@article{CM_1978__37_3_277_0,
author = {Foster, Dorothy and Williams, David},
title = {The {Hawkins} sieve and brownian motion},
journal = {Compositio Mathematica},
pages = {277--289},
year = {1978},
publisher = {Sijthoff et Noordhoff International Publishers},
volume = {37},
number = {3},
mrnumber = {511745},
zbl = {0402.10052},
language = {en},
url = {https://www.numdam.org/item/CM_1978__37_3_277_0/}
}
TY - JOUR AU - Foster, Dorothy AU - Williams, David TI - The Hawkins sieve and brownian motion JO - Compositio Mathematica PY - 1978 SP - 277 EP - 289 VL - 37 IS - 3 PB - Sijthoff et Noordhoff International Publishers UR - https://www.numdam.org/item/CM_1978__37_3_277_0/ LA - en ID - CM_1978__37_3_277_0 ER -
Foster, Dorothy; Williams, David. The Hawkins sieve and brownian motion. Compositio Mathematica, Tome 37 (1978) no. 3, pp. 277-289. https://www.numdam.org/item/CM_1978__37_3_277_0/
[1] : Brownian Motion and Diffusion (Holden-Day, San Francisco, 1971). | Zbl | MR
[2] : Branching processes since 1873, J. London Math. Soc. 41 (1966) 385-406. | Zbl | MR
[3] : Probability Theory (van Nostrand, Princeton, N.J., 1963). | Zbl | MR
[4] : Stochastic Integrals (Academic Press, New York-London, 1969). | Zbl | MR
[5] and : The 'Riemann hypothesis' for the Hawkins random sieve, Compositio Math. 29 (1974) 197-200. | Zbl | MR | Numdam | EuDML
[6] : Differential equations with a small parameter and the central limit theorem for functions defined on a Markov chain, Z. Wahrscheinlichkeitstheorie 9 (1968) 101-111. | Zbl | MR
[7] : Almost sure behavior of sums of independent random variables and martingales, Proc. 5th Berkeley Symp., Vol. 2, part 1 (1966) 315-343. | Zbl | MR
[8] : Two limit theorems for random evolutions having non-ergodic driving processes, (to appear in proceedings of Park City, Utah conference on stochastic differential equations). | Zbl
[9] : A study of a diffusion process motivated by the sieve of Eratosthenes, Bull. London Math. Soc. 6 (1974) 155-164. | Zbl | MR
[10] : The prime number theorem for random sequences, J. Number Theory 8 (1976) 369-371. | Zbl | MR





