@article{CM_1974__28_2_179_0,
author = {Cijsouw, P. L.},
title = {Transcendence measures of certain numbers whose transcendency was proved by {A.} {Baker}},
journal = {Compositio Mathematica},
pages = {179--194},
year = {1974},
publisher = {Noordhoff International Publishing},
volume = {28},
number = {2},
mrnumber = {347745},
zbl = {0284.10014},
language = {en},
url = {https://www.numdam.org/item/CM_1974__28_2_179_0/}
}
TY - JOUR AU - Cijsouw, P. L. TI - Transcendence measures of certain numbers whose transcendency was proved by A. Baker JO - Compositio Mathematica PY - 1974 SP - 179 EP - 194 VL - 28 IS - 2 PB - Noordhoff International Publishing UR - https://www.numdam.org/item/CM_1974__28_2_179_0/ LA - en ID - CM_1974__28_2_179_0 ER -
Cijsouw, P. L. Transcendence measures of certain numbers whose transcendency was proved by A. Baker. Compositio Mathematica, Tome 28 (1974) no. 2, pp. 179-194. https://www.numdam.org/item/CM_1974__28_2_179_0/
[1] : Linear forms in the logarithms of algebraic numbers III. Mathematika 14 (1967) 220-228. | Zbl | MR
[2] : A central theorem in transcendence theory, Diophantine approximations and its applications (edited by Charles F. Osgood). Academic Press, New York and London 1973, pp. 1-23. | Zbl | MR
[3] : Transcendence measures, thesis. University of Amsterdam, 1972. | Zbl | MR
[4] : Transcendence measures of exponentials and logarithms of algebraic numbers Comp. Math. 28 (2) (1974) 163-178. | Numdam | Zbl | MR | EuDML
[5] : Estimate for a linear form of logarithms of algebraic numbers (Russian). Mat. Sbornik (N.S.) 76 (118) (1968) 304-319.English translation: Math. USSR Sbornik 5 (1968) 291-307. | Zbl | MR | EuDML
[6] : Improved estimate for a linear form of the logarithms of algebraic numbers (Russian). Mat. Sbornik (N.S.) 77 (119) (1968) 423-436.English translation: Math. USSR Sbornik 6 (1968) 393-406. | Zbl | MR
[7] : The approximation of a certain class of transcendental numbers (Russian). Mat. Zametki 5 (1) (1969) 117-128.English translation: Math. Notes 5 (1969) 73-79. | Zbl | MR






