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A HOMOTOPY THEORETIC CHARACTERIZATION
OF THE TRANSLATION IN E*

by

L. S. Husch!

Let h be an orientation preserving homeomorphism of Euclidean
n-space, E", onto itself and let 4’ be the unique extension of % to the
n-sphere, S" = E" U {o0}. Let d be a metric for S”. Kinoshita [11] [12]
has shown that the following four conditions are equivalent.

1. Sperner’s condition [22]: for each compact subset C of E", there
exists a positive integer N such that for each |m| > N, i"C n C = ¢.

2. Terasaka’s condition [24]: for each compact subset C of E",
lim,,, + , A"C = o0.

3. Kerékjdrtd’s condition [10]: /' is regular at each point of E" but not
at oo;i.e. if xe E", for each & > O there exists 6 > 0 such that d(x, y) < 6
implies d(h™x, h™y) < & for each integer m. (Note that d is the metric of
S”, not E™).

4. The orbit space is Hausdorff and the natural projection of E" onto
the orbit space is a covering map.

If h satisfies these conditions, 4 is called quasi-translation [24]. Sperner
and Kerékjarté showed that for n = 2, their conditions implied that 4 is
a topological translation; i.e. if t(x) = x+1, then there exists a homeo-
morphism k of E? such that & = k™ 'tk (h has the same topological type
as t). Clearly a topological translation is a quasi-translation.

THEOREM: (Sperner, Kerékjartd). If h is a homeomorphism of E* onto
itself, h is a topological translation if and only if h is a quasi-translation.

Kinoshita [11] has given an example of a quasi-translation in E?
which is not a topological translation. In fact, it has been shown by
Sikkema, Kinoshita and Lomonaco [20] that there exists uncountably
many distinct topological types of quasi-translations of E3.

In this paper, we prove the following.

THEOREM 1: For each n = 4, there exists a quasi-translation of E"
which is not a topological translation.

THEOREM 2: A necessary and sufficient condition that a quasi-translation
hof E", n > 4, be a topological translation is that for each compact subset
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56 L. S. Husch 21

C of E" there exists a compact set D containing C such that each loop in
E"—D is contractible in E"—C, where X = )X % h'(X).

If 4 is a diffeomorphism (a piecewise linear homeomorphism) which
satisfies the hypotheses of Theorem 2, then it is possible to find a dif-
feomorphism (a piecewise linear homeomorphism) k such that khk ™! = ¢
by a slight modification of the proof below. We should also note that
the homeomorphism given by Theorem 1 can be chosen so that it is
either a diffeomorphism or a piecewise linear homeomorphism.

The author expresses his deepest gratitude to L. Siebenmann who,
after reading an earlier version of this paper, made suggestions which
included the strengthening of Theorem 2 and the shortening of the proof
of Proposition 1.3 of which the author proved a spzcial case.

1. Proof of Theorem 1

Recall that a map f: X — Y is proper if for each compact set C < ¥,
S~Y(C) is compact. A homotopy f,: X —» Y, tel = [0, 1], is a proper
homotopy if the induced map F: XxI— Y is proper. f: X —> Y is a
proper homotopy equivalence if there exists a proper map g:¥ —» X
such that fg and gf are properly homotopic to the identity maps of ¥
and X, respectively.

PROPOSITION 1.1. Let f: X — Y be a proper map of Hausdorff spaces
and let i : C — C be the identity map of a compactum C. If ixf:CxY —
CxY is a proper homotopy equivalence, then f is a proper homotopy
equivalence.

PROOF. Let g : Cx Y — Cx X be a proper map such that (i xf)g and
g(i x f) are properly homotopic to the identity maps of ¥ and X, respec-
tively. Let F:CxXxI— CxX be a proper homotopy such that
F(c, x,0) = g(ixf)(c, x) and F(c, x, 1) = (¢, x). Let ¢, € C and define
J:Y—>CxYandp:CxX — Xbyj(x) = (c,x) and p(c, x) = x.

Define g' = pgj and note that the homotopy F’ : X x I — X defined by
F'(x,t) = pF(sy, x, 1) is a proper map such that F'(x, 0) = ¢’f(x) and
F'(x,1) = x. Similarly, one can show that fg’ is properly homotopic to
the identity of Y.

COROLLARY 1.2. Let f, X, Y and C be as in Proposition 1.1. If r : C - C
is a homotopy equivalence and if r x f : Cx X - C x Y is a proper homotopy
equivalence, then f is a proper homotopy equivalence.

Let [X, Y] be the homotopy classes of mapping of X into Y.

PROPOSITION 1.3. Let C be a compact Eilenberg-MacLane space K(G, 1)
[21; p. 424] where G is a finitely generated Abelian group and let X and Y
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be Hausdorff spaces such that [X, C] and [Y, C] are trivial. If there exists
a proper homotopy equivalence from Cx X to Cx Y, then there exists a
proper homotopy equivalence from X to Y.

Proor. Let p; : Cx X — C and p, : Cx Y — C be the natural projec-
tions and let f: Cx X — Cx Y be a proper homotopy equivalence. Since
[X,Cl=H'(X;G)=0=1[Y,C] = H(Y; G) = 0, by the Kunneth
formula it follows that p} : H'(C; G) » H*(Cx X; G)and p3 : H*(C;G)
— H'(Cx Y; G) are isomorphisms. Let [i]e H'(C; G) = [C, C] be the
class of the identity map. Since f*: H'(CxY;G) > HY(Cx X; G) is
an isomorphism, there exists a homotopy equivalence k : C — C such
that p¥([k]) = f*p5([i]). Hence there exists a homotopy k, : Cx X — C,
tel, such that k, = p, fand k; = kp;.

Define i, : Cx X -» Cx Y by

Wz %) = (k2. X, af @ %) tel

where g : Cx Y — Y is the natural projection. Note that A, is a proper
homotopy such that h, = fand h, = kx (gf). Since ¢fis a proper map,
we can apply Corollary 1.2.

PrOOF OF THEOREM 1. If n = 4, let W"~! be Whitchead’s example of
a contractible 3-manifold which is not homeomorphic to E* [25] and if
n > 4, let W"! be the interior of contractible (n—1)-manifold W"~!
such that bdry W"~! is not simply-connected [14] [16] [4]. By [15],
E'x W3 is homeomorphic to E* and since Ix W" ™! is homeomorphic
toI",n > 4, E- x W""! is homeomorphic to E".

Consider S x W"~1 If S x E"~* were homeomorphic to S* x W"™1,
then by proposition 1.3, W"~! is proper homotopy equivalent to E"~*.
For n = 6, then W"~! is homeomorphic to E"~! by Siebenmann [17].
A step in Siebenmann’s proof of this fact is Lemma 2.10 of [18] which
says that n,(end of W"™ ') is trivial. This proof does not depend upon
the dimension. If n =5, n,(end of W"™!) =z (bdry W"™1') # 1. If
n = 4, the fact that W? < E? and n,(end of W?) = 1 implies that W?
is homeomorphic to E* [9]. These contradictions imply that S* x W™~ !
is not homeomorphic to S*xE" !, Let p: E" = E'x W" ! » S'x
W"~1 be the universal covering and let /4 be a generator of the covering
transformation group. Clearly # satisfies Sperner’s condition (cf [12])
and hence is a quasi-translation of E” but the orbit space of his S x "1
and hence /4 is not a topological translation.

2. Proof of Theorem 2

Let % be the orbit space and let p : E* — % be the natural projection.
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By Kinoshita [12], p is a covering map. Hence % is a manifold which
has the homotopy type of S*.

PROPOSITION. % is homeomorphic to S* x E"™1.

ProOF. We shall show first that % is the interior of a compact manifold.
We assume familiarity with [18] (Note the remark on p. 224 of [18]
which allows us to work in the topological category). We shall show that
7 has one end and that =, is essentially constant at this end.

It follows from Theorem 12 of [6] that % is not compact and hence
% has at least one end. By duality, HX(%) = H,_ (%) = 0 and by
[18; p. 204], % has one end, say e.

Let K; =« K, = --- be a sequence of compacta in % such that
% = | ) K;. There exists a compact set L, in E" such that p(L,) = K;.
By hypothesis, there exists a compact set C; in E" such that L; = C;
and each loop in E"—C; is contractible in E"— L, . Note that p(C,) is
compact; for suppose {x;} is a sequence of points in p(C;). Pick
{»:} € Cy such that p(y;) = x;. {y;} has a convergent subsequence;
therefore, so does {x;}.

Note that p~'p(C,) = C,. Let L, be a compact set in E" such that
p(L;) = K, u p(C,). Find C,, compact, containing L, such that each
loop in E"—C, is contractible in E”"— L,. By induction, we can find a
sequence of compacta {C;} in E" such that K; = p(C;) < p(C,+,),
U =\)31p(C), p7'p(C;) = C; and each loopin E"— ;. , is contract-
ible in E"—C,;.

Consider the following commutative diagram, where f;, g, and 4; are
induced by inclusions.

l- 7[1(E"—ci+1) 3 nl(%_p(éi+1)) 5Z->1

Si gi hi
1> (E"-C) B n(%-p(C))) S Z-1
The rows are exact by the exact homotopy sequence of a covering space;
clearly, 4; is an isomorphism. Suppose f: S* — % —p(C;,,) represents
[f1eny(%Z—p(C;.1)). If f can be lifted to E"—C; ., then, by construc-
tion of C;.;, q:[f]1 = 1. If f cannot be lifted to E"—C;,, then
ql[f] # 1. Hence image g;nimagep, = {1} and g¢|image g; is an
isomorphism onto Z.

Since glimage g;,, is also an isomorphism onto Z, it follows that
g;limage g, , is an isomorphism of image g;,, onto image g;. Therefore
m, is essentially constant at ¢ and 7;(¢) = Z. Note that this implies that
H!(X) = Z. From the exact sequence

> HAX) > H'(X) > HAX) > HX(X) >
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and duality, H,(X) = H,_,(X), we have an isomorphism induced by
inclusion, H'(X) — H.(X). This implies that inclusion induces iso-
morphisms H,(g) » H;(X) and 7,(g) = 7, (X).

Let o : S' - % be a locally flat embedding which is a homotopy
equivalence [5]. Since an orientable manifold supports a stable structure
[3], [8], there exists [3] an embedding o' : S*xI""! — % such that
o«'|bdry (S* x I"') is locally flat and o’(S*x4,4, -+, 1) = a(S?). Let
V = CI (U-image «'). By using universal coverings, relative Hurewicz
theorem and excision theorem, one easily sees that n,(¥, 0¥V) = 0 for
all i. The proposition now follows from [18].

ProOoF OF THEOREM 2. (Continued). Consider p~*({x} x E"~') for
some xes'. Since plp~'({x}xE""!) is a covering map, p~'({x} x
E™"1) is a countable collection of disjoint (n—1)-planes {E,} such that
P|E, is a homeomorphism for each o. Note that hE, n E;, = ¢ for each o.
We now proceed as in [7] to complete the proof; we include the proof
for completeness.

There is a homeomorphism y of E" onto itself such that y(E,) =
E" 'x{0} < E""'xE = E" and y(hE,) = E""*x {1}. Define 6 : E""!
— E"' by y 'hy(x, 0) = (6(x), 1). Since § is orientation-preserving,
it follows from [8] [13] that there is an isotopy &, of E"~ 1, ¢ € I, such that
d, = identity and 6, = J.

Define Fy : B(E""' % [0, 1]) > E" by Fy(x, t) = (6,(x), ¢). Extend F,
to F, a homeomorphism of E", by F(x,r) =y~ 'h%yFy(x, z) where
r=gq+z, ze(0,1]. Note thatif r = g+2z, z€ (0, 1],

F~ Yy 'hyF(x,r) = F~ 'y~ hyy Wiy Fy(x, z)
= F Yy 1" 1yFy(x, z)
= F'F(x,z+q+1)
= (x,r+1).

COROLLARY. The n-th suspension of a quasi-translation of E' is a topo-
logical translation provided either n = 2 and n+r = 5 or n+r < 3; ie.,
if h is a quasi-translation of E", then h' : E"x E" - E"X E", defined by
n'(x,y) = (h(x),y) is a topological translation.

ProoOF. Let us suppose n+r = 5, the other case is trivial. If U is the
orbit space of A, then Ux E" is the orbit space of A’. By Theorem 6.12
and the Main Theorem of [19], Ux E" is homeomorphic to the interior
of a compact manifold which has the homotopy type of S*. We proceed
now as in the proof of Theorem 2 to show that Ux E" is homeomorphic
to S'x E"™"~! and to show /' is a topological translation.
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