@article{CM_1973__27_2_197_0,
author = {Galambos, J\'anos},
title = {On infinite series representations of real numbers},
journal = {Compositio Mathematica},
pages = {197--204},
year = {1973},
publisher = {Noordhoff International Publishing},
volume = {27},
number = {2},
mrnumber = {332700},
zbl = {0274.10011},
language = {en},
url = {https://www.numdam.org/item/CM_1973__27_2_197_0/}
}
Galambos, János. On infinite series representations of real numbers. Compositio Mathematica, Tome 27 (1973) no. 2, pp. 197-204. https://www.numdam.org/item/CM_1973__27_2_197_0/
[1] : The ergodic properties of the denominators in the Oppenheim expansion of real numbers into infinite series of rationals. Quart. J. Math. Oxford Ser., 21 (1970) 177-191. | Zbl | MR
[2] : A generalization of a theorem of Borel concerning the distribution of digits in dyadic expansions. Amer. Math. Monthly, 78 (1971) 774-779. | Zbl | MR
[3] : On a model for a fair distribution of gifts. J. Appl. Probability, 8 (1971) 681-690. | Zbl | MR
[4] : Some remarks on the Lüroth expansion. Czechosl. Math. J., 22 (1972) 266-271. | Zbl | MR
[5] : Probabilistic theorems concerning expansions of real numbers. Periodica Math. Hungar., 3 (1973) 101-113. | Zbl | MR
[6] : Further ergodic results on the Oppenheim series. Quart. J. Math. Oxford Ser., 25 (1974) (to appear). | Zbl | MR
[7] and : Lüroth series and their ergodic properties. Proc. Nederl. Akad. Wet, Ser. A, 72 (1969) 31-42. | Zbl | MR
[8] : Representations of real numbers by series of reciprocals of odd integers. Acta Arith., 18 (1971) 115-124. | Zbl | MR
[9] : The representation of real numbers by infinite series of rationals. Acta Arith., 21 (1972) 391-398. | Zbl | MR
[10] : Zur metrische Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czechosl. Math. J., 18 (1968) 489-522. | Zbl | MR
[11] : Metrische Sätze über Oppenheimentwicklungen. J. Reine Angew. Math., 254 (1972) 152-159. | Zbl | MR
[12] : Success epochs in Bernoulli trials with applications in number theory. Math. Centre Tracts, Vol. 42, (1972) Amsterdam. | Zbl | MR






