@article{CM_1979__38_2_201_0,
author = {Gilkey, Peter B.},
title = {Recursion relations and the asymptotic behavior of the eigenvalues of the laplacian},
journal = {Compositio Mathematica},
pages = {201--240},
year = {1979},
publisher = {Sijthoff et Noordhoff International Publishers},
volume = {38},
number = {2},
mrnumber = {528840},
zbl = {0405.58050},
language = {en},
url = {https://www.numdam.org/item/CM_1979__38_2_201_0/}
}
TY - JOUR AU - Gilkey, Peter B. TI - Recursion relations and the asymptotic behavior of the eigenvalues of the laplacian JO - Compositio Mathematica PY - 1979 SP - 201 EP - 240 VL - 38 IS - 2 PB - Sijthoff et Noordhoff International Publishers UR - https://www.numdam.org/item/CM_1979__38_2_201_0/ LA - en ID - CM_1979__38_2_201_0 ER -
%0 Journal Article %A Gilkey, Peter B. %T Recursion relations and the asymptotic behavior of the eigenvalues of the laplacian %J Compositio Mathematica %D 1979 %P 201-240 %V 38 %N 2 %I Sijthoff et Noordhoff International Publishers %U https://www.numdam.org/item/CM_1979__38_2_201_0/ %G en %F CM_1979__38_2_201_0
Gilkey, Peter B. Recursion relations and the asymptotic behavior of the eigenvalues of the laplacian. Compositio Mathematica, Tome 38 (1979) no. 2, pp. 201-240. https://www.numdam.org/item/CM_1979__38_2_201_0/
[1] , and : On the heat equation and the index theorem. Invent. Math. 19 (1973) 279-330. | Zbl | MR
[2] , and : Clifford Modules. Topology 3 (1963) 3-38. | Zbl | MR
[3] , and : Spectral asymmetry and Riemannian geometry. Bull. Lond. Math. Soc. 5 (1973) 229-234. | Zbl | MR
[4] : Sur le spectre d'une variété Riemannienne. C.R. Acad. Sci. Paris 263 (1963) 13-16. | Zbl
[5] : A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. Math. 45 (1944) 747-752. | Zbl | MR
[6] and : Spectrum and fixed point set of isometries II. Topology 16 (1977) 1-12. | Zbl | MR
[7] : Natural Tensors on Riemannian Manifolds. J. Diff. Geo 10 (1973) 631-646. | Zbl | MR
[8] : Curvature and the eigenvalues of the Laplacian for elliptic complexes. Advances in Math. 10 (1973) 344-382. | Zbl | MR
[9] : Spectral Geometry of a Riemannian Manifold. J. Diff. Geo. 10 (1975) 601-618. | Zbl | MR
[10] : Spectral Geometry of real and complex manifolds. Proc. Symp. Pure and App. Math. 27 (1975) 265-280. | Zbl | MR
[11] : Spectral Geometry of symmetric spaces. AMS transactions 225 (1977) 341-353. | Zbl | MR
[12] : Lefschetz formulas and the heat equation (to appear).
[13] : Spectral geometry and the Lefschetz formulas for a holomorphic isometry of an almost complex manifold (to appear).
[14] : The Boundary Integrand in the formula for the Signature and Euler characteristic of a Riemannian manifold with boundary. Advances in Math. 15 (1975) 334-360. | Zbl | MR
[15] : Local invariants of a pseudo-Riemannian manifold. Math. Scand. 36 (1975) 109-130. | Zbl | MR
[15a] : Curvature and the heat equation for the Delham complex (to appear).
[16] : An asymptotic expansion for the heat equation. Arch. Rat. Mech. Anal. 41 (1971) 163-218. | Zbl | MR
[17] : The Signature Theorem for V-Manifolds (to appear in Topology). | Zbl | MR
[18] : Mouvement Brownian et Valeurs propres du Laplacian. Ann. Inst. Henri Poincaré, vol. IV (1968) 331-342. | Zbl | MR | Numdam
[19] and : The spectrum of Hill's equation. Invent. Math. 30 (1975) 217-274. | Zbl | MR
[20] and : Curvature and the eigenforms of the Laplacian. J. Diff. Geo. 1 (1967) 43-69. | Zbl | MR
[21] : Curvature and the eigenforms of the Laplace operator. J. Diff. Geo. 5 (1971) 233-249. | Zbl | MR
[22] : Curvature and the fundamental solution of the heat equation. J. Indian Math. Soc. 34 (1970) 269-285. | Zbl | MR
[23] : On the eigenvalues of the Laplacian and curvature of Riemannian manifold. Tohuku Math. J. 23 (1971) 585-603. | Zbl | MR
[24] : Complex powers of an elliptic operator. Proc. Symp. Pure and App. Math. 10 (1967) 288-307. | Zbl | MR
[25] : Singular integrals and boundary problems. Amer. J. Math. 88 (1966) 781-809. | Zbl | MR
[26] : Natural differential operators on Riemannian manifolds and representations of the orthogonal and special orthogonal group. J. Diff. Geo. 10 (1975) 647-660. | Zbl | MR
[27] : The classical groups. Princeton University Press, Princeton N.J. 1946 (USA). | Zbl | JFM






