
COMPOSITIO MATHEMATICA

MICHIEL HAZEWINKEL
Constructing formal groups. VIII. Formal A-modules
Compositio Mathematica, tome 38, no 3 (1979), p. 277-291
<http://www.numdam.org/item?id=CM_1979__38_3_277_0>

© Foundation Compositio Mathematica, 1979, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1979__38_3_277_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


277
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@ 1979 Sijthoff &#x26; Noordhoff International Publishers-Alphen aan den Rijn
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1. Introduction

Let Qp be the p-adic integers, let K be a finite extension of Qp and let
A be the ring of integers of K. A formal A-module is, grosso modo, a
commutative one dimensional formai group which admits A as a ring
of endomorphisms. For a more precise definition cf. 2.1 below. For
some results concerning formal A-modules cf. [1], [2] and [6].

It is the purpose of the present note to use the techniques of [3] and
[5], cf. also [4], to construct a universal formal A-module, a universal

A-typical formal A-module and a universal strict isomorphism of
A-typical formal A-modules. For the notion of a A-typical formal
A-module, cf. 2.6 below. As corollaries one then obtains a number of
the results of [ 1 ], [2] and [6].

In particular we thus find a new proof that two formal A-modules
over A are (strictly) isomorphic iff their reductions over k, the residue
field of K, are (strictly) isomorphic.
As a matter of fact the techniques developed below also work in

the characteristic p &#x3E; 0 case. Thus we simultaneously obtain the
analogues of some of the results of [1], [2], [6] for the case of formai
A-modules where A is the ring of integers of a finite extension of
Fp«t», where Fp is the field of p-elements.

All formai groups will be commutative and one dimensional; N
denotes the set of natural numbers 11, 2, 3, ...}; Z stands for the
integers, Zp for the ring of p-adic integers,Q for the rational numbers
and Op the p-adic numbers.
A will always be the ring of integers of a finite extension of Qp or

Fp((t)), the field of Laurent series over Fp. The quotient field of A is
denoted K, ’TT is a uniformizing element of A and k = A/17’A is the

residue field. We use q to denote the number of elements of k.

0010-437X/79/03/0277-15 $00.20/0
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2. Définitions, constructions and statement of main results.

2.1. DEFINITIONS. Let B E AIgA, the category of A-algebras. A
formal A-module over B is a formal group law F(X, Y) over B
together with a homomorphism of rings PF: A---&#x3E; EndB(F(X, Y)) such
that pF(a) --- aX mod(degree 2) for all a E A. We shall also write

[a](X) for pF(a).
If B is torsion free (i.e. B ---&#x3E; B OzO is injective) and F(X, Y) is a

formal group over B, then there is at most one formal A-module

structure on F(X, Y), viz PF(a) = f-l(af(X» where f (X) is the

logarithm of F(X, Y). On the other hand if char(K) = p, then every
formal A-module over B E A19A is *.,somorphic to the additive formal
group Ga(X, Y) = X + Y over B. In this case all the structure sits in
the structural morphism pF :A--&#x3E; EndB (F(X, Y)).

Let (F(X, Y), pF ), (G(X, Y), PG) be two f ormal A-modules over B.
A homomorphism of formal A-modules over B,

is a strict isomorphism if b, = 1.

2.2. Let R be a ring, R[ U] = R[ Uh U2, ...]. If f(X) is a power
series over R[ U] and n EN we denote by f{n)(x) the power series
obtained from f(X) by replacing each Ui with U i, i = 1, 2,.... Let

A[ V], A[ V; T], A[S] denote respectively the rings A[ V,, V2,...],
A[ VI, V2,... ; Tl, T2, ...], A[S2, S3, ...]. Let p be the residue charac-
teristic of A. The three power series gv(X), 9VT(X), gs(X) over

respectively K[ V], K[ V; T ] and K[S] are defined by the functional
equations

The first few terms are
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We now define

where if f (X ) = X + r2X2 + ... is a power series over R, then f-l(X)
denotes the inverse power series, i.e. f-l(f(X» = X = f(f-l(X». And
for all a E A we define

2.3. INTEGRALITY THEOREMS: (i) The power series Gv(X, Y),
GV,T(X, Y) and Gs(X, Y) have their coefficients respectively in A[ V],
A[V, T], A[S]; (ii) For all a E A, the power series [a]v(X), [a]V,T(X),
[a]S(X ) have their coefficients respectively in A[ V], A[ V, T ], A[S].

2.4. COROLLARY: Gv(X, Y), GV,T(X, Y) and Gs(X, Y) with the

structural homomorphisms pv(a) = [a] v(X), pv,T(a) = [a]v,T(X), ps =

(a) = [a]s(X) are formal A-modules.

2.5. UNIVERSALITY THEOREM: (Gs(X, Y), ps), where ps(a) =
[a]s(X), is a universal formal A-module.

I.e. for every formal A-module (F(X, Y), PF) over B E A19A, there is a

unique A-algebra homomorphism 0: A[S] --- &#x3E; Bsuch that

.O*Gs(X, Y) = F(X, Y) and 0*[als(X) = PF(a) for all a E A. Here 0*
means: "apply 0 to the coefficients of the power series involved".
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2.6. A-logarithms
Let (F(X, Y), pp) be a formal A-module over B E A19A. Suppose

that B is A-torsion free, i.e. that B ---&#x3E; B OA K is injective. Let

0: A[SI --&#x3E; B be the unique homomorphism taking (Gs(X, Y), ps) into
(F(X, Y), pF). Then O*gS(X) = f(X) E B@AK[[X]] is a power series
such that F(X, Y) = f -’(f(X) + f (Y», [a](X) = f-l(af(X) for all a E
A, and such that f(X) = X mod(degree 2). We shall call such a power
series an A-logarithm for (F(X, Y), pF). We have just seen that

A-logarithms always exist (if B is A-torsion free). They are also
unique because there are no nontrivial strict formal A-module

automorphisms of the additive formai A-module Ca(X, Y) = X + Y,
[a](X) = aX over B 0A K, as is easily checked.

2.7. A-typical fonnal A-modules
A formal A-module (F(X, Y), pp) over B E A19A is said to be

A-typical if it is of the form F(X, Y) = 4&#x3E;*Gv(X, Y), pF(a)=
4&#x3E;*[a]v(X) for some homomorphism O:A[V]--&#x3E;B. It is then an im-

mediate consequence of the constructions of Gs(X, Y) and Gv(X, Y)
that (Gv(X, Y), pv), pv(a) = [a]v(X), is a universal A-typical formal
A-module (given theorem 2.5).

2.8. THEOREM: Let B be A-torsion free. Then (F(X, Y), PF) is an
A-typical formal A-module if and only if its A-logarithm /(X) is of
the form

Let K:A[V]---&#x3E;A[S] be the injective homomorphism defined by
K (Vi) = Sq,, and let À : A[ V] --&#x3E; A[ V, T] be the natural inclusion.

2.9. THEOREM: (i) The formal A-modules G’V(X, Y) and Gs(X, Y)
are strictly isomorphic; (ii) The formal A-modules G’(X, Y) and
GV,T(X, Y) are strictly isomorphic.

2.10. COROLLARY: Every formai A-module is isomorphic to an

A-typical one.

be the (unique) strict isomorphism from

2.12. THEOREM: The triple (Gv(X, Y), av,T(X), Gv,T(X, Y)) is

universal for triples consisting of two A-typical formal A-modules
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and a strict isomorphism between them over A-algebras B which are
A-torsion free.
There is also a triple (Gs(X, Y), as,u(X), Gs,u(X, Y)) which is

universal for triples of two formal A-modules and a strict isomor-
phism between them. The f ormal A-module Gs,u(X, Y) over A[S ; U ]
is defined as follows

The strict isomorphism between

be a formai A-module over A itself. Let

be the natural projection. The formal A-module
) is called the reduction mod 17’ of F(X, Y). We also

2.14. THEOREM: (Lubin [6] in the case char(K) = 0): Two formal
A-modules over A are (strictly) isomorphic if and only if their

reductions over A are (strictly) isomorphic.

2.15. REMARK: If the two formai A-modules over A are both

A-typical then they are (strictly) isomorphic if and only if their

reductions are equal.

3. Formulae

3.1. Some formulae
The following formulae are all proved rather easily, directly from

the definitions in 2.2. Write
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Then we have

3.2. We define for all i, j &#x3E;_ 1.

then have the usual meaning, i.e.

3.3. LEMMA:

PROOF: That the two expressions on the right are equal is obvious
from the definitions of Zi,; and Yij (because Zij + §; = Yi; + Yji). We
have according to (3.1.4) and (3.1.5)
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3.4. Some congruence formulae
Let n EN ; we write gvn&#x3E;(X), Gvn&#x3E;(X, Y), ... for the power series

obtained from gv(X), Gv(X, Y), ... by substituting 0 for all Vi with
i ? n.

One then has

where T(n) = 1 if n is not a power of q and T(n) = 17’-1 if n is a power
of q. Further

where , and finally

4. The functional équation lemma

Let A[ V; W] = A[Vi, V2,... ; W,, W2, ...]. If f(X) is a power series
with coefficients in K[V; W] we write Pi,J(Xi, X2) = f(Xi)+ f (X2)
and PF(XI, X2) = af(Xi), a E A.

4.1. Let er(X), r = 1, 2 be two power series with coefficients in

A[ V, W] such that er(X) == X mod(degree 2). Define

And for each operator P, where P = PI,2 or P = Pa, a E A and r,
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t E {l, 2} we define

4.2. FUNCTIONAL EQUATION LEMMA: (i) The power series

F’V,e,e,(Xl, X2) have their coefficients in A[V; W] for all P, er, et ; (ii) If
d(X) is a power series with coefficients in A[ V ; W] such that d (X ) ---
X mod(degree 2) then fr(d(X)) satisfies a functional equation of type
(4.1.1).

PROOF: Write

occur). Write
does not

where F is homogeneous of degree i. We are going to prove by
induction that all the F have their coefficients in A[V; W]. This is

obvious for Fi because er(X ) = et(X ) --- X mod(degree 2). Let

a(Xl, X2) be any power series with coefficients in A[ V; W]. Then we
have for all i, j E N

This follows imnediately from the fact that aq = a mod TT’ for all

a E A and p E 17’A. Write

Then we have, if that

This is obvious from the defining equation (4.1.1). Now suppose we
have shown that FI, - - ., Fn have their coefficients in A [ V ; W], n &#x3E; 1.

We have for all d 2:: 2.

It now follows from (4.2.4), (4.2.3) and (4.2.1) that
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Now from (4.1.2) it follows that for all i E N

Using (4.2.5), (4.2.6) and (4.1.1) we now see that

where all congruences are mod(l, degree n + 2). But fr(F(Xl, X2)) _
Pft(X., X2). And hence er(F(X., X2) - (Pet)(X., X2) --- 0 mod( 1, degree
n + 2), which implies that Fn,l has its coefficients in A[V, W]. This
proves the first part of the functional equation lemma. Now let d(X)
be a power series with coefficients in A[ V, W] such that d(X) =
X mod(degree 2). Then we have because of (4.2.1) and (4.2.2)

where the congruences are mod(l). This proves the second part.

4.3. PROOF oF THEOREM 2.3 (and corollary 2.4): Apply the func-
tional equation lemma part (i). (For Gs(X, Y) and [a]s(X) take

Vi = Sqi).

5. Proof of the universality theorems

We first recall the usual comparison lemma for formai groups (cf.
e.g. [3]).
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prime number, and v(p ") = p, r E N, if p is a prime number.

5.1. If F(X, Y), G(X, Y) are formal groups over a ring B, and
F(X, Y) = G(X, Y) mod(degree n), there is a unique b E B such that
F(X, Y) = G(X, Y) + bCn(X, Y) mod(degree n + 1).

5.2. PROOF OF THE UNIVERSALITY THEOREM 2.5: Let

(F(X, Y), PF) be a formal A-module over B. Let A[S]n be the subal-
gebra A[S2, ..., Sn-11 of A[S]. Suppose we have shown that there
exists a homomorphism -On: A[S]n - B such that

and that cPn is uniquely determined on A[SJn by this condition. This
holds obviously for n = 2 so that the induction starts.
Now, according to the comparison lemma 5.1 above there exist

unique elements m, ma, a E A, in B such that

From the fact that a.-.[a]s(X) and a.-.[a]p(X) are ring homomorphisms
one now obtains easily the following relations between the m and ma

If n is not a power of p = char(k), then v(n ) is a unit. Let

cPn+1 : A[Sln,l - B be the unique homomorphism, which agrees with On
on A[S]n and which is such that cPn+I(Sn) = mv(n)-l. Then obviously
(5.2.1) holds with n replaced by n + 1, and (5.2.2) holds with n

replaced by n + 1 because of (5.2.5) and because (3.4.2) implies that
(with the obvious notations)
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Now let n = p", but n not a power of q, the number of elements of
k. Then there is an y E A such that (y - yn) is a unit in A. Let

0.,,: A[SI.,, - B be the unique homomorphism which agrees with On
on A[Sn and which takes Sn to (y - y")-’m,. Now (5.2.7) implies that
for all a E A

Hence 0,,,,(a - an)Sn = ma for all a so that (5.2.2) holds with n

replaced with n + 1. Finally, again because (y - yn) is a unit, we find

Finally let n be a power of q. In this case there is a unique
homomorphism $n+i : A[S],,, ----&#x3E; B which agrees with cPn on A[S]n and
which takes Sn into (1 - Irn-,)-IM@. Of course this is the only possible
choice for $n+i because of (5.2.8).
Now consider the A-module generated by symbols m, ma, a E A

subject to the relations (an - a)m - P(n)Pha, ma+b - ma - mb =

Cn(a, b)m, amb + b"ma = mab, for all a, b E A. This module is free on
one generator m7TO This will be proved in 5.3 below. It follows that all
the ma and m can be written as multiples of th,. These multiples turn
out to be

simply because if one takes an arbitrary element m’Fr and one defines
ma, m as above, then all the required relations are satisfied. It follows
in particular that

where m, ma, a E A are as in (5.2.3), (5.2.4) above. Hence

so that, by (5.2.8) and (3.45), (5.2.1) and (5.2.2) hold with n replaced
by n + 1. This completes the induction step and (hence) the proof of
theorem 2.5.

5.3. LEMMA: Let X be the A-module generated by symbols m, ma
for all a E A subject to the relations
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Suppose moreover that n is a power of q. Then X is a free A-module
of rank 1, with generator m7T’

PROOF: Let X = XI Am7T’ For each x E X we denote with je its

image in X. Then because (1T - 1Tn)ma = (a - an)m7T and because 1-
17’n-l is a unit in A we have that 1Tma = 0 in X. Further (ir" - 1T)m =

v(n)m7T so that also 1Tm = 0 in X. This proves that X is a k-module.
Now b" --- b mod 7r (as n is a power of q). Hence mab = am6 + bma in
X proving that the map C: k --&#x3E; X, defined by âHma is well defined
and satisfies C(à6) = àC(6) + 6C(à). In particular C(aft) = na-n-lC(a) =
0. But àn = â. Hence C(â) = ma = 0 for all a E A.

With induction one finds from (5.3.2) that

al = ... = ap = 1 we find that mp - pm i = (p"-’ - 1)m, and hence m = 0
because 1 - p"-’ is a unit of A. This proves that X is zero so that X is
generated by mn Now define X ---&#x3E;A by ma1T-l(an - a), m F--&#x3E;,ff P.
This is well defined and surjective. Hence X = A.

5.4. PROOF oF THEOREM 2.8: First, (Gv(X, Y), pv) has the A-

logarithm gv(X) and hence satisfies the A-logarithm condition of
theorem 2.8. The A-logarithm of (cP*Gv(X, Y), (k*pv) is cP*gv(X),
which also satisfies the condition of theorem 2.8. Inversely, let

(F(X, Y), pp) have an A-logarithm of the type indicated. Let

0: A[S] - B be such that cP*Gs(X, Y) = F(X, Y), (*ps = pF. Then, as
B is A-torsion free, 0 *gs(X) = f(X) because A-logarithms are

unique. From the definition of Gs(X, Y) (cf. (3.4.1), (3.4.2)) we see
that cP(S) = 0 unless i is a power of q. Hence cP factorizes through
A[S] - A[ V], Si - 0 if i is not a power of q, Sq,- Vi, and, comparing
gv(X) and gs(X), we see that .p*gv(X) = f(X), where .p is the

A-homomorphism A[ V] - B induced by cP. q.e.d.

6. Proof s of the isomorphism theorems

6.1. PROOF OF THEOREM 2.9: Apply the functional equation
lemma.
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6.2. PROOF OF THE UNIVERSITY OF THE TRIPLE: (GS(X, Y),
aS,u(X), Gs,U(X, Y)): Let F(X, Y), G(X, Y) be two formal A-

modules over B and let f3(X) be a strict isomorphism from F(X, Y)
to G(X, Y). Because Gs(X, Y) is universal there is a unique
homomorphism $ : A[S] ---- &#x3E; B such that cP*Gs(X, Y) = F(X, Y),

It follows from this that there is a unique extension .p: A[S, Ul ---&#x3E; B
such that .p*as,u(X) = I3(X), and then .p*Gs,u(X, Y) = G (X, Y),
.p*Ps,u = Po, automatically.

6.3. PROOF oF THEOREM 2.12: Let F(X, Y), G(X, Y) be two A-

typical f ormal A-modules over B, and let S(X) be a strict isomor-
phism from F(X, Y) to G(X, Y). Let f(X), g(X) be the logarithms of
F(X, Y) and G(X, Y). Then g(I3(X» = f (X). Because of the uni-

versality of the triple (Gs(X, Y), as,(X), Gs,u(X, Y)) there is a

unique A-algebra homomorphism .p: A[S, U] --&#x3E; B such that

Because F(X, Y) is A-typical we know that ip(Si) = 0 if i is not a

power of q. Because F(X, Y) and G(X, Y) are A-typical we know
that f (X ) and g(X) are of the form 1 c;X q‘. But g(,B(X» = f(X). It

now follows from (6.2.1) that we must have .p( Ui) = 0 if i is not a

power of q. This proves the theorem.

6.4. PROOF oF THEOREM 2.14: It suffices to prove the theorem for
the case of strict isomorphisms. Let F(X, Y), G(X, Y) be two formal
A-modules over A and suppose that F*(X, Y) and G*(X, Y) are
strictly isomorphic. By taking any strict lift of the strict isomorphism
we can assume that F*(X, Y) = G*(X, Y). Finally by Theorem 2.9 (i)
and its corollary 2.10 we can make F(X, Y) and G(X, Y) both
A-typical and this does not destroy the equality F*(X, Y) = G*(X, Y)
because the theorem gives us a universal way of making an A-module
A-typical. So we are reduced to the situation: F(X, Y), G(X, Y) are
A-typical formal A-modules over A and F*(X, Y) = G*(X, Y). Let
0, 4’ be the unique homomorphisms A[ VI---&#x3E; A such that
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Because

we must have

(by the uniqueness part of the universality of (Fv(X, Y), Pv».
If we can find ti E A such that an(v, t) = an(v’) for all n then av,t(X )

will be the desired isomorphism. Let us write Z7n-i-j) for the element
of A Q9z a obtained by substituting Vi for Vi and t; for Tj in Z;;n ‘ ’.
Then the problem is to find ti, i = 1, 2,... such that

Now

So that tn is determined by the recursion formula

And what we have left to prove is that these tn are elements of A (and
not just elements of K). However,

Hence

and it follows recursively that the tn are integral. This proves the
theorem.

6.5. PROOF OF REMARK 2.15. If F(X, Y) and G(X, Y) are A-

typical formal A-modules over A, which are strictly isomorphic then
F*(X, Y) = G*(X, Y). Indeed, because F(X, Y), G(X, Y) are strictly
isomorphic A-typical formal A-modules we have that there exist unique
Vi, vi, ti E A such that (6.4.2), (6.4.3) and hence (6.4.4) hold. Taking n = 1
we see that v 1--- v 1 mod 7r. Assuming that v; = v mod 17’, i = 1, ..., n - 1,
it follows from (6.4.4) that Vn = v’. Finally, let F(X, Y) be an A-typical
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formal A-module, F(X, Y) = Gv(X, Y), VI, V2, .. Ei A, and let u E A be
an invertible element of A. If/(X) = E aiXqi is the logarithm of F(X, Y),
then the logarithm of F’(X, Y) = u-lF(uX, uY) is equal to 1 aiuqi-lxqi,
so that F’(X, Y) = G,,(X, Y) with v l’ = u q-’v v’ n = u qn-’vn, ... and it
follows that vi == Vi mod 7r, i.e. F’*(X, Y) = F*(X, Y).

7. Concluding remarks

Several of the results in [1], [2] and [6] follow readily from the
theorems proved above. For example the following. Let F(X, Y) be a
formal A-module; define END(F), the absolute endomorphism ring of
F, to be the ring of all endomorphisms of F defined over some finite
extension of K. Let Oh:A[V]---&#x3E;A be any homomorphism such that
Oh(Vi)=O, 1 = 1 , ... , h - 1 , cf&#x3E;h( Vh) E A *, the units of A and

cf&#x3E;h(Vh+l) -:;é 0. Then «cf&#x3E;h)*Fv(X, Y), (cf&#x3E;h)*PV) is a formal A-module of
formal A-module height h and with absolute endomorphism ring
equal to A.

(If char(K) = p then formal A-module height is defined as follows.
Let B be the ring of integers of a finite extension of K; let m be the
maximal ideal of B. Consider [7T ]F(X) for (F(X, Y), PF) a formal
A-module over B. If [7T ]F(X) == 0 mod(m), then one shows that the
first monomial of [17’ ]F(X) which is not 0 mod(m) is necessarily of
the form aX qh. Then A-height (F(X, Y), PF) = h. If char(K) = 0 this
agrees with the usual definition A-height = [K : Qp]-l Height).
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