We can take open sets in H X H as local uniformizing nbhd
where the curves and sections have the same local equations so that
the weight factor ((sy).,(Sy).) is unchanged by this procedure. For
weight 2 (k = 0) case this way of counting multiplicity is the same as
that employed in [5] where the numbers H,(z) are obtained. It only
remains to make explicit the weight factor.

13) (M(A)'P™',PM(B)™")
To compute this pairing we have by (3)

PM(B)™ = (de—tlB—)TM(B,-)‘P and det B, = n
]
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(13) is therefore given by
14) % Trace {M(A;)'P"'(M(B))'P)'} = ;1,; Trace {M(A;'B;)}

Now suppose p and p are the characteristic roots of the matrix Ai'B;,
then the characteristic roots of M(A;'B;) are the numbers p*~'p',1 =
0,...,k so that

k+1 _ =k+1

(15) Trace M(A7'B;) = ”————%—

Note that clearly % Trace (M(A7'B))) = % Trace (M(B;'A))) and in

terms of the characteristic roots p, p above the intersection is also
1 INk+D (l_ k+1

E 2 o= Combining these results with the above Proposition
p 1

and the results of Hirzebruch and Zagier stated in the Introduction we

have the formula

k+1 =k+1

> £ —f H@).
TNT, P

2€T, p—

16) [ Gwis=

§5. Extension of the bundle over X and relation of sm to modular
forms

We recall Hirzebruch’s procedure of resolving the cusp singulari-
ties described in [4, §2]. To avoid confusion we change his notations
slightly and the singular cusp is transformed to the point « in
HYG(N,U) (N=M, and U =V in notations of [4]). We want to
extend E - H?%G(N, U) to the nonsingular model. Now there is a
biholomorphic map defined by logarithms,

[
Y -U S;—> C¥N,

jez
and consider the vector bundle E,; = C?X V® V/y where N consists
of the matrices (§¢) and act on V ® V by the representation in §2. E,
is a locally constant vector bundle and its Chern classes vanish. On
the other hand C*/N is biholomorphic to the Stein manifold C* x C*

over which all vector bundles split into line bundles and are then
determined by their Chern classes (cf. [2]). It follows that E, is trivial
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and we can take the trivial V ® V bundle on Y to extend E;. Next
the infinite cyclic group U acts compatibly on Y* and H?/y and the
bundle Y* X V® V/y — Y*/y is the extension of E - H*G(N, U). In
this way we get a bundle still denoted by E over X which extends the
bundle E— X from §2. Note that since U acts with trivial isotropy
group on the curves S, of the resolution, the restriction E — S, is
trivial by the above description.
Following [3], [5], consider now the decomposition

H"X,E)=H"(X,E)® HM(X E)

where H!"'(X, E) is the image of H (X, E) induced by the inclusion
X->X, and H }.;}(X, E) is the orthogonal complement depending on
the cusp resolutions. Let §, be the closure of s, in E—>X, §. the
current it defines and §¢, its component in H (X, E). By analogy with
weight 2 case one expects that j(0%?) = 5§ in HV'(X, E). By duality
and the above decomposition, it suffices to show that

7 L (@), Fup) = L (%, %.0) Vo € HI'(X, E).

Concerning this equation there is the following.

PRroOPOSITION: The equation (17) holds for all ¢ = j(F) where F €
Si+2(SLy(0)).

The proof is just a translation of a formal argument due to Zagier.
The left hand side of (17) by (6) is

(const.) f wn (€21, €' 2)F (€21, €'22)yt ysdx dy,dx,dy;
By the proof of Theorem 6 of [11], this is just the sum

(18) (const.) >, F (€3, €' Aiz)J (Ai, 2)*?y*dxdy

i=1 Juc,

Next the right hand side of (17) is [r, (Sm, (iJ(F))ITm) since jF is
orthogonal to the curves of singularity resolutions. (cf. [7] p. 165). To
make explicit this integrand we have (¥,j(F ))ITm is a sum of
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F (ez, €' Aiz) multiplied by the vector valued form

piZ% ® (Aiz)Pdz A d(Az) = det(A)T (Aiz) P ufz®
® M(A)(z)Pdz A dz}

by (4). Finally (s,, nG® Q@ M(A)()¥)) in terms of products of
matrices is

Trace {M(A,)'P (PP (z**M(A)")P")'}

= Trace {Z®(z*¥)'P} = (const.)y*.

This proves (17) up to some universal constants for ¢ = j(F). To
complete the proof of (17) it is necessary to know the precise
structure of H!''(X, E). In the case of the trivial representation E = C
(weight 2) it is known that this group consists of the images of the
cusp forms and the first Chern class of X. Since the first Chern class
is orthogonal to j(w?2) but not to T, this explains the notation T
needed to have the Poincaré dual of j(w2) in §1. In the case of higher
weight it is not known if there are classes in H!"'(X, E) other than the
cusp forms. (cf. [3]).
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