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Absolute Neighborhood Retracts and Local
Connectedness in Arbitrary Metric Spaces

by

J. Dugundji

1. Introduction.

For separable metric spaces, the following implications and
equivalences are well-known:

I. ANR = local contractibility = LC®. These concepts are
equivalent only in the finite-dimensional spaces.

II. AR = contractibility and local contractibility == C* and
LC®. These notions coincide only in the finite-dimensional
spaces.

III. m-dimensional and LC" (n finite) = ANR.

IV. AR = contractible ANR = C* ANR.

A unified account is given in [9; Chap. VII] 1). The proofs of the
equivalences in I—III are based on embedding into Euclidean
spaces; those in IV on embedding into the Hilbert cube.

Upon attempting to determine the interrelations of the above
concepts in non-separable metric spaces, one meets (1): the
question of what definition of dimension to adopt, and (2): that
the embeddings considered above are never possible, since the
image spaces mentioned are separable. The theory, therefore,
does not give any information about I—IV in non-separable
metric spaces.

The main object of this paper is to show that the complete
statements I—1IV are valid in all metric spaces, if the covering
definition of dimension be used. In the course of this, various
alternative characterizations of LC" and ANR are derived, so
well as other subsidiary results. Only the point-set aspects are
given here; homology in such spaces will be considered elsewhere.

2. Preliminaries.
E" denotes Euclidean n-space; H" C E™ is -

{(@ .., 2,) e E"| Y a2 < 1} and the (n—1)-sphere S"! =
1
boundary H™". I represents {re E'|0 <z < 1}.

') Numbers in square brackets are references to the bibliography.
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“An open covering of a space X’ will always mean ‘“A covering
of X by open sets”. {U} is a nbd-finite open covering of X if each
z € X has a nbd intersecting at most finitely many sets U; X is
paracompact if each open covering has a mbd-finite refinement.
2.1 Every metric space is paracompact. [15; 972]

2.2 In paracompact spaces, each open covering {U} has a star
refinement {V}, ie. for each V, U{V,|V,NV+#0}C some
a

set U. [16; 45]

“A continuous map f of a space X into a space Y is written
“f: X —Y”., The homotopy of fy, f,: X - Y is symbolized
“fo = f,”’; if the homotopy @ satisfies @(X xI) C B where
B CY, f, and f, are called ‘“homotopic in B”. f is nullhomotopic
(notation: f ~ 0) if it is homotopic to a constant map.

2.8 f:S" —Y is nullhomotopic in B if and only if f has an
extension F : H*t! - Y with F(H"*)C B. [1; 501]

A polytope is a point set composed of an arbitrary collection of
closed Euclidean cells (higher-dimensional analogs of a tetrahe-
dron) satisfying: 1. Every face of a cell of the collection is itself a
cell of the collection and 2. The intersection of any two cells is a
face of both of them. The dimensions of the cells need not have
a finite upper bound, and the set of cells incident with any given
one may have any finite or transfinite cardinal. The CW topology
[17; 816] is always used: U C P is open if and only if for each
closed cell 3, Un o is open in the Euclidean topology of .
2.4 The open sets of P are invariant under subdivision. Stars of
vertices are open sets. f: P — Y, Y any space, if and only if
/| @ is continuous for each cell 5. If {U} is an open covering of P,
there is a subdivision P’ of P having each closed vertex-star
contained in some set of {U}. [17].

For a metric space X, define dim X = = if each open covering
{U} has a refinement {V'} in which no more than n+1 sets V have
a non-vacuous intersection. (i.e. {V'} is of order =< n+1).

2.5 dim X xI < dim X+41.Foranyset E C X, dim E < dimX.
[18]

In a space X with metric d, S(z,, £) denotes {r € X | d(z, z,)<e}.

Let A C X be closed, cover X—A by {S(z, }d(z, 4)) |z e X—A4}
and take a nbd-finite refinement {U}. Then [4; 854]
2.6 {U} has the properties: 1. Each nbd of ae [A— interior 4]
contains infinitely many sets U; 2. For each nbd W D a there is a
nbd W', a e W' C W, such that whenever UN W’ % 0then U C W;
8. For each U, d(U, 4) > 0.
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Open coverings of X—A with the properties 1—38 above are
called canonical. One can alwaysassume order{U } <dim(X —A4)41.
If N(U) is the polytope nerve of a canonical cover of X —A4, the
set X=4 UN(U) is given a Hausdorff topology by taking:
(a). N(U) with the CW topology and (b). A subbasis for the
nbds of ae A CX to consist of all sets with form
{Wn A} u{all vertex stars in N(U) corresponding to sets U C W}
where W is a nbd of a in X.
2.61 Let K: X—A — N(U) be the Alexandroff map.
The (canonical) map

x zed
@) = { K@) weX—A
of X into X is continuous, and u | 4 a homeomorphism. [4; 856]
2.62 If N(U), is the zero-skeleton of N(U), then 4 CX is a
retract of 4 UN(U),.

A retraction r is obtained [4; 857] by first choosing a point
2y € U; for each zyselect ay € 4 with d(ay, zy) < 2d(zy, A) and
set

r(py) = ay, py the vertex of N(U) corresponding to

t r(a) =a, aeA.

2.68 Anjf:A — E has an extension F : 4 UN(U) — E if either

(a). E is a convex subset of a locally convex linear space [4;857]

or

(b). E is 1 convex subset of a real vector space L having the
finite topology: G C L is open if and only if for each finite-dimen-
sional linear subspace K, GN K is open in the Euclidean topology
of K. [8; 9]

B(Z) denotes the Banach space of all bounded continuous
real-valued functions on Z.

2.7 Each metric X can be embedded in B(X) [11; 548] as a
closed subset of its convex hull H(X) [18; 186].

Lemma 2.8. Let X, Y be metric, A C X closed and f: 4 - Y.
Then there exists a metric Y; D Y and an extension F : X — Y,
such that Y is closed in Y, and F | X—A4 is a homeomorphism
of X—A with Y,—Y.

Proor. Embed Y in H(Y); 2.61 land 2.63 yield and extension
Ft:X - H(Y). Regard X C B(X) and form the -cartesian
product H(Y) X E! x B(X); with Kuratowski [8; 139],
F(z)= [F*(x),d(x, A),z-d(x, A)]is the desiredmapand Y,= F(X).

3. The property LC".
DEFINITION 8.1. A space is n-locally connected (symbol:n—LC)
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at y e Y if for each nbd U Dy there is a nbd V, y e V C U, such
that every f: S® — V has an extension F : H*"t1-»U, or, equiv-
alently (2.8) every f:S"” — V is nullhomotopic in U.

Y is LC* if it is +—LC at each point for all 0 <7 = n

Y is LC*® if it is LC™ for every n.

The following is the generalization of Kuratowski’s theorem
[10; 278] to the non-separable metric case; the proof is similar.

THEOREM 8.2. Let Y be metric and = finite. The following four
properties are equivalent:
3.21 Y is LC" n finite.
3.22 If X is metric, A C X closed, and dim (X—A4) = n+1, then
every f: A — Y can be extended over a nbd WD A in X.
3.28 For eachyeY and nbd U Dy thereisanbd V, ye VCU
such that: if X is metric, 4 C X closed, and dim (X—4) =< n+1,
then every f: A4 — V has an extension F : X — U.
3.24 TForeachyeY and nbd UDy thereisanbd V, ye VCU
such that: if X is metric, dim X < n, every f: X — V is null-
homotopic in U.

Proor.

1= 2: Form X = A UN(U) of 2.61 with dim N(U) < n-+1.
Regarding f defined on 4 C X one need only construct an open
W, ACW CX and an extension F: W — Y; Fu | p~}(W) will
then be the required extension.

Let N(U), be the k-skeleton of N(U); for k =0, 1, ..., n+1,
open W,, A C W, C X, and extensions f, : [A UN(U),]0 W,—Y
will be defined inductively; the result follows by taking W=1WW,_,
and f = f,4.

Take W, = X by 2.62, f, = fr is the extension.

Suppose k— 1 = n and W,_;, f,_, constructed. For eacha e 4
let W, be a nbd of f,_;(a) = f(a) such that any f:S*1 > W,
extends to a continuous map of H* into Y. From 2.6 and con-
tinuity of f,_, there is anbd ¥, D a such that each closed k-cell 5 in
the vertex-stars that form ¥V, satisfies (1) 3 C W,_; and
(2) fea(bdrys) C W,

Set W, = 917,,.

To define f,, let o be any closed k-cell in a vertex-star forming
W by (2) fr—1 | bdry @ has an extension over 5. Let 7(c) be the
infimum of the diameters of the images of & taken over all possible
extensions, and define f, | to be an extension having image
diameter < 2 (o). Proceeding in this way yields and extension
fi of fi_y over (A UN(U);) N W,. Continuity need be proved
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only at 4, and follows at once by observing that Y is (k—1)—LC
and f,_, is continuous.

2 = 3. Assume 38 not true at y,. Then there is an S(y,, «) = U,
a sequence X; of metric spaces, a sequence A, C X, of closed
subsets with dim (X;—A4;) < n+1, and a sequence of f,: 4, —
— S(yp /¢) none of which is extendable over X, with values in U.

The points and metric of X, will carry the subscript ¢. One can
assume all the metrics bounded: d,(z,, 2’;) < 1. Construct a metric
space X consisting of a point # and the pairwise disjoint union of
the X, by setting

d(z;, @';) = 27" dy(,, ;)
d(z;, x;) = 2-™in (i) i#£q
d#, x;)=2"
A=4%, CPA,. is closed X and dim (X—A4) < n+1 [18]. Defining

f: A - Y by f(a;) = f(a;), {(£) = yo, [ is continuous, so by 2 there
is an open W D 4 and an extension F : W — Y. Because £ ¢ W
and diam (£ U X,) < 2—¢, W contains all X, for i large. Using the

continuity of F at & one easily finds diam (y,U F(X,) < g for

large i, so that then #(X,) C U. Since F | X, is an extension of f,
this contradiction proves the assertion.

3 => 4. This is the homotopy theorem corresponding to 3:
set X =XxI and 4 = XX0UXx1 then 3 applies since
dim (X xI) < n+1.

4= 1. Let X=5,0r=<n.

ReEMARK 8.3. In case n = o0, then 3.2 holds is one restricts
X—A to having finite dimension.

THEOREM 38.4. Let Y be metric. The following two properties

are equivalent.,

8.41 Y is LC" n finite.

8.42 If Z is metric, Y C Z is closed, and dim (Z—Y) < n+1,
then Y is a mbd retract in Z.

Proor. 1 = 2 is obvious from 38.22.

2 = 1. One shows 38.22 valid. Given f: 4 - Y as in 8.22,
use 2.8 to obtain a metric Y, D Y, Y closed in Y, and an extension
F:X->Y,

Since X—A4 is homeomorphic to Y;—Y, dim (Y,—Y) < n41
so that there is an open U D Y in Y, and a retraction r : U — Y.
rF | F1(U) is the desired extension of .
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4. Characterization of LC" by partial realization.

DErixiTioN 4.1. Let {U} be a covering of a space Y. Let P be
a polytope and Q a subpolytope of P containing the zero-skeleton
of P. An f: Q — Y is called a partial realization of P relative to
{U} if for each closed cell o of P, f(QN ) C some set U.

THEOREM 4.2. Let Y be metric. The following two properties
are equivalent:

421 Y is LC™ n finite.

4.22 Each open covering {U} of Y has a nbd-finite refinement
{V'} with the property: Every partial realization of any polytope P
dim P < n+1, relative to {V'} extends to a full realization of P
relative to {U}.

Proor. 1 = 2. For each y € Y select a U D y; choose an open
V, y e V CU satisfying the definition of n-LC and let {V(n)} be a
star-refinement. Repeat, using {V'(n)} and (n—1)—LC to obtain
{V(n—1)}. A nbd-finite refinement of {V(0)} satisfies the re-
quirements.

2= 1. Let yeY. For any ¢ > 0 take the open covering:

S(y, €), Y—S(y, ¢/2). Let {V'} be the refinement satisfying (2),
and choose V' D y. Then V C S(y, ¢) and, S* being a subpolytope
of H**1, any f:S* — V extends to F : H*! — S(y, ¢), k < n.
This suffices to prove the assertion.

REMARK 4.3. 4.2 is valid even if the polytopes of 4.22 are
restricted to be finite.

5. Characterization of LC®™ by homotopy.

THEOREM 5.1. Let Y be metric. The following two properties

are equivalent:

5.11 Y is LC", n finite.

5.12 Each open covering {U} has a nbd-finite refinement {W}
with the property: For any metric X, dim X < n, and any
foo 1 : X = Y satisfying

(a). fo(z) and f,(x) belong to a common W for each z € X.
Then f, =~ f, and the homotopy @ can be chosen so that @(z, I')lies
in a set U for each z.

Proor. 1 = 2. Let {U(0)} be given. Construct successive star
refinements {U(¢)}, ¢ =0, 1, ..., n with {U(i+1)} having prop-
erty 4.22 relative to {U(¢)}. Let {W} be a star refinement of
{U(n)}; by 2.1 {W} may be assumed nbd-finite. This is the desired
open covering.

Let f,, f, satisfy (a) and let {G} be a common refinement of
{fooX(W)} and {f,-1(W)}. Take a common refinement of a canonical



n Absolute Neighborhood Retracts 235

cover of X XI—[X X0 UX x1]and {GXxI}, and let {V} be a star
refinementof thisresulting cover. {V} can be assumed nbd-finite and
of order < mn+1; it is clearly also a canonical' cover.

Form X xI = X x0U X X 1U N(V) and regard f,, f, defined on

the subsets X X0, X X1, respectively, of X xI. Construct an
extension Fy: X X0 UXX1UN(V), ~Y as follows: given the
vertex py select zp X iy eV if 4y < 1 set Fy(py) = fo(ay), otherwise
Fy(py) = f(zy). F, is continuous.

Let (py - - -» p,) be any r-cell of N(V'); all these vertices will be
shown to map into a single {U(n)}. Since Von...NV, #0,

OV, CGxI for some G so that ) z, C G. Since G C f,"L(W) for
[} (1}

some W, L(? fo(z;) C W. By condition (a) for each ¢ =0,...,n
there is a W, with fy(z,)U f,(z;) C W, so that Wn W, # 0, which

means L_;) W,CU(n) for some U(n) and therefore

Ola(@:) V() CU(n).

Proceed by induction. Assume an extension F,_, on
XX0UXX1UN(V),_, which is a partial realization of N (V)
relative to {U(n—k-+1)}; F,_; extends over each closed k-cell &
with image in a set U(n—k). Let 5(5) be the infimum of the
diameters of all the possible extensions; select an extension with
diam F,(c) < 27(c) and F,() C some U(n—k). This process
yields a partial realization of N(V') relative to {U(n—k)} and the
map is continuous on X X0 UX X1 yUN(V), as in 3.22.

The required homotopy is @ = F,,; u; the required condition
is satisfied because, by the above, all vertices corresponding to
sets lying in a strip G X1 have images in one set {U(n)} so that in
extending the partial realization the images of all cells lie in one
{U(0)}. 2= 1. As in 4.2

6. Characterization of LC" by ‘factorization”.

THEOREM 6.1. Let Y be metric. The following two properties are
equivalent:
6.11 Y is LC" n finite.
6.12 For each open covering {U} there exists a polytope P,
dim P < nandag: P — Y with the property: For any metric X,
dim X <nand any f: X — Y thereisa ¢ : X - P with f ~ go,
and the homotopy @ can be chosen so that @(z, I) lies in a single
U for each z.

Proor. 1 = 2. Let {W} be a refinement satisfying 5.12 relative
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to {U} let {V} be a refinement of {W} with property 4.22, and
finally let {V'} be a star refinement of {V'}; {V'} can be assumed
nbd-finite. Let P = N(V), and define ¢,: P, - Y by sending
each pyto ayy e V; this is obviously a partial realization relative
to {V}; @, extends to ¢ : P — Y with the image of each n-cell in
some W.

Let X be metric, dim X <nandf: X — Y. Form {{~1(V)} and
let {G} be a star nbd-finite refinement of order =< n-1. Let
K : X - N(G) be the Alexandroff map and define y : N(G) - P
as follows: for each pg select a V with G Cf1(V)and set
y(pe) = py. This is simplicial, and extending linearly gives a
continuous map (2.4). f will be shown homotopic to ¢yK in the
required way.

Letz e Gy . ..N G, and only these sets; then K(z)e(pe,; ---Pe,)

so yK(z)e(py, - - - py,); since g(py;) € V; and{:W V,; # 0, one finds

gyK(z) lying in some W satisfying :uV,- C W. Again, since

HG,)CV,i=1,...,sonehasf(x) ey V,C W also, so for each z
1

gy K(z) and f(z) are in a common W hence are homotopic in the
required fashion.

2 = 1. Assume Y not k-LC at y,, k = n. There is an S(y,, «) and
a sequence of f,:S,* — S(yq «/4;) with no f;, nullhomotopicin

S(¥g «). As in 8.2, form S = £u t;) S,* and define f: S — Y by

@) =yo [15*= 1. _

Cover Y by S(y, «/2) and Y —S(y, «/3), and let P be the
polytope corresponding to this covering. Since dim S < n [18]
thereisa ¢ : S — P with f ~ gg, and because /(S) C S(y,, «/4) the
homotopy ¢ satisfies ¢(S xI) C S(y,, «/2) hence gp(S)CS(y,, @/2).
In particular ¢(£) C g71(S(yo, «/2)). Cover P by g~1(S(y,, «)) and
P—g~1(S(yy «/2)); subdivide P so each closed vertex star lies in
one of these open sets (2.4). Let St p be the star containing ¢(£).
Then g=!(S(y, «)) is open, contains St p and ¢(S;*) C St p for
large ¢. Since ¢ | S;* is nullhomotopic in St p (by radial contraction)
and f;, ~ go|S,;* in S(yp «/2) one finds f; =~ 0 in S(y,, «), a con-
tradiction.

7. The property LC.

DEeriniTION 7.1. A space Y is locally contractible at y ¢ Y if
for each nbd U D y there is a nbd V, y ¢ V C U, contractible to a
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point over U, i.e. the identity map of V is nullhomotopic in U.
Y is LC if it is locally contractible at every point.

Every LC space is clearly LC*; the converse is not true, even in
separable metric spaces [10; 278]. However,

THEOREM 7.2. Let Y be a finite-dimensional metric space. The
following three properties are equivalent:
7.21 Y is LC", n some integer = dim Y.
7.22 Y is LC.
7.28 Y is LC*.

Proor. Only 1 = 2 requires proof. Given U D y let V be a nbd
satisfying 8.24. Since dim ¥V =< n (2.5) the identity map of V is
nullhomotopic in U.

8. The properties C* and C.

DeriniTION 8.1.Y is connected in dimension n (written: n—C)
if each f: S® — Y is nullhomotopic. Y is C™ if it is ¢—C for all
071=nYis C®if it is C" for all n.

Y is C° is equivalent with Y arcwise connected; Y is n—C is
equivalent with the n—th homotopy group =,(Y) = 0.

DErFiNiTION 8.2. Y is contractible (symbolism: Y is C) if the
identity map of Y is nullhomotopic.

Clearly Y is C implies Y is C*°; the converse is not true [10; 278].
The following theorem is well-known (see for example [5; 241]).

THEOREM 8.3. Let Y be any (not necessarily metric) space,
and » finite.

The following five properties are equivalent:
8.31 Y is C
8.32 If P is any polytope, and Q C P a subpolytope, any
f:Q — Y extends over QU P, ,, where P, denotes the s-skeleton
of P.
8.838 If Pisany polytope, Q C P a subpolytope, and f,, f, : P—>Y
satisfy fo | Q =~ f,1Q, then f, |QUP, =/ |QUP,.
8.34 If P is a polytope with dim P < n, any f: P — Y is null-
homotopic.
8.85 If P is any polytope, any f: P — Y is homotopic to an
f1: P =Y sending P, to a single point.

This will be used in the next section.

REMARK 8.4. If » = 00, no restriction need be placed on
dim P in 8.8.
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9. The properties C* and LC" together.

THEOREM 9.1. Let the metric space Y be LC™. The following

three properties are equivalent:

9.11 Y is C™

9.12 If X is metric, A C X closed, and dim (X—A4) < n-+1, then
any f: A — Y extends over the entire X.

9.13 If X is metric, dim X < n, then any f: X — Y is null-
homotopic.

Proor. Only 1 = 2 requires proof. Using 4 UN(U) and regard-
ing f as defined on 4 C 4 UN(U), the problem is to extend f over
A UN(U). Since Y is LC™, the proof of 8.22 gives an extension f’
over anbd W' D 4 in A UN(U). Let Q be the union of all closed
cells of N(U) on which f’ is defined; Q is a subpolytope of N(U) and
no point of 4 is a limit point of N(U)—Q. The extension of ' | Q
over N(U) guaranteed by 8.32, together with f'| 4 UQ is the
desired map.

THEOREM 9.2. Let Y be a finite-dimensional metric LC" space,
where r = dim Y. The following three properties are equivalent:
9.21 Y is C" for some n = dim Y.

9.22 Y is contractible.
9.28 Y is C™.

Proor. As in 7.2.

REMARK 9.3. Theorem 9.2 is not true if dim Y = oo, even if Y
is separable metric. [2]

10. Absolute neighborhood retracts and absolute retracts.

DeriNITION 10.1. An arbitrary space Y is an absolute nbd
retract for a class U of spaces (written: Y is an ANR %) if for any
closed subset 4 of any X e ¥, and any f: A — Y, there is an
extension F: U — Y of f over a nbd U D A.

Y is an absolute retract for the class %A (symbol: AR %) if for
any closed subset 4 of any X ¢ ¥ and any f: 4 — Y, there is an
extension F: X — Y.

In the following, M denotes the class of metric spaces, P the
class of polytopes.

An immediate consequence of 2.68, as was pointed out in [3; 9],
[4; 857] is

THEOREM 10.2. Any convex set C of either (a): A locally convex
linear space, or (b): A real vector space with finite topology, is an
ARM.
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11. The properties ANR and AR in polytopes.

In [8; 10] it was shown that
11.1 Any polytope P can be embedded as a nbd retract in a
polytope K spanning a convex subset of a real vector space with
finite topology.

This leads at once to

THEOREM 11.2. Any polytopeisan ANR It and also an ANRp.
It is an AR if and only if it is an AR PB.

Proor. The ANRM follows from 11.1 and 10.2; this was
proved in [8; 10a]. The ANR  has also been proved in [3; 10a].
AR P implies 4 R M since P would be a retract of K in 11.1, and
one then applies 10.2. 4R I implies AR P is proved inductively
exactly as [3; 10a]

THEOREM 11.8. Let P be a polytope. Taking % = It or B, the
following three properties are equivalent:

11.81 P is an AR
11.82 P is contractible.
11.883 P is C*™.

Proor. Only 8 = 1 requires proof; P will be shown ARIN.
From 8.4, 8.82, P is a retract of the K in 11.1, so the result follows
from 10.2.

12. The properties ANR and AR in metric spaces.

THEOREM 12.1. For metric Y the following are equivalent:
12.11 Y is an ANRIR (an ARM).
12.12 1If Z is metric and Y C Z closed, then Y is a nbd retract
(retract) in Z.
12.18 Y can be embedded in the Banach space B(Y) as a nbd
retract (retract) of its convex hull H(Y).

Proor. 1 = 2 = 8 is trivial; 8 = 1 is analogous to the proof
given in 11.8.

THEOREM 12.2. If Y is a metric space, and Y is an ANRI
(ARMM), then Y is also an ANRB (AR B).

This is proved in [8; 10b].

THEOREM 12.8. Let Y be metric. If Y is an ANRIt (ARM ),
then Y is LC (LC and C), hence also LC® (LC*® and C®).

Proor. Note first that a convex subset of a Banach space is
contractible and locally contractible. The theorem follows from
12.13 by the trivial remark that contractibility is preserved under
retraction and local contractibility is preserved under nbd retrac-
tion.
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12.4. TueoreEM For metric Y, the following properties are
equivalent:
12.41 Y is an ARIN.
12.42 Y is a contractible ANR .
1248 Y is a C® ANRM.

Proor. 1 = 2 = 8 is trivial. 8 = 4 follows as in 9.12, using
8.4, 2.63.

13. Characterization of ANR 9 by partial realization.

The following Lemma is due to Kuratowski [8; 122].
Lemma 18.1. Let D be an arbitrary non-empty subset of a
metric Z. Let {U} be a covering of D by sets open in D. Then
there exists a collection {Ext U} of sets open in Z with
13.11 U = DN Ext U for each U.
18.12 The nerve of {U} is homeomorphic to the nerve of {Ext U}
In fact, one defines
ExtU ={zeZ|d(z U) <d(z, D-U)}.
ReMmark 18.2. If U CU’ then Ext U CExt U'.
REMARK 18.8. Given z e Ext U; if (e D is to be chosen to
satisfy d(z, ) < 2d(z, D) one can always find such an { in U.
THEOREM 13.4. For metric Y, the following properties are
equivalent:
13.41 Y is an ANRIM.
18.42 For each open covering {U} of Y there is a refinement {V'}
with the property: Every partial realization of any polytope
relative to {V'} extends to a full realization in {U}.
Proor. 2 = 1. For each n =1, 2,... define inductively an
open cover V(n) as follows:
(a) {V(1)} isanopen cover of mesh < 1, i.e. sup diam {V(1)} < 1
(b) {P’'(1)} satisfies 18.42 relative to {V(1)}
(c¢) {V’(1)}is a star refinement of {¥'(1)}
(d) {V""(1)} satisfies 18.42 relative to {V"’(1)}
(e) {V(1)} is a star refinement of {V''(1)}

s 1
If {V(n—1)} is defined, let V(n) be a refinement of mesh < -
n

and go through (a) — (e) again to obtain {V(n)}. Note that
{V(n)} is a refinement of {V(n—1)}.

Embed Y in H(Y); to obtain a retraction of a nbd of Y onto Y
some further constructions are needed.

(«) Form the open sets Ext V(n) in H(Y); from 13.2,
13.5: Each Ext V(n) is contained in some Ext V(n—1).

(B) Let {U} be a canonical cover of H(Y)-Y.
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(v) Define a sequence of nbds W;D'Y in H(Y) by induction:

Set W, = UExt V(1). If W,_, is defined, normality gives an
open G, with Y CG, C 5:; C W,_;. For each y € Y choose a nbd of
form G,N Ext V(n); by 2.6, y has a nbd W,(y) such that
U NW,(y) # 0implies U CG, NExt V(n). Define W, = LVJ W.(y)

to complete the inductive step.
— 1
Clearly W, C W,_, and one can assume d(Y, H(Y)—W,) < —-
n

Furthermore,
186 W,DW,D... and E'SW,.z Y.

187 Letn =8. If UNW, 5% 0 then UC W,_, N Ext V(n) for

some V(n) and therefore U N(W,_,—W,_;) = 0.

Indeed, U "W, # 0 implies U "W, # 0 because U is open;
thus U NW,(y) # 0 for some y and the result follows.

(6) To each U assign an integer ny as follows: if U "W, = 0
set ny = 0;if UNW, #0 set ny =sup {i | U NW, # 0}; the
finiteness of ny follows from 18.6 and 2.6.

From 13.7 and 18.5 follows
13.8 If ny = 8, then U C some Ext V(ny) and foreach 8<k=<ny
there is a V(k) > V(ny) with U CExt V (k).

The constructions are now complete.

Form Y UN(U) and map the vertices {py} of N(U) into Y as
follows: In each U choose a point zy; for each zy select a y; e Y
satisfying d(yy, 2v) < 2 d(zy, Y). By 18.8 and 18.8, if ny; = 3 the
yu can be assumed to lie in a set V(ny) such that U C Ext V(ny).
Define » : YU N(U), — Y by

r(py) = Yu
r(a) =a acecd.

Continuity follows from 2.62.

Form the ‘“rings” R, = W,,—W,, and let P,, be the sub-
polytope of N(U) formed by all the sets U intersecting R,,.
18.9 For each m = 8, r is a partial realization of P,, in {V''(m)}.
In fact, if (pyy, . . ., py,) is a cell of P, then according to 18.8
there are V,(m) D r(py,;) with Ext V,(m)D U, ¢ =1, ..., s; since
U,n...NU, # 0 the Ext V (m), hence also the V,(m), have a
non-vacuous intersection. The union of the V,(m), hence k; 7(Pys)s

is contained in some V''(m).
By 138.7, P,, NP, =0 for |[m—n| = 2. Foreachn =1,2,...
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extend the partial realization » on P,, ; to a full realization in
{V""(2n+1)} and denote this extension by 7.

18.10 For each n =1, 2, ..., 7 is a partial realization of P,,,,
relative to {V'(2n+1)}.

Indeed, let ¢ = (pyy, - . -, Pus) be a cell of P,,.,; by 13.9,
7 sends all the vertices of & into a single V’/(2n--2) hence also into
a single set V;(2n+41). Since the faces of & can belong only to
Pyoi1s Pyniss Pynys 7 sends any realized face to a V''(2n-1)
intersecting ¥;'(2n--1), so that 7(c) is contained in some V'(2n4-1).

7 therefore extends to 7' : L:j P, Y with 7' | Py, ;U Py,

being a realization relative to {V(2n-+1)}.
Setting
YyeY

(y
77(?/)—{7’(3/) ye QP

one has 7 : YoO P, - Y, the continuity at points of Y following
8
from mesh V(k) < 1/k and the continuity of 7.
Let W = aWi and g : H(Y) - YU N(U) the canonical map.
5

Then nu | W retracts W onto Y and by 12.18 Y is an ANRIR.

1 =2. Embed Y in H(Y); since Y is an ANR, there is a retrac-
tionrof anbd V O Y in H(Y) onto Y. To simplify the terminology,
a spherical nbd in H(Y ) means the intersection of a spherical nbd
in the Banach space B(Y) with H(Y). For each y € Y choose a
spherical nbd S(y) of y in H(Y) satisfying S(y) C Vand S(y)n Y C
some set {U} of the given open covering. Finally choose a spherical
nbd T(y) in H(Y) with T(y) CV and r(T(y)) C S(y). The desired
refinement is {T(y) NY}. Let f be a partial realization of P
relative to {T'(y) NY} defined on Q D P,. For each closed r-cell &

let Z(o) = f(QN ¢) and 2(3) be the convex closure of Z(g). The
missing faces of P are now inserted so that the image of each o lies

in Z(o). Since Q O P,, proceed by induction.: if all faces of
dimension < r have been inserted as required, for any r-cell &,
bdry & is a subset of Z(q); taking the join of ¢ € Z(a) with f(bdry o)
gives an extension over o with the required property. Repeating
for each r-cell completes the inductive step. If F is the full
realization obtained, F(g) C Z(¢) C T(y) CV for each 5, sorF is a
full realization relative to {U}.

Remark 18.11. The implication 1 = 2 remains true in case Y
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is a polytope. Indeed, given an open covering {U}, subdivide to
get Y’ with each of its closed vertex stars lying in some set of
{U}. Embed Y' in the K’ of 11.1. A nbd W of Y’ in K’ of which Y’
is a retract is obtained [12; 292] by taking ‘the barycentric sub-
division K"’ of K’ and letting W be the union of all the vertex stars
in K’ which have center a vertex of Y"'. Each such star is convex,

and these play the role of Zin 1= 2 of 13.4.

14. Characterization of ANRIR by ‘factorization”.

LemMMA 14.1. Let Y be either an ANR IR metric space or a
polytope. For each open covering {U} of Y there exists a refine-
ment {W} with the property: If X is any metric space, and
for f1: X = Y are such that fy(z), f;(x) lie in a common W for
each 2 € X then f, ~ f, and the homotopy ¢ can be so chosen that
d(xxI) lies in a set U for each z e X [4; 863].

Proor. With the notations in 1 = 2 of 18.4, {T(y) NY} is
shown to be the required open cover. If f,, f, are as in the statement
of the Lemma relative to {T(y)N Y}, then for each 2, fo(z) and
f1(z) can be joined by a line segment lying in T(y), hence in V;
letting ¢(x, t) = tfy(x)+(1—1) fL(x) gives f, = f, in the required
fashion. The proof for Y a polytope is similar.

It will be necessary to use the trivial
14.2 Let Q be a subpolytope of K. There is a retraction
r: KXI - KX0UQXxI. Furthermore, for each cell o of K,
r(ox1) CoXxl1.

This result is well known; see, for example [14; 84]. It follows
by a simple induction based on the observation that
[bdry 61 x1I U X0 is a retract of oxI.

The following theorem is also given by Hanner [6; 358]; his
proof is different from the one that appears here.

THEOREM 14.8. Let Y be a metric space. The following prop-
erties are equivalent:

14.81 Y is an ANRIM.

14.32 For each open covering {U} of Y, there exists a polytope P
and A:Y — P, g: P — Y such that gA ~ identity map of Y, and
the homotopy ¢ can be so chosen that, for each y the set ¢(y xI)
lies in a set U.

Proor. 1 = 2. This is similar to 1 = 2 of 6.1. See also [4; 865].
2 = 1. 138.42 will be shown to hold. Given {U} select a star refine-
ment {V}. Let P be the polytope satisfying 14.32 relative to {V'}.
Since {g~*(V)} is an open cover of P, apply 18.11 to get a refine-
ment {W} having the partial realization property 18.11 relative
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to {g71(V)}. Let {W} be a common refinement of {A-1(W)} and
{V}.

Let f be a partial realization of a polytope K relative to {W}.
f is defined on Q D K. 4 f is a partial realization relative to {W}
hence extends to a full realization F’ in P relative to {g~1(V)};
gF1 : K — Y sends each cell of K intoa set V,and gF' | Q = gi{.
Deform g 4 to the identity according to 14.22; in obvious fashion
this yields a map 4 : KX0U QXI - Y with 4| QX1 =f, and
by the 14.22, A(cxI) C some U for each o. With the retraction
r of 14.2, Ar | K X1 is an extension of f over K with the image of
each cell in a set U. By 18.42, Y is an ANRI.

15. ANRIR and AR in finite-dimensional metric spaces.

THEOREM 15.1. Among the finite-dimensional metric spaces
(whether separable or not), the locally contractible ones are the
ANRM. Precisely, if Y is metric and dim Y finite, the following
three properties are equivalent:

15.11 Y is LC*" for some integer n = dim Y.
15.12 Y is locally contractible.
15.18 Y is an ANRI.

Proor. 1 = 2 by 7:2. 2 = 8: Since Y is LC, it is also LC*®. If
dim Y =< r, applying 6.12 with the identity map of Y, 14.8 shows
Y an ANRM. 8= 1 by 12.3.

For infinite dimensional spaces, this theorem is not true, even
with the added hypothesis of separability.

THEOREM 15.2. Among the finite-dimensional arbitrary metric
spaces, the contractible and locally contractible ones are the
AR M. Precisely, if Y is metric and dim Y is finite, the following
properties are equivalent:

1521 Y is C" and LC™ for some n = dim Y.
15.22 Y is contractible and locally contractible.
15.28 Y is an ARIM.

Proor. 1 = 2from7.2and 9.2.2 = 8: By 15.1, Yisan ANRM;
use 12.4 to find Y is an ARIM. 8 = 1 by 12.8.

The following theorem characterizes the finite-dimensional
AR solely by a special type of contractibility.

THEOREM 15.8. Let Y be metric and dim Y finite. The follow-
ing two properties are equivalent:

15.81 Y is an ARM.
15.832 Given any y, € Y, Y is contractible to this point in such a
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way that during the entire process of deformation, y, remains
fixed.

Proor. 1 = 2 is trivial.

2 = 1. One need only show that Y is locally contractible. This
follows trivially by selecting a contraction 15.82 to any point y,
and using the continuity of this contraction at .
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