@article{CM_1975__30_3_221_0,
author = {Altman, Allen B. and Kleiman, Steven L.},
title = {A divisorial cycle acquiring an embedded component under a flat specialization},
journal = {Compositio Mathematica},
pages = {221--233},
year = {1975},
publisher = {Noordhoff International Publishing},
volume = {30},
number = {3},
mrnumber = {382270},
zbl = {0319.14001},
language = {en},
url = {https://www.numdam.org/item/CM_1975__30_3_221_0/}
}
TY - JOUR AU - Altman, Allen B. AU - Kleiman, Steven L. TI - A divisorial cycle acquiring an embedded component under a flat specialization JO - Compositio Mathematica PY - 1975 SP - 221 EP - 233 VL - 30 IS - 3 PB - Noordhoff International Publishing UR - https://www.numdam.org/item/CM_1975__30_3_221_0/ LA - en ID - CM_1975__30_3_221_0 ER -
%0 Journal Article %A Altman, Allen B. %A Kleiman, Steven L. %T A divisorial cycle acquiring an embedded component under a flat specialization %J Compositio Mathematica %D 1975 %P 221-233 %V 30 %N 3 %I Noordhoff International Publishing %U https://www.numdam.org/item/CM_1975__30_3_221_0/ %G en %F CM_1975__30_3_221_0
Altman, Allen B.; Kleiman, Steven L. A divisorial cycle acquiring an embedded component under a flat specialization. Compositio Mathematica, Tome 30 (1975) no. 3, pp. 221-233. https://www.numdam.org/item/CM_1975__30_3_221_0/
[1] and : Algebraic systems of linearly equivalent divisor-like subschemes. Compositio Math., vol. 29 (1974) 113-139. | Zbl | MR | Numdam | EuDML
[2] and : Introduction to Grothendieck Duality Theory. Lecture Notes in Math., Vol. 146, Springer-Verlag (1970) (cited GD). | Zbl | MR
[3] and : Joins of schemes, linear projections (to appear). | Zbl | MR | Numdam
[4] and : Eléments de Géométrie Algébrique. Publ. Math. No. 8, 11, 17, 24, 28, 32. IHES, (1961, 1961, 1963, 1965, 1966, 1967) (cited EGA II, III1 or 0III, III2, IV2, IV3, IV4). | Numdam
[5] : Topologie Algébrique et Théorie des Faisceaux. Hermann, Paris (1958). | Zbl | MR
[6] : Lectures on Curves on an Algebraic Surface. Annals of Math. Studies, No. 59, Princeton University Press (1966). | Zbl | MR






