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CONSTRUCTING FORMAL GROUPS. VIII:
FORMAL A-MODULES

Michiel Hazewinkel

1. Introduction

Let Q, be the p-adic integers, let K be a finite extension of Q, and let
A be the ring of integers of K. A formal A-module is, grosso modo, a
commutative one dimensional formal group which admits A as a ring
of endomorphisms. For a more precise definition c¢f. 2.1 below. For
some results concerning formal A-modules cf. [1], [2] and [6].

It is the purpose of the present note to use the techniques of [3] and
[5], cf. also [4], to construct a universal formal A-module, a universal
A-typical formal A-module and a universal strict isomorphism of
A-typical formal A-modules. For the notion of a A-typical formal
A-module, cf. 2.6 below. As corollaries one then obtains a number of
the results of [1], [2] and [6].

In particular we thus find a new proof that two formal A-modules
over A are (strictly) isomorphic iff their reductions over k, the residue
field of K, are (strictly) isomorphic.

As a matter of fact the techniques developed below also work in
the characteristic p >0 case. Thus we simultaneously obtain the
analogues of some of the results of [1], [2], [6] for the case of formal
A-modules where A is the ring of integers of a finite extension of
F,((1)), where F, is the field of p-elements.

All formal groups will be commutative and one dimensional; N
denotes the set of natural numbers {1,2,3,...}; Z stands for the
integers, Z, for the ring of p-adic integers,Q for the rational numbers
and Q, the p-adic numbers.

A will always be the ring of integers of a finite extension of Q, or
F,((t)), the field of Laurent series over F,. The quotient field of A is
denoted K, 7 is a uniformizing element of A and k = A/wA is the
residue field. We use g to denote the number of elements of k.
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278 M. Hazewinkel 21
2. Definitions, constructions and statement of main results.

2.1. DEFINITIONS. Let B € Alg,, the category of A-algebras. A
formal A-module over B is a formal group law F(X,Y) over B
together with a homomorphism of rings pr: A— Endp(F(X, Y)) such
that pr(a)= aX mod(degree 2) for all a € A. We shall also write
[al(X) for pr(a).

If B is torsion free (i.e. B> B®,Q is injective) and F(X, Y) is a
formal group over B, then there is at most one formal A-module
structure on F(X,Y), viz pp(a)=f""(af(X)) where f(X) is the
logarithm of F(X, Y). On the other hand if char(K) = p, then every
formal A-module over B € Alg, is somorphic to the additive formal
group G,(X,Y)=X +Y over B. In this case all the structure sits in
the structural morphism pr: A -» Endp(F(X, Y)).

Let (F(X, Y), pr), (G(X, Y), pg) be two formal A-modules over B.
A homomorphism of formal A-modules over B,
a(X):(F(X,Y),pr)=>(G(X,Y),pg) is a power series a(X)=
b, X +b,X?+---,b,€B such that a(F(X,Y))=G(a(X),a(Y)),
a([alp(X)) =[alg(a(X)); a(X) is an isomorphism if b, is a unit and «
is a strict isomorphism if b, = 1.

2.2. Let R be a ring, R[U]=R[U,, U,,...1. If f(X) is a power
series over R[U] and n €N we denote by f™(X) the power series
obtained from f(X) by replacing each U; with U7, i=1,2,.... Let
A[V], A[V;T], A[S] denote respectively the rings A[V,, V,,...],
AV, V.. T, Ty, .. .1, A[S2, S3,...]. Let p be the residue charac-
teristic of A. The three power series gyv(X), gvr(X), gs(X) over
respectively K[V], K[V; T] and K[S] are defined by the functional
equations

22.1) gv(X)=X + 2 gP(X7)
22.2) gvr(X)= X +3 T.X + +2 l;— 2164
2.2.3) gs(X)=X+ > SX'+> ‘—S;i X
i=2 i=1
inota
power of g

The first few terms are

(2.2.4) 2v(X) = X+V’ X+ (V;TV‘ Vz)xq’
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225) gur(X)=X + (%+ T,)X“

q q
+ (———V‘Y‘ JINTE Vs, Tz)X"2+- =
m m m

(226)  g(X)=X+$X7+ + S X+ B x5, x4

q
+ 8301 X% + (%‘52- + qu)X'*’ +..-

We now define

227 Gv(X,Y) =gV (gv(X)+gv(Y))
(2.2.8) Gv.r(X, Y) = gvr(gv(X) + gv(Y))
(2.2.9) Gs(X, Y) = g5'(gs(X) + gs(Y))

where if f(X)= X +r,X?+- - is a power series over R, then f™'(X)
denotes the inverse power series, i.e. f'(f(X)) = X = f(f '(X)). And
for all a € A we define

(2.2.10) [alv(X) = gV'(agv(X))
(2.2.11) [alv.r(X) = gv'r(agvr(X))
(2.2.12) [als(X) = g5'(ags(X))

2.3. INTEGRALITY THEOREMS: (i) The power series Gy(X,Y),
Gvr(X,Y) and Gs(X, Y) have their coefficients respectively in A[V],
A[V, T1, A[S]; (ii) For all a € A, the power series [a]v(X), [alv,r(X),
[als(X) have their coefficients respectively in A[V], A[V, T1, A[S].

2.4. CoROLLARY: Gy(X,Y), Gyr(X,Y) and Gs(X,Y) with the
structural homomorphisms py(a) = [alv(X), pv.r(a) = lalvr(X), ps =
(a) = [als(X) are formal A-modules.

2.5. UNIVERSALITY THEOREM: (Gs(X, Y), ps), where ps(a)=
[als(X), is a universal formal A-module.

IL.e. for every formal A-module (F(X, Y), pr) over B € Alg,, there is a
unique A-algebra homomorphism ¢:A[S]->B such that
@+Gs(X, Y)= F(X, Y) and ¢.[als(X) = pr(a) for all a € A. Here ¢,
means: “apply ¢ to the coefficients of the power series involved”.
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2.6. A-logarithms

Let (F(X, Y), pr) be a formal A-module over B € Alg,. Suppose
that B is A-torsion free, i.e. that B—>BX®4K is injective. Let
¢ : A[S]— B be the unique homomorphism taking (Gs(X, Y), ps) into
(F(X, Y), pr). Then ¢.gs(X) = f(X)E€ BR4KI[[X]] is a power series
such that F(X, Y)=f"'"(f(X) + f(Y)), [al(X) = f(af(X)) for all a €
A, and such that f(X)= X mod(degree 2). We shall call such a power
series an A-logarithm for (F(X, Y),pr). We have just seen that
A-logarithms always exist (if B is A-torsion free). They are also
unique because there are no nontrivial strict formal A-module
automorphisms of the additive formal A-module G,(X,Y)=X+Y,
[al(X) = aX over BR4K, as is easily checked.

2.7. A-typical formal A-modules

A formal A-module (F(X,Y),pr) over BE Alg, is said to be
A-typical if it is of the form F(X,Y)=¢:Gv(X,Y), pr(a)=
¢, [aly(X) for some homomorphism ¢: A[V]— B. It is then an im-
mediate consequence of the constructions of Gs(X, Y) and Gy(X, Y)
that (Gv(X, Y), pv), pv(a)=[alv(X), is a universal A-typical formal
A-module (given theorem 2.5).

2.8. THEOREM: Let B be A-torsion free. Then (F(X, Y), pr) is an
A-typical formal A-module if and only if its A-logarithm f(X) is of
the form

fX)=3 aX?, aEBR.K, a,=1
i=0

Let «k:A[V]— A[S] be the injective homomorphism defined by
k(V))=S,, and let A : A[V]— A[V, T] be the natural inclusion.

2.9. THEOREM: (i) The formal A-modules G(X, Y) and Gs(X, Y)
are strictly isomorphic; (i) The formal A-modules GV(X,Y) and
Gvr(X, Y) are strictly isomorphic.

2.10. CorOLLARY: Every formal A-module is isomorphic to an
A-typical one.

2.11. Let ayr(X) be the (unique) strict isomorphism from
GUX, Y) to Gyr(X, Y). Le. ayr(X) = gv'r(gv(X)).

2.12. THEOREM: The triple (GyW(X,Y), ayr(X), Gyvr(X,Y)) is
universal for triples consisting of two A-typical formal A-modules
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and a strict isomorphism between them over A-algebras B which are
A-torsion free.

There is also a triple (Gs(X,Y), asu(X), Gsu(X, Y)) which is
universal for triples of two formal A-modules and a strict isomor-
phism between them. The formal A-module Gsy(X, Y) over A[S; U]
is defined as follows

@121 gse(0=X+ 3 SX'+3JUX'+3 5 eyxe)
inoifizwer = =l
2.12.2) Gsu(X, ) = g5ls(gsu(X) + gsu(¥))

The strict isomorphism between Gsy(X,Y) and Gsy(X,Y) is
asu(X) = g5u(gs(X)).

2.13. Let (F(X,Y), pr) be a formal A-module over A itself. Let
w:A—>k=A/mA be the natural projection. The formal A-module
(wxF(X, Y), wypr) is called the reduction mod 7 of F(X, Y). We also
write (F*(X, Y), pt for (0xF(X, Y), wxpr).

2.14, THEOREM: (Lubin [6] in the case char(K)=0): Two formal
A-modules over A are (strictly) isomorphic if and only if their
reductions over A are (strictly) isomorphic.

2.15. REMARK: If the two formal A-modules over A are both
A-typical then they are (strictly) isomorphic if and only if their
reductions are equal.

3. Formulae

3.1. Some formulae
The following formulae are all proved rather easily, directly from
the definitions in 2.2. Write

o

(3.1.1) gv(X) = 20 a(V)X?, af(V)=1

©

(3.1.2) gvr(X) =2 ai(V, T)X?, ay(V,T)=1
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Then we have

Vi V?il . V?i‘+-~+i,_l
(3.1.3) a(V)y= Y o

i =i ™

Vili—l

G.14)  a(V)= ao(V)%+ a,(V)V—§1+ et (V)

(B.1.5) a(V, T)= a(V)+ a(V)T¥ '+ - -+ a(V)TL, + a V)T,
3.2. We define for all i,j=1.

G2l  Yy=a(VT{-TV{), Zj=a(VT}- T,V

The symbols Y§”, Z{¢” then have the usual meaning, i.e. Y{ =
w_1( V'q'qu’+l - Tqr Vq'+l)

3.3. LEMMA:

q’l i .
a"( V T) 2 an- l( V T) 'V—'— + z a”—i—i( V) Yi’lq"-'_l) + Tn
ij=1i+j=n

V?n_'
™

Zani (VD) ==+ 3 aiAVZF 4T,
i=1 ijziiti=n

Proor: That the two expressions on the right are equal is obvious
from the definitions of Z;; and Y (because Z; + Z; = Y; + Y;). We
have according to (3.1.4) and (3.1.5)

a(V, T) = ax(V) + S ani( V)T
=

n-1 X
=7 'V, + > 7 la, i (VIVIT+ T,
i=1

n—1 n—i

+ T Qi (V)VETT T

i=1j=1

—~

n-1

= WVt T+ 3 7' ani(V, T)VE
i=1

B

n=1

a7 @y (V)TE Ve

]
-

-~

]
—

—i

7l (V)VEITE

B}
|
—
X

+
0
A
<
i
t
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n—1 )
=T, + 7' Vot 2 7 'an oV, T)VE
i=1

("))
+ 2 Ap—i-j Y ,'jq
ijzli+j=n

=T,+ 2} 7l a (V, TIVE + 3 au Y

Ljzli+j=n

3.4. Some congruence formulae

Let n €N; we write gym(X), Gv(X, Y),... for the power series
obtained from gy(X), Gv(X, Y),... by substituting 0 for all V; with
i=n.

One then has

3.4.1) gv(x) = gvm(X) + % X" mod(degree q" + 1)
(3.4.2) gs(X) = gsw(X) + 7(n)S, X" mod(degree n + 1)

where 7(n) =1 if n is not a power of q and 7(n) = =" if n is a power
of g. Further

(3.4.3) gvr(X) = gvry(X) + T.X* mod(degree q" + 1)
(3.4.4) Gv(X, Y)= Gyu(X, Y)— V,m 'Bpn(X, Y) mod(degree q" + 1)
(3.4.5) Gs(X, Y)= Gsn(X, Y)— S,r(n)B,(X, Y) mod(degree n + 1)

where Bi(X, Y)=(X + Y) — X' - Y', and finally

(3.4.6) gsv(X) = gsvum(X)+ U,X" mod(degree n + 1)

4. The functional equation lemma

Let A[V; W]= A[V, V,,...; W, W,,...]. If f(X)is a power series
with coefficients in K[V; W] we write P,,f(X;, X5) = f(X))+ f(X5)
and P f(X,, X») = af(X)), a € A.

4.1. Let ¢,(X), r=1,2 be two power series with coefficients in
A[V, W] such that ¢,(X)= X mod(degree 2). Define

@ 700 = X)+ 3 L peox )

And for each operator P, where P=P, or P=P, a€ A and r,
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t €{1,2} we define
4.1.2) FY. (X1, X2) = f7'(Pf(X1, X))
4.2. FunctioNaL EqQuATION LEMMA: (1) The power series
"’/‘em(X 1, X3) have their coefficients in A[V; W] for all P, e, e,; (ii) If
d(X) is a power series with coefficients in A[V; W] such that d(X)=
X mod(degree 2) then f.(d(X)) satisfies a functional equation of type
4.1.1).

ProoF: Write F(X, X,) for F}, (X, X;). (If P# P, X, does not
occur). Write

F(X],X2)= F]+F2+‘ b
where F; is homogeneous of degree i. We are going to prove by
induction that all the F; have their coefficients in A[V; W]. This is
obvious for F, because ¢,(X)=e,(X)=X mod(degree 2). Let
a(X;, X,) be any power series with coeflicients in A[V; W]. Then we
have for all i,j EN
(4.2.1) (a(X,, X)) = (a“AX{, X1))* mod(w’*")

This follows imnediately from the fact that a?=a mod = for all
a € A and p € mA. Write

422 £(X) = 2 b(NX', by(r) =1

Then we have, if g|n but g“*'} n, that

4.2.3) b.(rmfE A[V; W]

This is obvious from the defining equation (4.1.1). Now suppose we
have shown that F,,.. ., F, have their coefficients in A[V; W], n=1.
We have for all d = 2.

4.2.4) F(Xy, X,)? = (F,+ - - -+ F,) mod(degree n +2)

It now follows from (4.2.4), (4.2.3) and (4.2.1) that

(4.2.5) F9AF(X,, X,)*) = fOOFO(X Y, X %)) mod(w, degree n + 2)
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Now from (4.1.2) it follows that for all i EN
(4.2.6) FOF(X,, X)) = PRO(X,, Xo).

Using (4.2.5), (4.2.6) and (4.1.1) we now see that
SR, X) = el F(X, Xo) + 3, 7 VS (X, X))
= e F(X,, XD+ 3, 7 VS (FX Y, X 1)
= e(F(X,, X+ 3, 7 ViPFX T, X 1)

= o (F(X, X+ (P 3 77 Vifi®) (X, X
= ,(F(X), X2)) + Pf(X,, X3) — Pe(X,, X»),

where all congruences are mod(1, degree n +2). But f(F(X;, X3)) =
Pf,(X;, X3). And hence ¢,(F(X, X,) — (Pe,)( X, X5)=0mod(1, degree
n +2), which implies that F,,; has its coefficients in A[V, W]. This
proves the first part of the functional equation lemma. Now let d(X)
be a power series with coefficients in A[V, W] such that d(X)=
X mod(degree 2). Then we have because of (4.2.1) and (4.2.2)

2.(X) = f(d(X)) = 2 = VFDAX)T)

3w VLX)

7' Vigld(X )

Il
M

i=1

where the congruences are mod(1). This proves the second part.

4.3. ProoF oF THEOREM 2.3 (and corollary 2.4): Apply the func-
tional equation lemma part (i). (For Gs(X,Y) and [als(X) take
V,‘ = Sqi).

5. Proof of the universality theorems

We first recall the usual comparison lemma for formal groups (cf.
e.g. [3]).
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For each nEN, define B,(X,Y)=(X+Y)"-X"-Y")) and
C.(X,Y)=v(n)"'B,(X, Y), where v(n)=1 if n is not a power of a
prime number, and v(p") = p, r EN, if p is a prime number.

5.1. If F(X,Y), G(X, Y) are formal groups over a ring B, and
F(X, Y)= G(X, Y) mod(degree n), there is a unique b € B such that
F(X,Y)=G(X, Y)+bC,(X, Y) mod(degree n +1).

5.2. PROOF OF THE UNIVERSALITY THEOREM 2.5: Let
(F(X,Y), pr) be a formal A-module over B. Let A[S], be the subal-
gebra A[S,,...,S,-1] of A[S]. Suppose we have shown that there
exists a homomorphism ¢, : A[S], - B such that

(5.2.1) dn(Gs(X, Y))= F(X, Y) mod(degree n)
(5.2.2) dnxlals(X) = [a]lr(X) mod(degree n)
and that ¢, is uniquely determined on A[S], by this condition. This
holds obviously for n =2 so that the induction starts.

Now, according to the comparison lemma 5.1 above there exist
unique elements m, m,, a € A, in B such that
(5.2.3) &.:Gs(X, Y)=F(X, Y)+ mC,(X, Y)mod(degree n + 1)
5.2.4) Guxlal(X) =[alp(X)+ m, X" mod(degree n + 1)

From the fact that ar»[a]s(X) and a—[a](X) are ring homomorphisms
one now obtains easily the following relations between the m and m,

(5.2.5) (@a"—aym =v(n)m,
(5.2.6) My, —mg—my = Cpla, b)m
5.2.7 amy,+ b"m, = my,

If n is not a power of p =char(k), then v(n) is a unit. Let
Gn+1: A[S]n1—> B be the unique homomorphism, which agrees with ¢,
on A[S], and which is such that ¢,.,(S,) = mv(n)"'. Then obviously
(5.2.1) holds with n replaced by n+1, and (5.2.2) holds with n
replaced by n + 1 because of (5.2.5) and because (3.4.2) implies that
(with the obvious notations)

(5.2.8) [als(X) =[alsw(X) — 7(n)(a" — a)S, X" mod(degree n + 1).
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Now let n = p’', but n not a power of g, the number of elements of
k. Then there is an y € A such that (y—y") is a unit in A. Let
¢ni1: A[S],41— B be the unique homomorphism which agrees with ¢,
on A[S, and which takes S, to (y —y") 'm,. Now (5.2.7) implies that
foralla€ A

(y—y m,=(a—a"ym,

Hence ¢,.1(a—a")S,=m, for all a so that (5.2.2) holds with n
replaced with n + 1. Finally, again because (y — y") is a unit, we find

(ar)(=Sur(M)B(X, Y)) = (y" = y)"'m,B.(X, Y) = mC,(X, Y)

Finally let n be a power of q. In this case there is a unique
homomorphism ¢,.,: A[S],.;— B which agrees with ¢, on A[S], and
which takes S, into (1 — 7" ) 'm,. Of course this is the only possible
choice for ¢,.,; because of (5.2.8).

Now consider the A-module generated by symbols m, mi,, a € A
subject to the relations (a"—a)m = v(n)myg,, Mep — Mg — My =
C.(a, b)m, am, + b"m, = My, for all a, b € A. This module is free on
one generator rt,. This will be proved in 5.3 below. It follows that all
the i, and m can be written as multiples of i,. These multiples turn
out to be

A

m, =7 Na"—a) ="' - 1) ', m=alv(n)(=""'-1)7"
simply because if one takes an arbitrary element s, and one defines
Mg, m as above, then all the required relations are satisfied. It follows
in particular that

m,=n"'(a"-a)=""'-1)'m,, m=a"'v(n)x""'-1)""m,
where m, m,, a € A are as in (5.2.3), (5.2.4) above. Hence

¢n+l(77-l(a - an)Sn) = Mg, ¢n+|(—Sn77_lv(n)) =m

so that, by (5.2.8) and (3.45), (5.2.1) and (5.2.2) hold with n replaced
by n + 1. This completes the induction step and (hence) the proof of

theorem 2.5.

5.3. LEMMA: Let X be the A-module generated by symbols m, m,
for all a € A subject to the relations
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(5.3.1) (a"—aym=v(n)m, foralla€ A
(5.3.2) Moy —Mmg—my =Cy(a,b)m foralla, b€ A
(5.3.3) amp,+b"m,=m, foralla,b€ A

Suppose moreover that n is a power of q. Then X is a free A-module
of rank 1, with generator m.,,.

ProoF: Let X = X/Am,. For each x € X we denote with X its
image in X. Then because (7 — #")m, = (a — a")m, and because 1—
#" ' is a unit in A we have that 7, =0 in X. Further (#" — m)m =
v(n)m,, so that also =i =0 in X. This proves that X is a k-module.
Now b" = b mod 7 (as n is a power of q). Hence mi,, = am, + bm, in
X proving that the map C:k— X, defined by a—r, is well defined
and satisfies C(ab) = aC(b) + bC(a). In particular C(@") = na""'C(a) =
0. But @" = a. Hence C(a) = m, =0 for all a € A.

With induction one finds from (5.3.2) that

(5.3.4) Motva, = Mg =" " "= Mg, = Cupay, ..., a,)m
where C,,(Z\,....Z,)=p '(Z,+---+2Z,)"—Z}~---—Z}). Taking
a,=---=a,=1wefind that m, — pm,=(p"~' — 1)m, and hence m =0

n—1

because 1 — p"~'is a unit of A. This proves that X is zero so that X is
generated by m,. Now define X - A by m,— #"'(a" — a), m—='p.
This is well defined and surjective. Hence X = A.

5.4. PRooF oF THEOREM 2.8: First, (Gy(X,Y), py) has the A-
logarithm gy(X) and hence satisfies the A-logarithm condition of
theorem 2.8. The A-logarithm of (¢+Gv(X,Y), dyepv) is ¢egv(X),
which also satisfies the condition of theorem 2.8. Inversely, let
(F(X,Y),pr) have an A-logarithm of the type indicated. Let
@ : A[S]— B be such that ¢.Gs(X, Y)= F(X, Y), ¢4ps = pr. Then, as
B is A-torsion free, ¢,gs(X)=f(X) because A-logarithms are
unique. From the definition of Gg(X, Y) (cf. (3.4.1), (3.4.2)) we see
that ¢(S;) =0 unless i is a power of q. Hence ¢ factorizes through
A[S]-= A[V], S;—0if i is not a power of g, S,— V;, and, comparing
gv(X) and gs(X), we see that ¢,gv(X)=f(X), where ¢ is the
A-homomorphism A[V]— B induced by ¢. q.e.d.

6. Proofs of the isomorphism theorems

6.1. PROOF OF THEOREM 2.9: Apply the functional equation
lemma.
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6.2. PROOF OF THE UNIVERSITY OF THE TRIPLE: (Gs(X, Y),
asu(X), Gsy(X,Y)): Let F(X,Y), G(X,Y) be two formal A-
modules over B and let B(X) be a strict isomorphism from F(X, Y)
to G(X,Y). Because Ggs(X,Y) is universal there is a unique
homomorphism ¢:A[S]->B such that ¢.Gs(X,Y)=F(X,Y),
¢«ps = pr. Now asu(X) = g5lu(gs(X)), hence we have by (3.4.6)

(6.2.1) asy(X) = asym(X)— U,X" mod(degree n + 1)

It follows from this that there is a unique extension ¢:A[S, U]—> B
such that ¢yagy(X)=B(X), and then ¢¥,Gspy(X,Y)=G(X,Y),
Yspsu = po, automatically.

6.3. PROOF oF THEOREM 2.12: Let F(X,Y), G(X, Y) be two A-
typical formal A-modules over B, and let B(X) be a strict isomor-
phism from F(X, Y) to G(X, Y). Let f(X), g(X) be the logarithms of
F(X,Y) and G(X, Y). Then g(B(X))=f(X). Because of the uni-
versality of the triple (Gs(X,Y), asy(X), Gsuy(X, Y)) there is a
unique A-algebra homomorphism ¢: A[S, U]l— B such that

UGs(X, Y)=F(X,Y), yups=pr and dyasy(X)=B(X).

Because F(X, Y) is A-typical we know that ¢(S;)=0 if i is not a
power of q. Because F(X,Y) and G(X, Y) are A-typical we know
that f(X) and g(X) are of the form T ¢;X?. But g(B(X)) = f(X). It
now follows from (6.2.1) that we must have ¢(U;)=0 if i is not a
power of q. This proves the theorem.

6.4. PrROOF OF THEOREM 2.14: It suffices to prove the theorem for
the case of strict isomorphisms. Let F(X, Y), G(X, Y) be two formal
A-modules over A and suppose that F*(X,Y) and G*(X, Y) are
strictly isomorphic. By taking any strict lift of the strict isomorphism
we can assume that F*(X, Y)= G*(X, Y). Finally by Theorem 2.9 (i)
and its corollary 2.10 we can make F(X,Y) and G(X, Y) both
A-typical and this does not destroy the equality F*(X, Y)= G*(X, Y)
because the theorem gives us a universal way of making an A-module
A-typical. So we are reduced to the situation: F(X, Y), G(X, Y) are
A-typical formal A-modules over A and F*(X, Y)=G*(X, Y). Let
&, @' be the unique homomorphisms A[V]— A such that

$+Gv(X, Y)=F(X,Y), ¢upv=pr
¢+Gv(X,Y)=G(X,Y), éipv=rc
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Let v; = ¢(V)), vi=¢'(V)). Because F¥(X,Y)=G*(X,Y), pk=p%
we must have

(6.4.1) vi=vimodwA, i=1,2,...

(by the uniqueness part of the universality of (Fy(X, Y), pv)).
If we can find t; € A such that a,(v, t) = a,(v’) for all n then a,,(X)

will be the desired isomorphism. Let us write z{"" " for the element
of A®;Q obtained by substituting v; for V; and ¢ for T; in Z{¥" .
Then the problem is to find ¢, i = 1,2, ... such that

(64.2) a,(v)= 21 7' au (00?7 + B} Z a,.~i—i(v)2$}'"$i)+ t,

Ljz=li+j=<n

Now

(6.4.3) ay(v) =X 7' aui (v}
i=1
So that ¢, is determined by the recursion formula

(6.4.4) tﬁZ,an-i(v')w"(v:ﬂ""’—v?"“')— DN R €0) P i

Li=l,i+j=n

And what we have left to prove is that these ¢, are elements of A (and
not just elements of K). However,

6.4.5) 7" a, (v)EA, zy=m"'wt!—t?), vi=vimodmw
Hence
(6.4.6) 01" = v 'mod 7", " "=0mod #"

and it follows recursively that the t, are integral. This proves the
theorem.

6.5. PROOF OF REMARK 2.15. If F(X,Y) and G(X,Y) are A-
typical formal A-modules over A, which are strictly isomorphic then
F*X, Y)= G*(X, Y). Indeed, because F(X, Y), G(X, Y) are strictly
isomorphic A-typical formal A-modules we have that there exist unique
v, v}, t; € A such that (6.4.2), (6.4.3) and hence (6.4.4) hold. Takingn = 1
we see that vy = v|{ mod 7. Assuming thatvy;=v.mod =, i=1,...,n—1,
it follows from (6.4.4) that v, = v;. Finally, let F(X, Y) be an A-typical
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formal A-module, F(X,Y)=G,(X, Y), v, v, ...€E A andlet u € A be
aninvertible element of A. If f(X) =2 a; X 4 is the logarithm of F(X, Y),
then the logarithm of F'(X, Y) = u"'F(uX, uY)is equal to 3 au a-1xd
sothat F'(X, Y) = G,(X, Y)withv|=u"v,,...,v,=u?""v,, ...andit
follows that vi=v; mod =, i.e. F'*(X,Y)=F*(X, Y).

7. Concluding remarks

Several of the results in [1], [2] and [6] follow readily from the
theorems proved above. For example the following. Let F(X, Y) be a
formal A-module; define END(F), the absolute endomorphism ring of
F, to be the ring of all endomorphisms of F defined over some finite
extension of K. Let ¢,:A[V]—> A be any homomorphism such that
d(V)=0, i=1,...,h—1, ¢,(V,)E A*, the units of A and
dr(Vie) #0. Then ((Pn)« Fv(X, Y), (dr)spv) is a formal A-module of
formal A-module height h and with absolute endomorphism ring
equal to A.

(If char(K) = p then formal A-module height is defined as follows.
Let B be the ring of integers of a finite extension of K; let m be the
maximal ideal of B. Consider [#]r(X) for (F(X,Y), pr) a formal
A-module over B. If [#]g(X)=0mod(m), then one shows that the
first monomial of [#]r(X) which is not =0 mod(m) is necessarily of
the form aX?. Then A-height (F(X,Y), pr) = h. If char(K) =0 this
agrees with the usual definition A-height = [K:Q,]' Height).
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