@article{CM_1970__22_4_425_0,
author = {Wall, C. T. C.},
title = {On the classification of hermitian forms. {I.} {Rings} of algebraic integers},
journal = {Compositio Mathematica},
pages = {425--451},
year = {1970},
publisher = {Wolters-Noordhoff Publishing},
volume = {22},
number = {4},
mrnumber = {281710},
zbl = {0211.07602},
language = {en},
url = {https://www.numdam.org/item/CM_1970__22_4_425_0/}
}
TY - JOUR AU - Wall, C. T. C. TI - On the classification of hermitian forms. I. Rings of algebraic integers JO - Compositio Mathematica PY - 1970 SP - 425 EP - 451 VL - 22 IS - 4 PB - Wolters-Noordhoff Publishing UR - https://www.numdam.org/item/CM_1970__22_4_425_0/ LA - en ID - CM_1970__22_4_425_0 ER -
Wall, C. T. C. On the classification of hermitian forms. I. Rings of algebraic integers. Compositio Mathematica, Tome 22 (1970) no. 4, pp. 425-451. https://www.numdam.org/item/CM_1970__22_4_425_0/
[1] Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. Crelle's Journal 183 (1941), 148-167. | Zbl | MR | JFM
[2] On modules with quadratic forms. In 'Algebraic K-theory and its Geometrical Applications'. Springer Lecture Notes, vol. 108 (1969), 55-66. | Zbl | MR
[3] Algèbre Ch. 9: Formes sesquilinéaires et formes quadratiques. Hermann, Paris 1959. | Zbl | MR
[4] Algèbre Commutative Ch. 3: Graduations, filtrations et topologies. Hermann, Paris, 1961. | Zbl
[5] (a) Hasse principle for H1 of simply connected groups, pp. 159-163. (b) Strong approximation. pp. 187-196, in Proceedings of Symp. in Pure Math. IX: Algebraic groups and discontinuous subgroups. Amer. Math. Soc. 1966. | Zbl | MR
[6] Aquivalenz Hermitscher Formen über einem beliebigen algebraischen Zahlkörper. Abh. Math. Sem. Hamburg 11 (1936), 245-248. | Zbl | JFM
[7] Introduction to quadratic forms. Springer-Verlag. | Zbl
[8] Corps Locaux. Hermann, 1962. | Zbl | MR
[9] Arithmetic of unitary groups. Ann. of Math. 79 (1964), 369-409. | Zbl | MR
[10] On the axiomatic foundations of the theory of Hermitian forms. Proc. Camb. Phil. Soc. 67 (1970), 243-250. | Zbl | MR





