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Stabilité au sens de Liapounoff et nombre de
solutions périodiques
par

N. A. Artemieff
Léningrad

§ 1.

Introduction et énoncé du probléme.

Soit & un domaine borné d’un espace a m» dimensions, dont
nous désignerons 1) les coordonnées d’un point par z;, @,, - . ., @,,
et soit donné dans &, pour ¢t = 0, le systeme d’équations diffé-
rentielles

d‘zi

_dt_sz(t,wl,...,azn), j=1..,n (1)

ou les X; sont des fonctions périodiques du temps ¢.

Pour I'examen qualitatif des solutions du systeme (1), il est
tres important de connaitre le nombre possible de mouvements
périodiques différents qui sont contenus dans le domaine &.

Dans ce travail nous établissons un critere, permettant d’éva-
luer dans certains cas une limite supérieure du nombre possible
de mouvements périodiques de classe donnée qui sont contenus
dans le domaine &. En outre nous donnons un moyen permettant
de juger en 1¢re approximation de la stabilité de la solution
périodique.

En ce qui concerne les fonctions X; nous ferons pour le moment
les hypotheéses suivantes:

I X; DD—‘;(", j, k= 1,2,...,n, sont des fonctions réelles,
k p—

uniformes et continues dans le domaine fermé {#;}e ®, te [0, + 0).

IL  X;(t, 2y, @y, -oos @) = X (427, 2y, @, .., @), §=1,2,...,1m.

L e, VX,
III. Les dérivées S !
Ly

(j, k=1,...,n) satisfont dans le

1) Nous désignerons aussi les points de ’espace R, par le symbole {x;}, et
quelquefois simplement par la lettre 2. Nous considérerons les variables z,, . . ., z,, I,
de méme que les fonctions X; de ces variables comme réelles.
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domaine {z;}e¢ &, te[0, + ©) & une condition de Lipschitz:

X,
dxy

X,

iz
x! Elg

§L2:=1|m;'—ws|

ou L est une constante.
Supposons que les équations (1) admettent la solution pério-
dique continue

mj = (p](t) = (p,(t+2n), .7 =1...,n, (2)

appartenant pour toutes les valeurs de ¢ au domaine §.

La recherche des solutions voisines de cette solution ameéne,
on le sait, & ’étude des équations differéntielles du mouvement
perturbé.

Posons

wj:(pj(t)-{—zj, j=l,...,n; (3)

les équations du mouvement perturbé se mettent alors sous la
forme:

dz; 3 0X;

"d_t' k:]"b_ajk— -Zk + Rj(t, Zl’ oo oey zn), j= 1, BERTR (D (4)

Ty —Ps ®

Introduisons la notion de distance dans ’espace 2) a n dimen:
sions E,, et plus spécialement la distance r(2, z) entre les
points {z;} et {z;} qui est égale & ;

r(2', 2) = ‘/Z:ﬁl (Be—2) 2. (5)

Pour simplifier nous désignerons simplement la distance des
points {zk(t)} a Dorigine des coordonnées par le symbole 7(z).

Supposons maintenant que le systeme fondamental des solu-
tions des équations aux variations

&

dz; n - . 2
=T ApF,  d=L..am | (10)
ol
0X
Aut)y=—" , hk=L..,n
dx
k z,=@, )
ait comme exposants caractéristiques o), =— 1, +iw,, k=1,...,n,

ou les parties réelles négatives — 4, satisfont a I’inégalité

M =p>0, k=1,...,n (11)

2) Nous désignerons I’espace dont les points sont {z,} par le symbole E,.
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Soit g un domaine fermé C . Nous appellerons solution
périodique de classe H(B, g) toute solution périodique {;(t)}
(période 27) du systeme (1) qui satisfait aux conditions:

I. @;(t) e g pour toutes les valeurs réelles de .

II. Les exposants caractéristiques du systeme (10) ont des
parties réelles négatives — 4, qui satisfont a la condition (11).

Nous allons prouver que dans la supposition que nous avons
faite, toutes les solutions du systéme (4), correspondant aux
solutions de classe H(f, g) du systeme (1) et dont les coordon-
nées initiales satisfont a I'inégalité r(0) < ¢, pour ¢ suffisamment
petit, tendent asymptotiquement vers 0 quand ¢ tend vers
I'infini positif.

On en déduit immédiatement la possibilité d’évaluer une limite
supérieure du nombre de mouvements périodiques différents, de
classe H(f, g) contenus dans un domaine fermé quelconque
g C ®. Géométriquement parlant en effet I’énoncé précédent
signifie que toutes les trajectoires, issues au moment initial d’un
point intérieur a4 une sphére a n dimensions de rayon donné ¢
dont le centre se trouve au point {(pj(O)}, se rapprochent asymp-
totiquement de ce mouvement périodique {@;({)} quand ¢ tend
'vers Dinfini positif. Désignons le volume de ce domaine & par
U et le volume de cette sphere par v. Il est alors évident que le
nombre de solutions périodiques différentes de classe H(B, g)

ne peut pas étre plus grand que %

§ 2.

Lemume 1.3) Soit le systéme d’équations différentielles

daz . . ,
S =T A E,  G=L...n  (117)

ac

dont les coefficients sont des fonctions périodiques de t, de période
27, continues pour chaque valeur de t et satisfaisant a Uinégalité

| Ap(t) < A (12)
ot A est wne constante.
Si tous les exposants caractéristiques du systéme

Uk:—}’k+i0)k’ k:1,...,n,

3) Ce lemme m’a été aimablement communiqué par V. I. KrILOFF, que je
remercie ici bien vivement.
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ont une partie réelle négative telle que 2, = >0 (k=1,...,n),
alors une solution quelconque de ce systéme satisfait a Uinégalité

N"—1
N—1

7(2ns) < 7(0)n e—2msp (13)
ot N =sn[1+ eB+207] ot 5 est un nombre entier positif quel-
conque. (T est défini pour £ comme 7 pour 2.)

Démonstration. Supposons que l’on ait trouvé n solutions
réelles indépendantes ) du systéme (10)

gll(t)’ Elz(t)’ ot "gln (t)]

(14)
gnl(t)? §n2(t)! s gnn(t)
satisfaisant aux conditions initiales
= _fo jFEk =
ij(O)—{l j:k‘ (1'3)

Examinons la matrice B composée des coefficients de la sub-
stitution intégrale du systeme (14) correspondant a la période 27,

(16)

Nous désignerons la matrice composée des solutions de ce
systeme (14) par Z(¢). De sorte que
+

Z(t+ 2n) = BZ(t), (17)

et en vertu de (15)
biw = Z:(27), (k=1,...n). (18)
L’équation caractéristique, correspondant a la période 27, sera

01— bips oo by,

............... =0. (19)
bnl; ’ bnn—l! bnﬂ e
Les racines de I’équation (19) sont
o = 7%, k=1,...,n. (20)

En raison des suppositions faites elles satisfont a I'inégalité
lop| <e ¥, k=1,...n. (21)
4) Le premier indice est le numéro des solutions, le deuxiéme le numéro

des coordonnées.
6
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Evaluons %) tout d’abord la matrice B. Pour cela formons un
systeme d’équations majorantes par rapport au systéeme (10)

dy;

5 = AT Y, d=L.om (22)
De (10), (12), (18) et (22) on tire I'inégalité
|Z@)| < |||, 0=t<2n, (23)
et
|B] = [ (28")

Il résulte maintenant des formules (15) et (17) que
Z(2ns) = B* (24)

ou s est un nombre entier positif.

De cette maniere ’évaluation de \E,jk(2ns)| se ramene a ’éva-
luation des éléments de la matrice B°. Pour cela nous utilisons
la formule d’interpolation de Newton

) Si la matrice X est donnée, le symbole | X| représente la matrice dont les
éléments sont les modules des éléments correspondants de la matrice X. Soient
données deux matrices |X| et Y avee

|25%] < Y Sk=1..,n

Nous supposerons outre cela que I'inégalité

|| < Y
a lieu pour un ou plusieurs éléments de ces matrices. Nous dirons alors:
|X]<v.
Par exemple
| X| est < ||¢]|
si 'on a
|mik|§€9 j,k:l,...,n,
et parmi ces inégalités on a pour certains indices y et »
|2 | <e-
L’inégalité
|X] < [lell
est équivalente a
Iwiklée, B k=1,...,n.
La notion de l’inégalité des matrices que nous avons introduite ci-dessus, est
donc différente de la notion correspondante utilisée par I. A. LAPPO-DANIELEWSKY.
Mémoires sur la théorie des systémes des équations différentielles linéaires, vol. I,

Chap. 1 [Académie des Sciences de 'URSS, 1934. Travaux de Pinstitut physico-
mathématique Stekloff].
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u® = uj + (u—uq) flug, ws) + ... +
+ (u'—ul) ot (u—un—l)f(ul’ Ugs « « oy un) +
+ (u—ug) - - (u—wy,) flug, s, - ., Upir) + o+

€ (zﬁ"—l.‘l) s (U—ty) e (U— g y) f(Uy - ey )

(25)

ou

_ Sy oo oy gy w)— fUys - - o5 Usy)

U— Ug—

Sy, ooy g, w) , flu) = us. (26)

On tire facilement de (26) I’égalité

Sl oo g) =2y y opmemgon UG s (27)

ou la somme porte sur toutes les combinaisons des nombres
entiers k; =0 (I=1,...,7) satisfaisant & D’égalité

by 4 Ryt ey =5 — (j—1),
c’est-a-dire f(uy, ug, . . ., 4;) est un polyndéme homogene de degré
§— (j—1) des arguments u,, . . ., u; avec des coefficients égaux a 1.

La formule (25) est une identité. Elle restera encore une
identité, si nous remplacerons w par une matrice quelconque
U et u,, ..., u; par des nombres quelconques, parce que le deu-
xieme membre de cette formule contiendra dans ce cas une
seule matrice U, et que le produit des puissances de celle-ci est
commutatif.

Remplagons dans la formule (25) w par la matrice B et
Uy - - -, U, par des nombres caractéristiques g,,..., 0, de la
matrice B, et, si s > n, les autres 4,4, . .., 4, par des nombres
quelconques. Alors, d’apres ’identité de Cayley

(B—o1 I)(B—gy1) « -+ (B—g,l) =0, (28)
ou I est une matrice unité, la formule (25) deviendra

B =il + (B—eil)f(01 03) + - - - +
+ (B—oi ) - (B—eu L) flow - - - 04)  (29)
puisque les autres termes s’annulent.
La formule (29) et I'inégalité (21) et (28’) donnent maintenant
|B°| =[] + [(B—Te) flers 0a)| +
+ |(B —Ioy) (B —1¢,) flo1> 02 93)1 + ...
+ I(B—IQ1)(B_192) <o (B—Ioy1)flor 025 - - - Qn)l =
=< [l || 4 [+ e ||| (g1, 02)] +
+ ””(emnA + 3_271‘3)2“ ‘lf(@v Q2> 93)! + ...
+ [ 4 e )Y foys 00, - 00)] . (80)
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Nous avons
If(@la e Q])l é ZIcl+...-ch:s—-(;i—l) e-—mﬁ(k1+...+kj)_ (31)

Pour évaluer alors la matrice B® dont nous avons besoin, il

nous reste & calculer la somme qui figure dans la formule (31).
Pour cela nous utiliserons la formule

LGN Gme])
S(m3 7) =

m!

(32)

qui donne le nombre de termes du polynéme homogene de degré
m de § variables.
Nous tirons de (31) et (32)

|flor, - - - 0;)| S e 2 PL=U=DIS[s— (j—1), 7] =

_ p-efle—t-n) U] [s—(—8)] - - - (s—1)s
(j—1)! ’

Et il résulte de (80) et (83) que

(33)

Ile < “e—znsﬂ[l + 62”5(62”"‘4—{— e_mﬁ)‘l%‘—l‘

s—1)s

+ e4nﬂ(32nnA + 6_2”’3)2n-( - +...

<

+ emﬁ(n—l)nn—2(e2nnA+e—2nﬁ)n_1 [s—(i—2)][s—(i—38)] -..(s—l)s]
(j—1)!

N™—1
N—1

é ‘ 6—2713/3

(34)

N = sn[14e2ftnd)], (34")

La formule (384) est valable pour s =1 et n =1.
L’inégalité (84) entre matrices est équivalente aux n? inégalités

N"—1
|E(2ms)| S e P ——,  jk=1...n (35)

Formons maintenant avec les solutions linéairement indépen-
dantes Z;;(f) la solution arbitraire du systeme (10)
) =Zp 1 Criplt), d=L...n. (36)
En vertu de (15) on a
72(0) = X7, 23(0) = X, _, C2. (87)

=173
En se servant de l'inégalité de Schwarz et des égalités (86) et

(87) il vient
7(2ns) < 73(0) T7_, Ty, B3 (2ns)
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En remplacant alors dans cette inégalité le module de Z;;, (27s)
par le second membre de 'inégalité (85) nous obtenons I'inégalité
cherchée (13), c. q. f. d.

. §3.

Soient donnés 2 systemes quelconques (1) et (2) d’équations
différentielles de forme normale avec le méme nombre de fonctions
inconnues dépendant d’une variable que nous désignerons encore
par t. Nous appellerons ,,solutions correspondantes” les solutions
des systémes (1) et (2) satisfaisant pour une valeur quelconque
t =1, aux mémes conditions initiales.

Examinons également le systeme d’équations différentielles (4)

dz; n X
a Ek=l A.’ik(t) B T R:i (4 2g -+ o5 20)5 J=1...mn, (4)

et aussi les équations aux variations

dz; _ .
Tt:E;Cl:lAjk(t)zk’ ]:1...,n. (10)

Nous allons démontrer le lemme suivant:

Lemme II. Les solutions®) du systeme (4) différent des
»solutions correspondantes” du systéme (10) dans Uintervalle
0 <t < 2ms, pour r(0) suffisamment petit, de Cr(0) au plus, c’est-
a-dire

|z5(t) —5(t)| =Cr(0),  j=1...m  (38)

N"—1
N—1

e 2ntsf

2

+ C — QNHBLnS e(A+nL7])27zsn

n étant la limite inférieure de la distance entre les frontieres
des domaines g et &.

En utilisant le symbole de la distance tiré de I'inégalité (38)
nous pouvons établir I'inégalité suivante

=) 0 <t <2as (38")
rt) =71 —ntero) |

Démonstration. Pour démontrer ce lemme nous emploierons
la méthode des approximations successives.

%) Quand nous parlons des solutions des systémes (4) et (10) nous sous-enten-
dons toujours les solutions différentes de zéro. L’existence de telles solutions sera
bien évidente aprés la démonstration du lemme II.
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Considérons le domaine g C &. Soient y et I' les frontiéres
respectives de g et . Désignons par 7 la borne inférieure de la
distance entre deux points quelconques appartenant respective-
ment & y et I'; c’est-a-dire posons

n = inf r{{z,}, {zp}]

ol r est la distance entre les points {z,} et {z}, et {z,} et {x}
deux points de y et I )

Soit alors {g;(t)} une solution périodique quelconque de classe
H(B, g) du systeme (1).

Supposons que le systéme (4) corresponde a l'une de ces solu-
tions périodiques.

Soient les points {z; (¢)} et {z(¢)} vérifiant les inégalités

r(z,0) et r(z’,0)<e=1y. (89)

Montrons que dans ce cas les fonctions Ry(t, 24, . - ., 2,,) satisfont
a la condition de Lipschitz

I Ri(t, 21, - 2),) — Ryt 2y, - . o, zn)| < MZZ=1IZ;C — 2z, (39)
ji=1L...mn
ou
u=mnLe.
De fait, en calculant les expressions
Rj(t, zi, .. oey zfn) ==
’ | ’ En bX;' ’
=Xt g+ 2@ +2,) — Xt @, - @) — k=130 | 2>
Rt 215 .- 0y 7,) =
n ij
=X, o1+ 2« - s @+ 2,) — X @1 - - s (pn)_zk=lb_wk *Rps
’ 14

et en appliquant la formule des accroissements finis nous obtenons

)'(Z;c_“'k),

ou zf, ..., 2% désignent les coordonnées du point {f} vérifiant
I'inégalité

X,
oy,

AX;
Xy @

Ry(t 2y seees ) — Ry(t 2y, « « o 23) :ZZ=1(

@+z*

|2¥| <max (||, |%]), k=1...n. (40)

D’apres (89) et (40) le point {zf} appartient au domaine ® et
ainsi on peut appliquer la condition de Lipschitz a la différence
AX; AX;

dxy pra* dxy ®

.
B
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on obtient alors
| Ryt &gy o 2y) — Ryt 2, - 2,)| = LEg_ [24]- Zia1]te — &l
D’ott en vertu de (40)
|R;(t, 215 v v oy 2y) — Ryt 20, . . 1y 2,)| =

= L-max {Z;_, |2, Ty |zl - iy

2 — 2|, (407)

Puis en vertu de (39)

2]y Zpey | 2|} = me

de sorte que nous retombons sur I'inégalité (39').

Si ¢ tend vers 0, le coefficient 1« de la condition de Lipschitz
tend aussi vers 0. Ceci nous servira plus tard.

Prenons maintenant comme approximation de numéro 0 de
la solution du systeme (4), la solution ,,correspondante’ du
systtme de DPéquation aux variations, c’est-d-dire {Z;(t)} qui
satisfait aux équations:

max {Z;_;

¢
5(1) =5(0) + [ Zp, Ap)E () dt,  i=1...n.  (41)
. .
La 1re approximation {z}} sera déterminée par I’égalité

J

2(t) = %,(0) —}—ftZ::lAjk(t)ék(t)dt +le,.(t, .. 5,)dl. (42)
0 0

Toutes les approximations suivantes (les numéros des approxi-
mations correspondent aux indices du haut) sont alors obtenues
a l’aide de la formule de récurrence

¢ n ¢
)= (0)+ [ S, A @) de+ [ Ryt .nz,)  (42))
0 0

L’évalution suivante de l’approximation de numéro 0 résulte
de la formule (33):

|%()] =r(0)0(s), 0=t=2ns, j=1,...n, (43)

ou on a posé pour simplifier
. e

N"—1

O(s) = n— e=2Ps, (48')

Appliquons la condition de Lipschitz (39’) (avec la constante
de Lipschitz y =nLzn) et admettons qu’elle soit encore valable
pour les points {z;} et {z;} qui vérifient dans Pintervalle 0 < ¢ < 2xs
Pinégalité

r[2(t), 0], 7[2'(t), 0] <7(0) nte2n+m (). (44)
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Il faut pour cela que 7(0) satisfasse a inégalité

- n . ’
r(O)gm—Oﬁ. (445)

Nous obtenons alors & partir de (39") et (40)
|5;(t) — 25(2) | =7(0) uO(s)t, 0 =1t=2ms. (45)
Par le méme raisonnement nous trouvons ?)

m+1 [(4+p)nt]®

|2 +(e)| < 7(0) O(s) Xy, o 0=t=2ms,  (46)

(nt)m+1

|2 ti(t) — 2n(2)] =7(0) O(s) (A +p)™

(m+1)! =
[ +p)ne] ™"
< A < 4 <
= r(0)O(s) it 0=t<2ms, (47)
n A t]*
|2 (1) —2;(2)| =7(0)O(s)unt Zkzo"——[( J:?"] s 0=t=2ms. (48)

L’inégalité (46) nous montre que quand 7(0) satisfait a (44)
chaque approximation appartient au domaine (89), domaine
pour lequel la condition de Lipschitz est valable. Quand m — -4 o0
I'inégalité (48) prend & la limite la forme

| 2;(t) — &(t)| =7(0) O(s) unte“ MM, 0 <t < 2ms, (49)
d’ou
| 2;(t) — 2(1)] < 7(0) 2anus O(s) e TM2n 0 <t <2as. (50)
Cette derniére donne
E;uzl I zj(t) _ 5j(t)|2 < 72(0) 4n2n3M232 e(A+,u)t4nsn @2(8) R
0=1t=2ans, (51)
d’out

3
|7(t) — 7(t)] S 7(0) 2an? u 2™+ W5 O(s), 0=<t=2ms, (52)

ou
<7 xr % 27tsn (A + u)
r(t) = 7(t) +7(0) 27m8,ue s0O(s) 0<t<oms (53)
r(t) = 7(t) — F(0) 27n?® p ¥ U g O (s)
c.q.f.d.

?) L’existence et la continuité de la solution du systéme (4) dans chaque inter-
valle fini, pour 7(0) suffisamment petit, résultent des inégalités (46) et (47).
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§ 4.

Lemme III. St r(0) est suffisamment petit pour wvérifier,
Dinégalité

n
< =
r(0) = S = % (54)
on a
r(27s) < 1(0) O(s)n[ 1+ un? 2ms e¥vsn (4+1)), (55)

et avec cela pour n, L, A, n, B, donnés et pour un choix convenable
des grandeurs s et r(0) celte inégalité peut se metire sous la forme

r(2zns) < qr(0) (56)

ot q <1.

Démonstration. Ce lemme est une conséquence immédiate
des lemmes I et II.

En effet, le lemme II donne

r(27s) < 7(2ns) + 7(0) @(s)/mfg 2715 2V (A1), (57)

Utilisons maintenant 1’inégalité du lemme I et observons
que 7(0) =7(0); nous obtenons

7(27s) g7‘((3)@(s)fn%[:l—l—[un2 275 e2Ten (AT (55)
c.q.f.d.
Nous écrirons maintenant I'inégalité (55) sous la forme

r(27s) < 7(0) O(s) n[ 1+ un? 2ms 2menA+nin] (55')

Si nous posons alors
r(0)<e=a
et
nle =294,

nous pouvons maintenant écrire I'inégalité majorante

r(2ns) < 7(0) O(s) nt[14-6n2 2ms e2menU+nin] - (55")

Soient maintenant données les grandeurs n, n, f, L et A.
Ecrivons pour simplifier

q = O(s) n[14-6n2 2qs 2sn U +nin ] (58)
La fonction @(s) tend vers 0 quand s tend vers 'infini positif.

Prenons s = S suffisamment grand pour que

@(5)n5=—;~ <1, (59)
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ol p est un nombre quelconque supérieur & 1. La grandeur S
tirée de (59) peut s’exprimer en fonction des grandeurs

p,n, 4, B.

Nous déterminerons ¢ par I'égalité
on? 2nS ¥SMATRI — pp 1. (60)

11 est alors évident que le multiplicateur vérifie ¢ < L + Py,
c.q.f.d. P P

Pour démontrer le théoreme fondamental de notre travail,
il nous est indispensable d’utiliser encore une propriété évidente
du systeme d’équations différentielles (4).

Soit

{o;(t)} (61)

une solution quelconque du systéme (4) satisfaisant aux condi-
tions initiales

9 (0) =a;,  G=l...n
et continue dans lintervalle 0 < ¢ < 2ns.

Les seconds membres du systeme (4) sont tels que, & ces
conditions initiales corresponde une solution et une seule du

by

systeéme, a savoir (61).
Posons

i (Pj(2n3):b,-, i=1...,m.

Soit les grandeurs b; (j=1,...,n) telles que le systeme (4)
ait dans lintervalle 27zs <t < 4ws une solution unique {zp,-(t)}
satisfaisant aux conditions initiales

py(2ms) = a5, d=li..n;
il est alors évident que

pi(dms) =b;, J=1,...m. (62)

§ 5.

En nous basant sur la propriété que nous venons de rappeler

et sur le lemme III, il est facile de démontrer le théoréme
suivant:

TutoriEME 1. Chaque solution {z;(t)} du systéme (4) corres-

\

pondant & la solution périodique {@;(t)} de classe H(B, g) du
systéme (1) et telle que r(0) << min («,y) ol
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_ %
1—6(S)n (63)

y:

b

7
2702 LS O(S) e27nS(4+1Ln)

tend asymptotiquement vers 0 quand t tend wvers Uinfini positif.
Démonstration.  Si {z;(t)} est une solution du systéme (4)
satisfaisant & (68), le lemme III permettrait d’écrire
r(2nS) < ¢7r(0), g <l (56)
Soit
( Zj(QJZS) = bj, ji=1...,n,
on a alors d’apres (62)
Zj(‘LﬂS) = 7}](2765), j =1 s e N,
ol {v;(t)} est une solution du systeme (4) satisfaisant aux con-
ditions initiales ,
Z)j(()) = bj? ji=1...,n.
Mais
T 02(0) = Sp2k(27S) = r¥(27S) < 12(0)g?. (64)
Appliquons le lemme IIT & la solution {v;(t)} il vient
V52 2 (2aS) = r(4aS )< qVZ',’;lv;(o )
ou, d’apres (64), .
r(4aS) < r(0)q>
Par un raisonnement analogue nous pouvons nous assurer que
r(2aSm) < r(0)g™, (65)
ou m est un nombre entier positif. Puisque ¢ <1 il résulte de

(65) que

limr(t) =0,
t—>+®

c.q.f.d. :

§ 6.

Soit maintenant le systeme d’équations différentielles (1)
satisfaisant aux conditions I, II et III et soit le domaine g C &.
Nous calculons les quantités #, L, n, et A et prenons un nombre
quelconque f > 0. Examinons les solutions périodiques de classe
H(B, g) du systeme (1).

Nous pouvons écrire le théoréeme suivant:

TutoriME II. Le nombre de solutions périodiques différentes
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de classe H(f,8) ne peut pas dépasser le mombre % otv U estle

volume du domaine & et v le volume de la sphére & m dimensions
de rayon & ow

e =min (o, y). (66)

La démonstration du théoréme est évidente.

Dans ce travail nous avons donné une évaluation du nombre
des solutions périodiques de classe H(f, g) du systeme (1) quand
les fonctions X; sont des fonctions explicites du temps ¢.

Le cas ou les fonctions X; ne dépendent pas explicitement
du temps differe de celui que nous avons étudié: un des exposants
caractéristiques du systéme d’équations aux variations est tou-
jours nul.

Dans ce cas toutefois, comme l’ont montré Andronoff et
Witt 8), les solutions périodiques du systéeme (1) seront stables
au sens de Liapounoff si tous les autres exposants caractéristiques’
ont une partie réelle < 0. C’est pourquoi le probleme de 1’éva-
luation du domaine de stabilité et, par suite, de I’évaluation du
nombre de solutions périodiques de classe correspondante, peut
étre rangée dans ce cas. Nous avons l'intention de consacrer des
recherches spéciales a ce probleme.

Remarquons enfin que dans le but de simplifier les calculs
nous avons employé quelquefois dans notre travail des procédés
d’évaluation trées sommaires. Aussi la formule (66) ne représen-
te-t-elle qu’une évaluation tres grossiere (quantitativement).

J’exprime ici ma profonde reconnaissance a Monsieur A. A.
Markoff qui m’a proposé ce probleme.

Janvier 1937. Institut de Mathématique et de Mécanique de
I'Université de Leningrad.

(Regu le 9 octobre 1937.)

8) A. ANDRONOFF & WiTT, Zur Stabilitit nach Liapunow [Physik. Zeitschr.
der Sowjetunion 4 (1933), 606—608].



