@article{CM_1970__22_2_143_0,
author = {Elliott, Robert},
title = {Riesz trace class operators},
journal = {Compositio Mathematica},
pages = {143--163},
year = {1970},
publisher = {Wolters-Noordhoff Publishing},
volume = {22},
number = {2},
mrnumber = {270199},
zbl = {0196.14405},
language = {en},
url = {https://www.numdam.org/item/CM_1970__22_2_143_0/}
}
Elliott, Robert. Riesz trace class operators. Compositio Mathematica, Tome 22 (1970) no. 2, pp. 143-163. https://www.numdam.org/item/CM_1970__22_2_143_0/
[1] Operators of Riesz type. Pacific Jour. Math. 18 (1966), 61-72. | Zbl | MR
[2] Foundations of Modern Analysis. Academic Press. New York, 1960. | Zbl | MR
[3] Linear Operators, Part II. Interscience. New York, 1963. | Zbl | MR
[4] Diagrams of topological groups. To appear.
[5] Produits Tensoriels Topologiques et Espaces Nucléaires. American Math. Soc. Memoirs no. 16. Providence R.I. (1955). | Zbl | MR
[6] La Théorie de Fredholm. Bull. Soc. Math., France. 84 (1956), 319-384. | Zbl | MR | Numdam
AND [7] Generalized Functions. Volume 4. Academic Press, New York (1964).
[8] Non self-adjoint operators which have a trace. (Russian). Doklady Acad. Nauk. S.S.S.R. 125 (1959). 485-487. | Zbl
[9] Théorie des points fixes: indice total et nombre de Lefschetz. Bull. Soc. Math., France, 87 (1959) 221-223. | Zbl | MR | Numdam
[10] Homology. Springer-Verlag. Berlin. | Zbl | MR
[11) Formulae of Fredholm type for compact linear operators on a general Banach space. Proc. London Math. Soc. (3), 3, (1953), 368-377. | Zbl | MR
[12] Operators with a Fredholm theory. Jour. London Math. Soc. 29 (1954) 318-326. | Zbl | MR
[13] A theory of cross spaces. Annals of Mathematics Studies no. 26. Princeton 1950. | Zbl | MR
[14] Introduction to Functional Analysis. Wiley. New York 1958. | Zbl | MR
[15] Riesz operators in Banach spaces. Proc. London Math. Soc. 16 (1966) 131-140. | Zbl | MR
[16] The decomposition of Riesz operators. Proc. London Math. Soc. 16 (1966) 737-752. | Zbl | MR
[17] Functional Analysis Springer-Verlag. Berlin 1965. | Zbl






