@article{CM_1972__25_1_93_0,
author = {Niederreiter, H.},
title = {On the existence of uniformly distributed sequences in compact spaces},
journal = {Compositio Mathematica},
pages = {93--99},
year = {1972},
publisher = {Wolters-Noordhoff Publishing},
volume = {25},
number = {1},
mrnumber = {316661},
zbl = {0239.10019},
language = {en},
url = {https://www.numdam.org/item/CM_1972__25_1_93_0/}
}
Niederreiter, H. On the existence of uniformly distributed sequences in compact spaces. Compositio Mathematica, Tome 25 (1972) no. 1, pp. 93-99. https://www.numdam.org/item/CM_1972__25_1_93_0/
[1] The existence of well distributed sequences in compact spaces, Indag. Math. 27 (1965), 221-228. | Zbl | MR
[2 ] On families of equi-uniformly distributed sequences in compact spaces, Math. Ann. 161 (1965), 255-278. | Zbl | MR
[3] Intégration, 2ème éd., Act. Sci. Ind. 1175, Hermann, Paris, 1965. | Zbl | MR
[4] On integration in compact metric spaces, Comm. Math. Univ. Carol. 2 (1961), 4, 17-19. | Zbl | MR
[5] Gleichverteilte Folgen in lokalkompakten Räumen, Math. Z. 86 (1964), 157-189. | Zbl | MR
[6] Almost no sequence is well distributed, Indag. Math. 26 (1964), 488-492. | Zbl | MR
[7] Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955), 470-501. | Zbl | MR
[8 ] Folgen auf kompakten Räumen, Abh. math. Sem. Hamburg 20 (1956), 223-241. | Zbl | MR
[9] Folgen auf kompakten Räumen. II, Math. Nachr. 18 (1958), 188-202. | Zbl | MR
[10] Zur formalen Theorie der Gleichverteilung in kompakten Gruppen, Rend. Circ. Mat. Palermo, ser. 2, 4 (1955), 33-47. | Zbl | MR
[11] Probability methods in the theory of distributions modulo one, Compositio Math. 16 (1964), 106-137. | Zbl | MR | Numdam
[12] The discrepancy of a g-adic sequence, Indag. Math. 30 (1968), 54-66. | Zbl | MR
[13] Topology and Measure, Lecture Notes in Mathematics, vol. 133, Springer-Verlag, Berlin-Heidelberg- New York, 1970. | Zbl
[14] Measures on topological spaces, Amer. Math. Soc. Translations, ser. 2, 48 (1965), 161-228. | Zbl
[15] The law of nought-or-one in the theory of probability, Studia Math. 7 (1938), 143-149. | Zbl | JFM






