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The Baire category of independent sets

by

F. Bagemihl
Princeton

Let us denote the linear continuum by C. Suppose that to
every x E C there corresponds a set P(x) C C such that x ~ P(x)
and x is not a limit point of P(x). Two points x and y of C are
said to be independent, provided that x e P(y) and y e P(x). A
subset of C is said to be independent, provided that every pair of
points of this subset is independent.
Fodor [1], [2] has obtained results concerning the Lebesgue

measure of independent sets. The present note contains several
theorems regarding the Baire category of independent sets, a few
of which are somewhat analogous to Fodor’s results. In the proof
of Theorem 1 we make use of an idea due to Làzàr [4]. Our
theorems are valid for more general sets than C, as will be seen
from the proofs.

THEOREM 1. There always exists an independent set of second
category.

Proof: We have assumed that no point x of C is a limit point
of P(x), and therefore we can associate with every x E C an inter-
val J(x) with rational endpoints, such that J(x) ~ P(x) is empty
and x E J(x). The set of all intervals with rational endpoints is
enumerable; denote these intervals by J1, J2, ..., Jn,.... For
every natural number n, let Cn be the set of points x E C with
the property that J(x) = Jn. Then C = ~ C n. If C n were of first

category for every n, C would also be of first category [3, p. 130],
which is impossible [3, p. 136]. Hence, there exists a natural
number k such that Ck is of second category. If x anû. y are any
two points of Ck, then P(x) ~ Ck and P(y) ~ Ck are both empty,
so that x and y are independent, and consequently Ck is an in-
dependent set. This completes the proof.
A consequence of Theorem 1 and a theorem [8, p. 134] on

category, is that there always exists an independent set which is
of second category in every subinterval of some interval of C.
It is not true, however, that there always exists an independent
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set which is of second category in every interval of C. This follows

immediately from
THEOREM 2. There does not always exist an independent set

which is everywhere dense in C.
Proof: If x E C, define P(x) to be the set of all real numbers

y satisfying the relation [x]+2~y[x]+3, where [x] denotes
the greatest integer in x. Now suppose that D, a subset of C, is
everywhere dense in C. Then D must contain a point x such
that 0~x1, and a point y such that 2~y3; since y E P(x),
tx and y are not independent, and hence D cannot be an independent
set.

A f ortiori [8, p. 135] there does not always exist an independent
set which is a residual subset of C. A sufficient condition for the

nonexistence of a residual independent set is furnished by
THEOREM 8. Let M, a subset of C, be o f second category, and

suppose that P(x) is of second category for every x ~ M. Then there
does not exist a residual independent set.

Proof: If R is a residual set, then [3, p. 134] R ~ M is not
empty; let xc R n M. Since P(x) is of second category, it again
follows that R fl P(x) is not empty; let y E R ~ P( x). Now x and y
are not independent, and hence R cannot be an independent set.
THEOREM 4. There does not always exist an independent set which

is residual in some interval ol C.
PROOF: It is possible (see, e.g., [5, p. 208]) to express C as the

union of enumerably many mutually exclusive sets El, E2, ..., 
En, ..., each of which is of second category in every interval of C.
If x E C, let n be that natural number for which x E E., and define
P(x) to be the set of all elements of En lying outside the interval
of length 1 /n with x as midpoint. Now suppose that S, a subset
of C, is residual in some interval, K, of C. Since each set

En(n = 1, 2, 3, ... ) is of second category in every subinterval of
K, it follows [3, pp. 180, 134] that S n K n En (n = 1, 2, 3, ... )
is everywhere dense in K. Hence, if n is sufficiently large, there
exists an x ~ S ~ K ~ En such that the interval of length 1/n
with x as midpoint has both endpoints in the interior of K. This
implies the existence of a subinterval, L, of K such that
L f1 En C P(x), and since S n K ~ En is everywhere dense in K,
there exists a y~S~L~En. Thus S contains two elements x
and y which are not independent, and therefore S cannot be an
independent set.

In the proof of Theorem 4, P(x) was chosen to be of second
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category for every x E C. Does Theorem 4 remain valid if P(x)
is required to be a "thinner" set for every x E C? Of course if
P(x) is required to be empty for every x E,C, then Theorem 4 is
trivially false. The next theorem indicates, however, that the
"thinness" of P(x) has very little effect on the truth of Theorem 4.
The proof of Theorem 5 obviously constitutes an alternative proof
of Theorem 4.

THEOREM 5. The assumption that P(x) contains at most one
point f or every x E C does not imply the existence of an independent
set which is residual in some interval o f C.
PROOF: There are enumerably many closed (nondegenerate)

intervals of C with rational endpoints. There are [3, p. 344]
2N0 Gô-subsets of C that are everywhere dense in C, and likewise,
for every closed interval, H, of C with rational endpoints, there
are 2Ko Gd-subsets of H that are everywhere dense in H; all

together, then, this makes 2No. No = 2N0 subsets, which may
be arranged in a transfinite sequence,

where 03C903B3 is the initial number [3, p.43] of Z(2N0). Every G03BE(03BE03C903B3)
contains [3, pp. 135, 128] 2N0 points.
Now we define, by means of transfinite induction, a sequence

of distinct points

and a sequence of points

as follows. Let xo be an arbitrary point of Go, and let yo be any
other point of Go. Suppose that 003B103C903B3, and that we have
defined aep and y03B2 for every 03B2  03B1. There are fewer than 2No

points aep wit 03B203B1, whereas Ga contains 2Xo points. Let xa be
an arbitrary point of Ga such that x03B1~x03B2 (03B203B1), and let ya be
any other point of Ga . This completes the induction.
For every 03BE03C903B3, let P(x03BE)={y03BE}; for every ae E C such that

x~x03BE (e  03C903B3), let P(x) be the empty set.
Suppose that T, a subset of C, is residual in some interval of

C; then T is residual in some closed subiriterval, Q, of this inter-
val, with rational endpoints. Hence [3, p. 135], there exists a
e  cvy such that G03BE  T ~ Q, which implies that zà and ye belong
to T. Since xe and ye are not independent, T cannot be inde-
pendent.
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THEOREM 6. Let d be a positive number, and suppose that, for a
residual set, R, o f elements x E C, the distance between x and P (x )
is not less than d. Then, i f D is any interval of C of length d, there
exi.sm an independent set which is residual in D.
PROOF: The set R~ D is residual in D, and if x and y are

distinct points of R n D, both different from the possible end-
points of D, then x and y are independent, because P(x) and P(y)
cannot contain any points in the interior of D.

THEOREM 7. Let d be a positive number, and suppose that, for a
set, S, ul elements x E C, which is of second category in every interval
of C, the distance between x and P(x) is not le88 than d. Then, if
D is any interval of C of length d, there exists an independent set
which is of second category in every subinterval of D; but there does
not always exi8t an independent set which is everywhere dense in C,
even i f S = C.
PROOF: The first and second parts of the conclusion follow from

arguments analogous to those used in proving Theorems 6 and 2,
respectively.

THEOREM 8. Let d be a positive number. Suppose that, for every
X E C, P(x) consists of at most one point, and the distance between
x and P(x) is not less than d. Then there does not always ext8t a
residual independent set.

PROOF: It is only necessary to modify the proof of Theorem 5
in two essential respects: let the terms of the sequence (1) be
the Gd-subsets of C that are everywhere dense in C, and subject
each y03BE (03BE03C903B3) to the additional condition that the distance
between xe and y03BE be not less than d.
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