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Stabilité au sens de Liapounoff et nombre de
solutions périodiques

par

N. A. Artemieff

Léningrad

§ 1.

Introduction et énoncé du problème..
Soit @ un domaine borné d’un espace à n dimensions, dont

nous désignerons 1) les coordonnées d’un point par Xl, X2, ... 1 Xn,
et soit donné dans G, pour t &#x3E; 0, le système d’équatiorns diffé-
rentielles

où les Xj sont des fonctions périodiques du temps t.

Pour l’examen qualitatif des solutions du système (1), il est

très important de connaître le nombre possible de mouvements
périodiques différents qui sont contenus dans le domaine @.
Dans ce travail nous établissons un critère, permettant d’éva-

luer dans certains cas une limite supérieure du nombre possible
de mouvements périodiques de classe donnée qui sont contenus
dans le domaine 05. En outre nous donnons un moyen permettant
de juger en lere approximation de la stabilité de la solution

périodique.
En ce qui concerne les fonctions Xj nous ferons pour le moment

les hypothèses suivantes:
sont des fonctions réelles,

uniformes et continues dans le domaine fermé

satisfont dans le

1) Nous désignerons aussi les points de l’espace Rn par le symbole {Xj}, et

quelquefois simplement par la lettre x. Nous considérerons les variables xl, ..., Xn, t,
de même que les fonctions Xi de ces variables comme réelles.
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domaine {Xj} E, t E [0, + oo) à une condition de Lipschitz:

où L est une constante.

Supposons que les équations (1) admettent la solution pério-
dique continue

appartenant pour toutes les valeurs de t au domaine 0.
La recherche des solutions voisines de cette solution amène,

on le sait, à l’étude des équations differéntielles du mouvement
perturbé.

Posons

les équations du mouvement perturbé se mettent alors sous la
forme:

Introduisons la notion de distance dans l’espace 2) à n dimen.
sions En’ et plus spécialement la distance r(z’, z) entre les

points {Zk} et {z’k} qui est égale à 

Pour simplifier nous désignerons simplement la distance des
points {Zk(t)} à l’origine des coordonnées par le symbole r(t).

Supposons maintenant que le système fondamental des solu-
tions des équations aux variations

où

ait comme exposants caractéristiques ak = - Âk + iWk’ k =1,..., n,
où les parties réelles négatives - Âk satisfont à l’inégalité

2) Nous désignerons l’espace dont les points sont {Zj} par le symbole En.
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Soit g un domaine fermé C (S. Nous appellerons solution

périodique de classe H ({3, g) toute solution périodique {q?j (t)}
(période 2n) du système (1) qui satisfait aux conditions:

I. q?j( t) E g pour toutes les valeurs réelles de t.
II. Les exposants caractéristiques du système (10) ont des 

parties réelles négatives - Àk qui satisfont à la condition (11).
Nous allons prouver que dans la supposition que nous avons

faite, toutes les solutions du système (4), correspondant aux
solutions de classe H (P, g) du système (1) et dont les coordon-
nées initiales satisfont à l’inégalité r(0)  e, pour £ suffisamment

petit, tendent asymptotiquement vers 0 quand t tend vers

l’infini positif.
On en déduit immédiatement la possibilité d’évaluer une limite

supérieure du nombre de mouvements périodiques différents, de
classe H(p, g) contenus dans un domaine fermé quelconque
g C 01. Géométriquement parlant en effet l’énoncé précédent
signifie que toutes les trajectoires, issues au moment initial d’un
point intérieur à une sphère à n dimensions de rayon donné e
dont le centre se trouve au point {q?j(0)}, se rapprochent asymp-
totiquement de ce nlouvement périodique {q?j(t)} quand t tend
vers l’infini positif. Désignons le volume de ce domaine OE par
U et le volume de cette sphère par v. Il est alors évident que le

nombre de solutions périodiques différentes de classe H({3, g) 
ne peut pas être plus grand que v’v

§ 2.

LEMME 1. 3) Soit le systèîne d’équations différentielles

dont les coefficients sont des fonctions périodiques de t, de période
2n, continues pour chaque valeur de t et satisfaisant à l’inégalité

où A est une constante.
1 

Si tous les etposants caractéristiques du système

3) Ce lemme m’a été aimablement communiqué par V. I. KRILOFF, que je
remercie ici bien vivement.
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ont une partie réelle négative telle que Âk &#x3E; {3 &#x3E; 0 (k =1, ..., n),
alors une solution quelconque de ce système satisfait à l’inégalité

où N = sn[l + e2;rt(,8+nA)] et s est un nombre entier positif quel-
conque. ( r est défini pour i comme r pour z.)

Démonstration. Supposons que l’on ait trouvé n solutions
réelles indépendantes 4) du système (10)

satisfaisant aux conditions initiales

Examinons la matrice B composée des coefficients de la sub-
stitution intégrale du système (14) correspondant à la période 2n,

Nous désignerons la matrice composée des solutions de ce

système (14) par Z(t). De sorte que

et en vertu de (15)

L’équation caractéristique, correspondant à la période 2n, sera

Les racines de l’équation (19) sont

En raison des suppositions faites elles satisfont à l’inégalité

4) Le premier indice est le numéro des solutions, le deuxième le numéro

des coordonnées.
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Evaluons 5) tout d’abord la matrice B. Pour cela formons un
système d’équations majorantes par rapport au système (10)

De (10), (12), (18) et (22) on tire l’inégalité

et

Il résulte maintenant des formules (15) et (17) que

où s est un nombre entier positif.
De cette manière l’évaluation de Bzjk(2ns)B se ramène à l’éva-

luation des éléments de la matrice BS. Pour cela nous utilisons
la formule d’interpolation de Newton

5) Si la matrice X est donnée, le symbole X représente la matrice dont les
éléments sont les modules des éléments correspondants de la matrice X. Soient
données deux matrices 1X I et Y avec

Nous supposerons outre cela que l’inégalité

a lieu pour un ou plusieurs éléments de ces matrices. Nous dirons alors:

Par exemple

si l’on a

et parmi ces inégalités on a pour certains indices f-l et v

L’inégalité

est équivalente à

La notion de l’inégalité des matrices que nous avons introduite ci-dessus, est

donc différente de la notion correspondante utilisée par I. A. LAPPO-DANIELEWSKY.
Mémoires sur la théorie des systèmes des équations différentielles linéaires, vol. I,
Chap. 1 [Académie des Sciences de l’URSS, 1934. Travaux de l’institut physico-
mathématique Stekloff].
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où

On tire facilement de (26) l’égalité

où la somme porte sur toutes les combinaisons des nombres
entiers kz &#x3E; 0 (l = 1, ..., y) satisfaisant à l’égalité

c’est-à-dire f(U1’ U2’ ..., 1 Ui) est un polynôme homogène de degré
s - (j-1) des arguments ul, ..., ui avec des coefficients égaux à 1.
La formule (25) est une identité. Elle restera encore une

identité, si nous remplacerons u par une matrice quelconque
U et ui, ..., us par des nombres quelconques, parce que le deu-
xième membre de cette formule contiendra dans ce cas une

seule matrice U, et que le produit des puissances de celle-ci est
commutatif.

Remplaçons dans la formule (25) u par la matrice B et

U1’ ..., un par des nombres caractéristiques el, ..., on de la

matrice B, et, si s &#x3E; n, les autres un+1, ..., us par des nombres

quelconques. Alors, d’après l’identité de Cayley

où I est une matrice unité, la formule (25) deviendra

puisque les autres termes s’annulent.
La formule (29) et l’inégalité (21) et (23’) donnent maintenant
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Nous avons

Pour évaluer alors la matrice Bs dont nous avons besoin, il

nous reste à calculer la somme qui figure dans la formule (31).
Pour cela nous utiliserons la formule

qui donne le nombre de termes du polynôme homogène de degré
m de j variables.
Nous tirons de (31) et (32)

Et il résulte de (30) et (33) que

où

La formule (34) est valable pour s &#x3E; 1 et n &#x3E; 1.

L’inégalité (34) entre matrices est équivalente aux n2 inégalités

Formons maintenant avec les solutions linéairement indépen-
dantes Zjk(t) la solution arbitraire du système (10)

En vertu de (15) on a

En se servant de l’inégalité de Schwarz et des égalités (36) et
(37) il vient
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En remplaçant alors dans cette inégalité le module de Zjk (2ns)
par le second membre de l’inégalité (35) nous obtenons l’inégalité
cherchée (13), c. q. f. d.

§ 3.

Soient donnés 2 systèmes quelconques (1) et (2) d’équations
différentielles de forme normale avec le même nombre de fonctions
inconnues dépendant d’une variable que nous désignerons encore
par t. Nous appellerons "solutions correspondantes" les solutions
des systèmes (1) et (2) satisfaisant pour une valeur quelconque
t = to aux mêmes conditions initiales.
Examinons également le système d’équations différentielles (4)

et aussi les équations aux variations

Nous allons démontrer le lemnie suivant:

LEMME II. Les solutions 6) du système (4) diffèrent des

,,solutions correspondantes" du système (10) dans l’intervalle

0 t  2ns, pour r(0) suffisamment petit, de Cr(0) au plus, c’est-
à-dire

où

q étant la limite inférieure de la distance entre les frontières

des domaines g et @.
En utilisant le symbole de la distance tiré de l’inégalité (38)

nous pouvons établir l’inégalité suivante

Démonstration. Pour démontrer ce lemme nous emploierons
la méthode des approximations successives.

6 ) Quand nous parlons des solutions des systèmes (4) et (10) nous sous-enten-
dons toujours les solutions différentes de zéro. L’existence de telles solutions sera
bien évidente après la démonstration du lemme II.
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Considérons le domaine g C @. Soient y et h les frontières

respectives de g et 03. Désignons par q la borne inférieure de la
distance entre deux points quelconques appartenant respective-
ment à y et r; c’est-à-dire posons

où r est la distance entre les points
deux points de y et h.

Soit alors {ggj(t)l une solution périodique quelconque de classe
H ({3, g) du système (1).

Supposons que le système (4) corresponde à l’une de ces solu-
tions périodiques.

Soient les points {Zj (t)} et z(t)l i vérifiant les inégalités

1 
Montrons que dans ce cas les fonctions R,(t, zi, ..., zn) satisfont
à la condition de Lipschitz

où

De fait, en calculant les expressions

et en appliquant la formule des accroissements finis nous obtenons

où zi , ..., z§/ désignent les coordonnées du point (zJll) vérifiant
l’inégalité

D’après (39) et (40) le point {zZ} appartient au domaine G et
ainsi on peut appliquer la condition de Lipschitz à la différence
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on obtient alors

D’où en vertu de (40)

Puis en vertu de (39)

de sorte que nous retombons sur l’inégalité (39’).
Si e tend vers 0, le coefficient It de la condition de Lipschitz

tend aussi vers 0. Ceci nous servira plus tard.
Prenons maintenant comme approximation de numéro 0 de

la solution du système (4), la solution "correspondante" du
système de l’équation aux variations, c’est-à-dire {Zj(t)} qui
satisfait aux équations:

La lère approximation (z)) sera déterminée par l’égalité

Toutes les approximations suivantes (les numéros des approxi-
mations correspondent aux indices du haut) sont alors obtenues
à l’aide de la formule de récurrence

L’évalution suivante de l’approximation de numéro 0 résulte
de la formule (33):

où on a posé pour simplifier

Appliquons la condition de Lipschitz (39’) (avec la constante
de Lipschitz u = nLn) et admettons qu’elle soit encore valable
pour les points {Zj} et {zj} qui vérifient dans l’intervalle 0  t  21s
l’inégalité
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Il faut pour cela que 7(o) satisfasse à l’inégalité

Nous obtenons alors à partir de (39’) et (40)

Par le même raisonnement nous trouvons 7)

L’inégalité (46) nous montre que quand T(0) satisfait à (44)
chaque approximation appartient au domaine (39), domaine

pour lequel la condition de Lipschitz est valable. Quand m -&#x3E; + o0
l’inégalité (48) prend à la limite la forme 

d’où

Cette dernière donne

d’où

où

c.q.f.d.

’ ) L’existence et la continuité de la solution du système (4) dans chaque inter-
valle fini, pour r(0 ) suffisamment petit, résultent des inégalités (46) et (47).
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§4. 

LEMME III. Si r(0) est suffisamment petit pour yérifier.
l’inégalité

on a

et avec cela pour n, L, A, q, P, donnés et pour un choix convenable
des grandeurs s et r(O) cette inégalité peut se mettre sous la forme

où q  1.
Démonstration. Ce lemme est une conséquence immédiate

des lemmes 1 et II.

En effet, le lemme II donne

Utilisons maintenant l’inégalité du lemme I et observons

que r(O) = r(O); nous obtenons

c.q.f.d. 
Nous écrirons maintenant l’inégalité (55) sous la forme

Si nous posons alors

et

nous pouvons maintenant écrire l’inégalité majorante

Soient maintenant données les grandeurs n, il, fJ, L et A.
Ecrivons pour simplifier

La fonction O(s) tend vers 0 quand s tend vers l’infini positif.
Prenons s = S suffisamment grand pour que
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où p est un nombre quelconque supérieur à 1. La grandeur S
tirée de (59) peut s’exprimer en fonction des grandeurs

Nous déterminerons ô par l’égalité

Il est alors évident que le multiplicateur vérifie
c.q.f.d.

Pour démontrer le théorème fondamental de notre travail,
il nous est indispensable d’utiliser encore une propriété évidente
du système d’équations différentielles (4).

Soit

une solution quelconque du système (4) satisfaisant aux condi-
tions initiales

et continue dans l’intervalle 0  t  2ns.
Les seconds membres du système (4) sont tels que, à ces

conditions initiales corresponde une solution et une seule du

système, à savoir (61).
Posons

Soit les grandeurs bj (j = 1, ..., n ) telles que le système (4)
ait dans l’intervalle 2ns  t  4ns une solution unique {1pj(t)}
satisfaisant aux conditions initiales

il est alors évident que

§ 5.

En nous basant sur la propriété que nous venons de rappeler
et sur le lemme III, il est facile de démontrer le théorème
suivant:

THÉORÈME 1. Chaque solution (zj(t)) du système (4) corres-

pondant à la solution périodique (qj(t)) de classe H(fl, g) du
systért2e (1) et telle que r(0)  min (x, y) où
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tend asymptotiquement vers 0 quand t tend vers l’infini positif.
Démonstration. Si (zj(t)) est une solution du système (4) )

satisfaisant à (63), le lemme III permettrait d’écrire

Soit

on a alors d’après (62)

où {Vj(t)} est une solution du système (4) satisfaisant aux con-
ditions initiales ,

Mais

Appliquons le lemme III à la solution {Vj(t)} il vient

ou, d’après (64),

Par un raisonnement analogue nous pouvons nous assurer que

où m est un nombre entier positif. Puisque q  1 il résulte de

(65) que

c.q.f.d. i

§ 6.

Soit maintenant le système d’équations différentielles (1)
satisfaisant aux conditions I, II et III et soit le domaine g C @.
Nous calculons les quantités îî, L, n, et A et prenons un nombre
quelconque (3 &#x3E; 0. Examinons les solutions périodiques de classe
H(fl, g) du système (1).
Nous pouvons écrire le théorème suivant:
THÉORÈME II. Le nombre de solutions périodiques différentes
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de classe H (fJ, g) ne peut pas dépasser le nombre U oit U est le
v

volume du domaine @ et v le volume de la sphère à n dimensions
de rayon s où

e = min ((1., y). (66)

La démonstration du théorème est évidente.

Dans ce travail nous avons donné une évaluation du nombre

des solutions périodiques de classe H (fJ, g) du système (1) quand
les fonctions Xj sont des fonctions explicites du temps t.

Le cas où les fonctions Xi ne dépendent pas explicitement
du temps diffère de celui que nous avons étudié: un des exposants
caractéristiques du système d’équations aux variations est tou-
jours nul.
Dans ce cas toutefois, comme l’ont montré Andronoff et

Witt 8), les solutions périodiques du système (1) seront stables
au sens de Liapounoff si tous les autres exposants caractéristiques
ont une partie réelle  0. C’est pourquoi le problème de l’éva-
luation du domaine de stabilité et, par suite, de l’évaluation du
nombre de solutions périodiques de classe correspondante, peut
être rangée dans ce cas. Nous avons l’intention de consacrer des
recherches spéciales à ce problème.
Remarquons enfin que dans le but de simplifier les calculs

nous avons employé quelquefois dans notre travail des procédés
d’évaluation très sommaires. Aussi la formule (66) ne représen-
te-t-elle qu’une évaluation très grossière (quantitativement).

J’exprime ici ma profonde reconnaissance à Monsieur A. A.
Markoff qui m’a proposé ce problème.

Janvier 1937. Institut de Mathématique et de Mécanique de
l’Université de Leningrad.

(Reçu le 9 octobre 1937.)

8) A. ANDRONOFF &#x26; VVITT, Zur Stabilitât nach Liapunow [Physik. Zeitschr.
der Sowjetunion 4 (1933), 606-608].


