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Zum Randverhalten subharmonischer Funktionen
von

Alfred Huber,
Ziirich

Im Jahre 1928 veroffentlichte J. E. Littlewood [1] den folgen-
den Satz: Set v(z) subharmonisch in |z | < 1 und sei

a) f:' | o(re®®) | dO® = O(1)  (r — 1).
Dann existiert der Grenzwert
(2) lim v(re®®) = V(0)

r—1

fiir fast alle') Werte von O(— = < 0 = + =n).

Nun hat kiirzlich M. Tsuji [3] die nachstehende Vermutung
ausgesprochen: Fiir fast alle Werte von @ (—n < 0 =< + =n) ist
folgende Awussage erfiillt: Es ist
(3) lim v(e®® — 7e'®+x0) = V(0)2) (r>0)

70
fiir fast alle Werte von x(| x | < =/2). Es gelang Tsuji, die Richtig-
keit seiner Vermutung unter folgender Zusatzvoraussetzung zu
verifizieren: Es existiere eine Zahl 1 < 1 derart, dass u(| 2 | < r)=
=O0([1 —r]™) fiir r - 1, wobei u die v zugeordnete Massenver-
teilung bezeichnet. Zum Beweise kombinierte Tsuji die Little-
woodsche Methode mit zuséitzlichen, eigenen Abschitzungen.

In der vorliegenden Note soll eine Erweiterung des Little-
woodschen Satzes hergeleitet werden, welche die Tsujische
Vermutung enthélt. Dies geschieht unter ausschliesslicher An-
wendung der urspriinglichen Beweismethode in [1], wobei freilich
gewisse Details der allgemeinern Fragestellung angepasst werden
miissen.

Satz. Es sei v(z) subharmonisch in |z| <1 und erfiille (1).
Dann ist fiir jede Wahl von x(| x | < =/2) die Beziehung (8) fiir fast
alle Werte von O(— n < @ < + =) befriedigt.

1) d.h. mit Ausnahme einer Menge vom Lebesgueschen Mass 0.
2) V(O) bezeichnet stets die durch (2) fiir fast alle Werte von @ definierte
Funktion.
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Um aus diesem Resultat die Giiltigkeit der Tsujischen Vermu-
tung abzuleiten, betrachten wir die charakteristische Funktion
k(0O, x) der aus denjenigen Punkten (6, y) des Rechtecks
10| <=ln[ly| <=n/2] bestehenden Menge, fiir welche (3)
nicht erfiillt ist. Falls wir die Summierbarkeit von « nachweisen
kénnen, diirfen wir unter Anwendung des Satzes von Fubini
schliessen, dass

[ d@j*”’z «(0, 2y = [ ’zdxf” (0, 7)d0 = o,

woraus sich die Richtigkeit der Tsujischen Vermutung sofort
ergibt. 3)

Die Summierbarkeit von « kann man z.B. wie folgt einsehen:
v ist Limes einer monoton abnehmenden Folge {v,} stetiger,
subharmonischer Funktionen. Die Funktionen 4)

jkn(@a X) = sup vk(gie _ Tei(9+x))

1
— =7=
'n+1—‘r_

S|

(k,n=1,2,8,...) sind offenbar stetig. Also sind

8.(0, 2) =1im (@, x) = sup ov(e® — 7ei®HX)
k—>o0 _L r<
n+1 =7=

3=

(n=1,2,8,...), und damit auch

lim sup g,(0, 7) = lim sup v(e?®® — re!®+¥),
70

n—00

messbar. Analog ergibt sich die Messbarkeit von

lim inf v(e® — 7e'9tv),

70
Unter Beiziehung des obigen Satzes schliessen wir, dass auch V(0)
messbar ist. Aus (3) folgt, dass « messbar und, da beschriankt,
summierbar ist.

Um unnétige Langen zu vermeiden, beziehen wir uns im Fol-

genden wiederholt auf den Littlewoodschen Artikel [1]. In dieser
Note und in [1] gleichzeitig auftretende Bezeichnungen besitzen

3) Es ist andrerseits klar, dass die Tsjujische Aussage den obigen Satz nicht
impliziert.

4) Dic Funktionen v,(k = 1,2, 8, ...) sind i.A. nicht im ganzen Bereich |z| < 1
definierbar, sondern nur in Teilgebieten |z | <7, < 1, wobei allerdings ange-
nommen werden darf, dass 7, — 1 fiir £ — oo. Bei vorgegebenem (0, y) ist also
Jin nur fiir geniigend grosse k und n definiert. Dies tut der nachstehenden Schluss-
weise aber keinen Abbruch.
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dieselbe Bedeutung. Insbesondere soll unter dem Symbol A eine
positive Konstante verstanden werden, deren Grosse von Formel
zu Formel variieren darf.

Wir iibernehmen aus [1] den folgenden Darstellungssatz: Die
(superharmonische) Funktion w = — v zerfdllt in eine Summe

(4) w = u* 4 v¥.

Dabei ist u* harmonisch in |z | < 1 und erfiillt
(5) ff | u*(re®®) | dO = O(1)  (r —1).
Ferner gilt

(6) w*(P) = [[g(P, Q)du(Q),

wobei u die v zugeordnete (in [1] mit F bezeichnete) Massen-
belegung bedeutet.

Bekanntlich (vgl. R. Nevanlinna [2, pp. 190—193]) besitzt u*
fiir fast alle Werte von ® Winkelgrenzwerte. Diese bezeichnen wir
mit V(@). Wir haben noch Folgendes zu beweisen:

LeEmMMmA.%) Fir jede Wahl wvon yx(| x| < #n/2) ist Folgendes
erfullt:

(7) lim w*(e® — 7£'0+0) = 0
70
fiir fast alle Werte von O(— z < 0 < 4 =).

Sie nun y gewahlt und fest. Littlewood beschreibt in seiner
Abschatzung den Punkt r¢® (bzw. pei?) durch (s, ) (bzw.
(o, D)), wobei s=1—17r (bzw. 6 =1 — p). Wir finden es
zweckmissig, die Koordinaten

(8) So = cos y — Vcos?y — 25 + s?
und

So Sin
9) 0, = O + arc tg — i/

1 — s5cos gy
einzufithren. Dann ist

(10) (1 — 5)e® = €% — 5,¢!0tn)
und — bei entsprechender Definition von o, und @, —
(11) (1 — 0)e'? = ei%0 — g,ei(Potn),

Die geometrische Deutung der soeben definierten Grossen ist
aus (10) und (11) leicht ersichtlich. Sie sind stets reell, falls wir
verlangen, dass

5) Verallgemeinert Lemma 4 in [1].
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(12) R<r p=<1, wobei R>1—J£S;—“'—"—'.
Offenbar gilt dann

(18) $=s und o, = 0.

Ferner behaupten wir, dass

(14) (O — Do)? + (80 — 00)* = A[(O — P)* + (s — 0)].

In der Tat findet man unter Anwendung des Mittelwertsatzes
der Differentialrechnung

|$o —0p| = |8 — o]

dso(S*)'< |s — o

ds =\/R2+cos2x—1
(0=s*=<1— R) und

So(8) sin g

|Gy — P | =|O—P| + |s—0|

—arc
ds ©1—s,(s) cos g

| s —o|sin] g | §=38
RVR*+4cos? y — 1
0=§=<1-—R)

<160-9|+

woraus sich (14) sofort ergibt. Indem wir (13) und (14) mit
(2.2) und (2.8) in [1] kombinieren, erhalten wir die unter der
Einschriankung (12) giiltigen Ungleichungen

Asya,
<gP, Q)= g
(15) 0=g(P,0Q) = (8o — )2 + (O — 0)21"1
Asy oy
(16) 0 = g(Pa Q) = log (1 + (so — O‘o)2 —+ (@0 - q;o)2) .

Da — wie man leicht verifiziert — stets o, = g/cos y ist, schliessen
wir aus (6.5) in [1], dass

(17) [[ o dn(@) < + .

Nach diesen Vorbereitungen folgen wir dem Littlewoodschen
Beweis von Lemma 4 in [1]: Sei

1 & s
&(R) =ffao du(Q), wobei R > ——+—s;“—'-7—'
p>R
Es ist lim ¢(R) = 0. Wir definieren 7(R) = V&(R). Es wird

R—1
gezeigt werden, dass
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(18) 11m supfjg(e'e — 7e'®+0 0)du(Q) < An(R)

p>R
fiir alle einer Menge E(R) vom Mass = 2n — 7(R) angehérenden
Werte von 0. Da gleichmissig in @

hm supffg (e"® — 79+, Q)du(Q) = o,
PSR
kénnen wir dann schliessen, dass (18) giiltig bleibt, falls das
Integral iiber das ganze Innere des Einheitskreises erstreckt
wird. Nun lassen wir R — 1 streben. Dann folgt (7) aus (6) und
{18).

Es bezeichne M () den Wert des iiber die Menge [— 7 < @,
< 0] N [R < p < 1] erstreckten Integrals [[o,du(Q) (— =
< 0 =< + ). M(O) ist eine monoton wachsende Funktion, also
fast iiberall differenzierbar. Ferner gilt ¢)

(20) 0 < M'(6) < 2n(R)
auf einer Menge E(R) vom Mass = 27z — n(R). Es soll nun
bewiesen werden, dass (18) fiir alle © ¢ E(R) befriedigt ist.

Ohne Verlust an Allgemeinheit diirfen wir @ = 0 setzen.
Unter K(t) soll das iiber die Menge [0 =< P, <] N [R < p < 1]
erstreckte Integral [[o,du(Q) verstanden werden. Sei K*(t) =
= K(t) + K(—t). Aus (20) folgt

K* (1)
i

I IA

(21) lim sup
-0

= 479(R).

Sei nun

S(r) = [[ &1 — e, Q) du(Q) = Sy + Sy + S,

p>R
wobei S;, S,, S; der Reihe nach die Teilintegrale iiber

Bi=[R<p<1N[t=|®]| <,

B,=[R<p<1lIN[ D] <7]IN [lao—r|g—;—],

By=[R<p<1n(%|<dn [lo—7l 5]

darstellen.
Nach (15) (0y = 0, s, = 7) ist ¢ < 4 0yr/P: in B,. Also gilt

8) Fiir eine detaillierte Begriindung sei der Leser auf den Beweis von Lemma 4 in
[1] verwiesen.
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S, < At [[ 0520y dp(Q) = At [ B 2dK* (D),
3

woraus unter Beniitzung von (21) und Lemma 1 in [1] folgt, dass

(22) lim sup S; =< 4A%n(R).
70
In B, istg < —"_ . Daraus ergibt sich
<———. Dara
n 215g_f2+¢2 araus ergibt sic
T *
5, = e[ IO _ 4 v AK¥(B0)
224+ O T 72 + P2
und, unter An“endung von (21) und Lemma 1 in [1],
(28) lim sup S, < An(R).
70

Fir B; liefert (16) die Ungleichung

. <1 (Aoror) - 20, 1 (A‘r2)
< = —1log|—
& =18 o) g @)

flog (AT2) g du(Q) = ~f log( ) dK*(D,)

und schllesshch
(24) lim sup S; < A%n(R)

70

erhilt. (18) folgt aus (22), (23) und (24). Damit ist alles bewiesen.

(Oblatum 14-1-57)

woraus man
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