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A DECOMPOSITION THEOREM FOR COMODULES

Marjorie Batchelor*

Injective comodules over coalgebras can be decomposed as a direct
sum of indecomposable injective comodules, in a fashion similar to
the dual decomposition of projective modules over algebras, [1]. This
paper gives an elementary proof of this theorem, avoiding the use of
idempotents.

1. Preliminaries and definitions

Let k be a field of unspecified characteristic. A coalgebra (C, A, e)
is a k-space C together with a comultiplication or diagonal map
A: C-»C® C, and a counit (or augmentation) e¢: C — k such that the
following properties are satisfied.

CA1L (AX®DA=U®X® A)A Coassociativity
CA2.(e®@DA=(IRe)A=1

A comodule (W, T) for a coalgebra C is a k-space W together with
amap T: W— W & C such that the following properties are satisfied.

CM1.(TR®NDT=UIR®AT
CM2. (I®e)T=I

A subcomodule (subcoalgebra) is a subspace which has a
comodule (coalgebra) structure under the restricted structure maps. If
S is a subset of a comodule (coalgebra) the subcomodule (sub-
coalgebra) generated by S, denoted by ((S)) is defined to be the
smallest subcomodule (subcoalgebra) containing S. If S is a finite set
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142 M. Batchelor [21

or spans a finite dimensional subspace, ({(S)) is in fact a finite
dimensional subcomodule (subcoalgebra).

If W is a comodule and V is a subcomodule, then W/V has a
comodule structure. If (W, T) and (W’, T') are comodules and f: W —
W' is a k-map, then f is a comodule map if (f ® I)T = T'f. The usual
isomorphism theorems hold.

A comodule (coalgebra) will be called simple if it contains no
proper non-zero subcomodules (subcoalgebras). Every comodule
contains a simple comodule, and every coalgebra contains a simple
subcoalgebra. If W is a comodule for C, define the socle of W, s(W)
to be the sum of all simple subcomodules of W. Define the coradical
R of the coalgebra C to be the sum of all simple subcoalgebras of C.
If C is considered as the C-comodule (C, 4), then s(C)=R.If Visa
subcomodule of W such that T(V)=V ® R, then V = s(W). s(W)
has the property that it decomposes as a direct sum of simple
subcomodules. R decomposes as a direct sum of simple subcoalge-
bras.

The notion of the socle can be extended. Define s,.(W) inductively
by setting so( W) =0, and s,(W)/s,-(W) = s(W]s,_(W)). Since every
non-zero subcomodule contains a simple subcomodule, the chain
so(W)=s5:(W)=s(W)=... is strictly ascending unless s,(W) is the
whole of W for some k. Since every element w of W is contained in
the finite dimensional subcomodule {w)), W = Ujs_; s.(W).

The socle can be described in another way. For subspaces X = W,
and Y = C, define the wedge of X and Y, X A Y to be the kernel of
the map

W W®C— WIXQCY

Thus XA Y=T' (WX Y +X®C). It can be shown that 0A R =
s(W). If we define AWR =0 and ALR =(A%'R) AR, then it follows
that A%R = s,(W).!

A comodule (I, T) is injective if for every comodule (W, T') and
every subcomodule U = W, every comodule map f: U —>1 extends
uniquely to a map f: W— 1L C itself is an injective C-comodule.
Direct summands of injective comodules are injective.

2. The theorem

THEOREM: Let (W, T) be an injective comodule. Let s(W)=
S.em X, be a direct decomposition of the socle of W as a sum of

'For elementary properties of comodules and coalgebras, see Sweedler, [2].



[3] Decomposition theorem for comodules 143

simple subcomodules. This decomposition of s(W) can be extended to
a direct decomposition of W as a sum of indecomposable injective
subcomodules, W =X ,cn J,. such that s(J,) = X,..

The theorem is proved by constructing inductively a decomposition
of 5,(W) which extends the decomposition of s, ;(W).

For every u in M, let J.= X,. Suppose we have J.™' defined for
some n =2 such that

() sUi ) =X.

(i) X T = sa(W)

REM

(iii) The sum 2 Ji7tis direct.

nEM

We wish to define J,. Set Z, = Z,em. X,. Define
B, ={S=I."" A R:S=J.",SNZ, =0}

#, is nonempty, since J. ' is in &B,, and by Zorn’s lemma %, has
maximal elements. Choose J. to be a maximal element of %&,. It
remains to show that the set {J}.cu satisfies the three conditions of
the inductive hypothesis.

() sJp)=X,, since J.=J3 7" If s(J2)& X,, it follows that J, N
Z,#0, a contradiction. So s(J.) = X,.

(ii) It is enough to show that the sum 3,c, J} is direct for all finite
subsets A =M. This can be done by induction on |A|. Assume now
that for any subset A of M with |A|<r, the sum Z,c, J} is direct. If
I'=M, |T'| = r, and the sum 3, J} is not direct then there is some A
in I' and some simple comodule U =<J{ such that U =X, <
SCrerw ) =2 ern sUUD) =Z,cru X, =Z,, which contradicts the
directness of the decomposition of the socle, and completes the
inductive step. (The second equality follows from the directness of
the sum X,cru J;, by the inductive hypothesis.)

(iii) This condition is shown in three steps.

Step 1. I."'AR=JI.®D Z,

Step2. X Ji=23 (Ji'AR)

rEM nEM

Step 3. X (Ji'AR)= (2 J:-') AR = 5,(W) AR = s.(W).

wEM
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Step 1. Clearly J. + Z, <J.7' A R. To see the converse, it is suffi-
cient to show that if U = J; ' is a subcomodule of W such that U/J:™"
is simple, then U <J, + Z,. Suppose that U£J. + Z,. Then U +
JiF Ji. Moreover, U+J. <J."' AR so by the maximality of J” in
%, it must be that (U +J.)NZ,#0. We may pick z#0 in Z, such
that z=wu +j with u in U and j in J.. Now u is not in J., (otherwise z
would be in J, N Z, contrary to the conditions in %,) and hence not
in J;'. Therefore u +J?' must generate U/J:™". Thus

U=(u+ 7 =N+ n+ L7 <Ti+ Z,

which is a contradiction. Thus it must be that U =<J.+ Z,, and
therefore J. + Z, =J. ' A R. Since J.. isin RB,, J. N Z, = 0 and the sum
is direct.

Step 2. This is a direct consequence of step 1 and the definition of
J.

Step 3. The last equality is a property of the wedge, the second
uses the inductive hypothesis, that 2, Ji "' = 5. (W). Since J'=
SiemJi', we have that J;7' AR =<C,cmJr ) AR for all & in M, and
S.emTAR =Coen i) AR

Now let U=C,.cmnJi ) A R. We may assume that U is finite
dimensional. Then

U+ Y J:"/;E)MJ:*'E U/UO(Z J::*‘)z U+ 2;,1:*'/ >

nEM “EM RE HEM'
Where M’ is a finite subset of M such that UNC.enJi )=

Suew 17 Since U=Cueni)AR, U+Zpew Ji [Suen JI7 s
completely reducible. Let

U 3,5 B =2 (v 3 0)

nEM’

be a direct decomposition as simple comodules. It is sufficient to
show each U is contained in 2,.cm(J2 " A R).

Take U = U,andset Q =2,ca J2 7', and Q. = Zscmra Jr ', forall
in M'. We have projections (which are comodule maps)

p.: U-U/Q, for all p in M.
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These can be used to get a comodule homomorphism

p:U— 2 U/Q. (external direct sum).

wEM'

If a is in ker(p), then p,.(a) =0 for all x in M'. That is, a is in Q, for
all w in M'. But the sum Z,cp J2 7' is direct, and so N em Q. =0,
whence a =0 and p is injective.

Let U'=im(p) in 2 ,.cp U/Q.. p is an isomorphism of U onto U'.
Let ro: U’— W be the inverse to p on U’. Since W is injective we can
extend r, to a map

rr> UQ.-»W

LEM’

Im(r) = U and im(r) == ,.cn r(U/QL).
It remains to show that r(U/Q,) is contained in J.™' A R. We have a
series

UlQ.zQQ.=0

The bottom factor is isomorphic to J.™' and the top factor
(U1Q)I(QIQ.,) is simple. Moreover,

r(QIQ)=rpUr ) =J"

(Notice that p,(J;™)=0 if A# u, and thus p(J. N=Q/Q. =U/Q,.)
We have an induced homomorphism

7 UlQJQIQ. - r(UIQIIr(QIQ.) = r(UI QI

Thus r(U/Q,)/J:~" is a homomorphic image of a simple comodule and
must therefore be simple or 0. If r(U/Q.)/J:™" is simple, then
r(U/Q.)<Jr' AR, by a property of the wedge. If r(U/Q.)/J.' =0,
then r(U/Q)=J:'=J."AR

Thus r(U/Q.)=<J. " AR forall w in M’ and U =3 ,.cr r(U/Q,) =
2,.em(J27" A R), which completes step 3.

Let J, = U5_, J.. The sum I, J, is direct, since the sum 2 emJ ]
is direct for all n, and it is the whole of W since 2,emJ . = s.(W) and
Ui $a(W) = W. s(J) = CrenJD) N J, = J., by directness of the sum
3,enJi- The J, are indecomposable since each J, contains a unique
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simple subcomodule. Each J, is injective since direct summands of
injective comodules are injective.
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