@article{CM_1977__35_1_3_0,
author = {Feferman, Solomon},
title = {Recursion in total functionals of finite type},
journal = {Compositio Mathematica},
pages = {3--22},
year = {1977},
publisher = {Noordhoff International Publishing},
volume = {35},
number = {1},
mrnumber = {485282},
zbl = {0365.02030},
language = {en},
url = {https://www.numdam.org/item/CM_1977__35_1_3_0/}
}
Feferman, Solomon. Recursion in total functionals of finite type. Compositio Mathematica, Tome 35 (1977) no. 1, pp. 3-22. https://www.numdam.org/item/CM_1977__35_1_3_0/
[1] : Ordinals and functionals in proof theory. Proc. Int'l. Cong. of Mathematicians (Nice, 1970) 1, 229-233. | Zbl | MR
[2] : Über einer bisher noch nicht benützten Erweiterung des finiten Standpunktes. Dialectica 12 (1958) 280-287. | Zbl | MR
[3] : Selection functions for recursive functionals. Notre Dame J. Formal Logic 10 (1969) 225-234. | Zbl | MR
[4] and : Selection in abstract recursion theory. J. Symbolic Logic 41 (1976) 153-158. | Zbl | MR
[5] : Countable functionals, in Constructivity in Mathematics, N-H, Amsterdam (1959) 81-100. | Zbl | MR
[6] : Recursive functionals and quantifiers of finite types. Trans. Amer. Math. Soc. 91 (1959) 1-52. | Zbl | MR
[7] : Some reasons for generalizing recursion theory, in Logic Colloquium '69, N-H, Amsterdam (1971) 139-198. | Zbl | MR
[8] : Post's problem for recursion in higher types. Dissertation, M.I.T. (1972).
[9] : Hyperanalytic predicates. Trans. Amer. Math. Soc. 129 (1967) 249-282. | Zbl | MR
[10] : Abstract first order computability. Trans. Amer. Math. Soc. 138 (1969) I. 427-464, II. 465-504. | Zbl | MR
[11] : Foundations of recursion theory. Dissertation, Stanford Univ. (1966).
[12] : The 1-section of a type n object, in Generalized Recursion Theory (eds. Fenstad, Hinman), Amsterdam (1974) 81-93. | Zbl | MR
[13] : A hierarchy based on a type 2 object. Trans. Amer. Math. Soc. 134 (1968) 103-108. | Zbl | MR
[14] : Infinitely long terms of transfinite type, in Formal Systems and Recursive Functions, N-H, Amsterdam (1968) 465-475.
[15] : A hierarchy for the 1-section of any type two object, J. Symbolic Logic 39 (1974) 88-94. | Zbl | MR
[16] and : Infinite terms and recursion in higher types. Kiel Proof Theory Symposion, 1974. Lecture Notes in Mathematics V. 500 (1975) (Springer, Berlin) 341-364. | Zbl | MR






