@article{CM_1973__26_3_233_0,
author = {Dijksma, A. and de Snoo, H. S. V.},
title = {Symmetric subspaces related to certain eigenvalue problems},
journal = {Compositio Mathematica},
pages = {233--247},
year = {1973},
publisher = {Noordhoff International Publishing},
volume = {26},
number = {3},
mrnumber = {344928},
zbl = {0265.47022},
language = {en},
url = {https://www.numdam.org/item/CM_1973__26_3_233_0/}
}
TY - JOUR AU - Dijksma, A. AU - de Snoo, H. S. V. TI - Symmetric subspaces related to certain eigenvalue problems JO - Compositio Mathematica PY - 1973 SP - 233 EP - 247 VL - 26 IS - 3 PB - Noordhoff International Publishing UR - https://www.numdam.org/item/CM_1973__26_3_233_0/ LA - en ID - CM_1973__26_3_233_0 ER -
Dijksma, A.; de Snoo, H. S. V. Symmetric subspaces related to certain eigenvalue problems. Compositio Mathematica, Tome 26 (1973) no. 3, pp. 233-247. https://www.numdam.org/item/CM_1973__26_3_233_0/
[1] Extension theory of formally normal and symmetric subspaces, Mem. Am. Math. Soc. | Zbl | MR
and [2] Sur les opérateurs différentiels ordinaires linéaires formellement autoadjoints I. Funkcial. Ekvac. 6, 35-90 (1964) | Zbl | MR
[3 ] On ordinary differential equations of any even order and the corresponding eigen. function expansions. Amer. J. Math. 72, 502-544 (1950). | Zbl | MR
[4] Singuläre S-hermitesche Rand-Eigenwertprobleme. manuscripta math. 3, 35-68 (1970). | Zbl | MR
[5] Special theory for pairs of ordinary formally self-adjoint differential operators. J. Indian Math. Soc. 34, 259-268 (1970). | Zbl | MR
and [6] S-hermitesche Rand-Eigenwertprobleme I. Math. Ann. 162, 9-26 (1965). | Zbl | MR
and : [7] S-hermitesche Rand-Eigenwertprobleme lI. Math. Ann. 165, 236-260 (1966). | Zbl | MR
and [8] S-hermitesche Rand-Eigenwertprobleme III. Math. Ann. 177, 67-94 (1968). | Zbl | MR
[9] Untersuchungen über singuläre reelle S-hermitesche Differentialgleichungssysteme im Normalfall. Math. Z. 107, 271-296 (1968). | Zbl | MR
[10] Weitere Untersuchungen über singuläre reelle S-hermitesche Differentialgleichungssysteme im Normalfall. Math. Z. 109, 153-168 (1969). | Zbl | MR | EuDML





