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Uber die Approximation konvexer Kurven durch
Polygonfolgen
L. Fejes
Budapest

Einleitung.

Die Approximation von Kurven durch Polygonfolgen spielt
seit Archimedes eine wichtige Rolle in der Elementargeometrie
und wurde auch in anderen Gebieten der Geometrie, ja auch in
der Analysis mit Erfolg angewendet. Man nimmt dabei aber in
den meisten Fiéllen nur auf die Moglichkeit der Approximation
Riicksicht. Wir wollen uns dagegen hier folgender Frage zu-
wenden: mit welcher Genauigkeit 148t sich eine gegebene konvexe
Kurve durch eine Folge ein-, bzw. umbeschriebener n-Ecke —
beziiglich des Flicheninhaltes bzw. des Umfanges — appro-
ximieren?

Es seien hier einige Ergebnisse vorausgeschickt.

Die Approximation durch einbeschriebene und umbeschriebene
n-Ecke werden wir zusammen behandeln. Wir schliefen die
gegebene Kurve in einen ,,n-Eckring” ein und betrachten als
Maf3 der Approximation den Flacheninhalt 7, = T, — ¢,, bzw.
den ,,Umfang” 1, = L, — I, des n-Eckringes, wobei T, ¢,, L,, 1,
den Flacheninhalt bzw. den Umfang des dulleren bzw. inneren
n-Eckes bedeuten sollen. Wir untersuchen die beiden Fille, in
welchen der Umfang L bzw. das Inhaltsmafl T der zu appro-
ximierenden Kurve vorgegeben ist. Dementsprechend erhalten
wir folgende Satze.

Es laft sich zu jeder konvexen Kurve mit dem Fldcheninhalt T
ein n-Eckring angeben, dessen Flicheninhalt

AT
T < —
n

ausfdllt, wobet A eine universelle Konstante bezeichnen soll.
Als Korollarium erhalten wir wegen der isoperimetrischen
Ungleichung:
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Es lipt sich zu jeder konvexen Kurve mit dem Umfang L ein
n-Eckring angeben mit dem Fldcheninhalt:

AL?

4mn?’

T, <

Es gilt ferner der Satz:
Jede konvexe Kurve mit dem Fldcheninhalt T lapt sich in einen
n-Eckring einschliefen, dessen Umfang

BT?

n2

Ay <

ist, wobet B eine universelle Konstante bedeutet.
Es ergibt sich daraus:
Man kann zu jeder konvexem Kurve mit dem Umfang L einen
n-Eckring konstruieren, dessen Umfang

A, < BL
" V dan?

ausfallt.
Diese Abschiatzungen sind nicht die bestmdglichen, obwohl die

GroBenordnung —, sich nicht verbessern 1a3t, was man z.B. fiir
n

den Fall des Kreises leicht nachrechnet. Um in einigen Fallen
genauere Abschitzungen zu gewinnen, fithren wir die vier Gré8en
Y
Tn — Tn —t, L'n - ln Ln - ln

b b b

T, L L, T

ein und bezeichnen sie als die relativen Griflen des n-Eckringes?t).
Die obigen Ergebnisse konnen wir nun im folgenden Satz zusam-
menfassen: »

Es sei eine beliebige konvexe Kurve gegeben. Man konstruiere
dazu die vier n-Eckringe, welche die kleinsten relativen Griéfien be-
sitzen. Dann gilt fiir diese:

1) Es gilt fiir jeden n-Eckring:

To—ta _ 1 To—tn Li—l _ 1 L,—1,

= ’

r: = n T L, ~— 4/ Tt
n 4”l tg - n n V4n tg 1 ol
n n

Tﬂ
Diese Formeln folgen aus der Tatsache, daB der Quotient —5 sein Maximum fiir
L

n

das regulire n-Eck annimmt.
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. 27n
T, —t, 6xn Ty — o _ s )
T, n? L2 = 8n
L, —1 nx L,—1 500
L% < 24in% —, o . (2)
L, 2n T: n?

Die zweite Abschiatzung in (1) und die erste in (2) kénnen dabei
nicht verbessert werden 2).

Im folgenden behandeln wir die Approximation in bezug auf
den Flacheninhalt und beweisen (1); danach besprechen wir die
Ungleichungen (2), d.h. die Approximation beziiglich des Um-
fanges. Dabei werden wir noch weitere Verallgemeinerungen
kennen lernen.

Approzimation beziiglich des Fldcheninhaltes.

1. Die erste Ungleichung in (1) 1laBt sich auf die zweite
zuriickfithren. Wir beginnen mithin mit der Ungleichung:

. 2nm
T, ¢, S

L 8n
folgenden Satzes:

Schreibt man in ein konvexes n-Eck U, mit dem Umfang L,
ein zweites n-Eck w, derart ein, daf3 auf jeder Seite von U, ein
Scheitelpunkt von u, liegt und dabei die n Dreiecke, welche von U,
durch die Seiten von w, abgeschnitten werden, das gleiche Inhalts-

IA

. Diese ist aber eine unmittelbare Folgerung des

maf’ % besitzen, so ist die Summe des Fldicheninhaltes saémilicher

abgeschnittenen Dyreiecke:

n — Sn n*

Betrachten wir zum Beweis eines der von U, abgeschnittenen
Dreiecke, etwa das k-te (Fig. 1), und bezeichnen wir es mit
A ABC wobei B gleichfalls ein Scheitelpunkt von U, sei. Setzen
wir w; = — < ABC so gilt:

Tn smwk sinw, —— = —== —_—

o AB-BC < " AB+BC); 4B+ BC V L
n 8 7 Sin @y,

v

2) Es sei schon hier bemerkt, daB die Konstante 500 in (2) sich leicht durch
eine viel kleinere ersetzen lift.
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Bildet man die Summe dieser Ungleichungen, so erhilt man
auf der linken Seite den Umfang L, von U,, und es gilt mit

Riicksicht auf den Jensenschen Satz 2): :
I 8T, =n 1 - 8, n
n = —_— = —
n i n . 2n
k-1 Vsin w, =z Vsm 27
n
w.z.b.w.

Fig. 1.

Man schreibe nun um die Kurve cin n-Eck und verbinde die
benachbarten Berithrungspunkte. Es entsteht so ein aus =
Dreiecken zusammengesetzter n-Eckring, welcher derart gewahlt
werden kann, daB3 samtliche Dreciecke gleiches Inhaltmall be-
sitzen ¢). Folglich ist die relative GréBe dieses n-Eckringes

. 2n
sin —
fjiz = an womit unsere Behauptung bewiesen ist..
n
n

3) Es gilt fiir eine jede Funktion, welche eine nicht negative zweite Ableitung

1 12

f(x) = 0 besitzt: f (— > :ck) < — X f(x) (JENSEN, Sur les fonction convexes
k=1 " k=1

et les inégalités entre les valeurs moyennes [Acta Math. 30 (1906), 175—193]. Man

wende dies auf f(z) = sin"? 2 an und beachte, daB fiir 0 < 2 < x (sin—% z)" >0

n
und 2 ;= 27 ausfillt.
k=1
4) Es sei p, eine beliebige Stiitzgerade der Kurve, welche diese in P, beriihre,
und man wihle eine zweite Stiitzgerade p, mit dem Berihrungspunkt P, (bzw.
einen Punkt P, mit der Tangente p,) derart, daB das InhaltsmaB {(p,p,) des von
Py, Ps, P3P, begrenzten Dreieckes einen gegebenen Wert #(p,p,) = ¢ annehme.
Wir fahren so fort, indem wir p,, p,, ..., p, derart bestimmen, daB i(p,p;) =
Hpspy) = -+« = H(Pp-1Pn) =t ausfillt. Es leuchtet nun ein, daB ¢ so gewihlt werden
kann, daB8 (p;, und P, immer festgehalten) auch #(p,p,) = t ausfilit.
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2. Es werde jetzt gezeigt, daBl die soeben gegebene Konstruk-

T, —t,

. . 67 . . .
tion auch der Ungleichung < . geniige leistet. Dies

n

beruht auf der — von Herrn F. Behrend herrithrenden — Tat-
sache %), daB3 jede konvexe Kurve sich mit Hilfe einer passend
gewihlten affinen Transformation auf eine andere Kurve abbilden
laBt, deren Umfang L und Flicheninhalt T der Ungleichung
L?* <12V38 T geniigen. Dabei 1a8t sich die Zahl 12V 3 durch
keine kleinere ersetzen.

Man wende nun diesen Satz auf das duBlere n-Eck des in 1

konstruierten Polygonringes an und bedenke, daB3 die GroSe
T, —

gegeniiber affinen Transformationen invariant bleibt;

man erhilt:

3. Es wird nicht ohne Interesse sein, zu bemerken, daf3 sich
aus unserer Konstruktion (d.h. eines n-Eckringes, welcher aus
n — beziiglich des Inhaltsmafles — gleichen Dreiecken besteht)
fir n < 6 die genaue Schranke

T, —
T

n

t N 1
? < sin? —
n

ergibt ¢). Wir haben nur zu zeigen, dafl die Flacheninhalte T,
und ¢, der in 1 konstruierten n-Ecke U, bzw. w, der (fiir n = 8

trivialen) Ungleichung ¢, = T, cos? % genligen. Wir stellen uns

daher folgende Aufgabe: unter allen konvexen n-Ecken gleichen
InhaltsmaBes dasjenige n-Eck U, zu bestimmen, fiir welches das
nach der in 1 bestimmten Vorschrift einbeschriebene n-Eck
(s. Fig. 1) mit dem kleinsten Inhaltsmaf i, den kleinstmdglichen
Flacheninhalt besitzt. Dieses n-Eck ist — wie leicht einzusehen
ist — dadurch ausgezeichnet, daf3 die Eckpunkte von %, mit den

5) F. BERREND, Uber einige Affininvarianten konvexer Bereiche [Math. Ann.
113 (1987), 713—"747].

¢) Es ist dabei zu erwarten, da3 dies auch fiir ein jedes n gilt. Der Beweis 1af3t
sich namlich nur wegen der Verwickeltheit der Rechnung nicht im allgemeinen
leicht durchfiihren.
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Mittelpunkten der Seiten von U, zusammenfallen?). Daraus
folgt ferner, daf ’

Q10211 0nQs 023l Q108 - - - » OnQ1ll OnaQ2

wobei Q, O, . . ., 0, die nacheinander folgenden Ecken von U,
bezeichnen. Fiir n = 4 und n = 5 wird aber das n-Eck durch
diese Bedingung — abgesehen von einer affinen Transformation
— vollig bestimmt: es ist das regulére n-Eck. Fir n = 6 1i6t
sich das obige Problem als eine Minimumaufgabe mit einem Ver-
anderlichen behandeln, und man erhilt als Losung wiederum das
reguldre Sechseck?). Es gilt aber fiir das regulire n-Eck

t, = T, cos? %, womit unsere Behauptung dargetan ist.

Es sei hier noch bemerkt, dal die soeben bewiesene Tatsache
ein wenig allgemeiner formuliert werden kann: Schreibt man in
eine konvexe Kurve mit dem Fldacheninhalt T ein n-Eck mit n < 6
derart ein, daf3 die abgeschnittenen Teile gleiches Inhaltsmaf3 be-

sttzen, so ist der Fldcheninhalt dieses n-Eckes: t, = T cos? %.

Um dies einzusehen, betrachten wir eine konvexe Kurve U
mit dem Fliacheninhalt T und fassen das — nach unserer Vor-
schrift einbeschriebene — n-Eck w, ins Auge. Ware nun U
selber kein n-Eck, so konnte U leicht — ohne die Abdnderung
von %, — durch ein n-Eck mit einem Flacheninhalt T,, > T
ersetzt werden.

4. Die obigen Ergebnisse beruhen auf keiner einfachen Kon-
struktion: sie sind vielmehr reine Existenzbeweise. Diesen Mangel
versuchen wir im Folgenden — wenigstens teilweise abzuhelfen,

t

7) Setzen wir voraus, daB z.B. in Fig. 1 BC > CD ist und ersetzen C durch
einen zwischen B und C liegenden Punkt C’. Dadurch wird u, verkleinert, da die
von C’ gefillte Hohe des Dreieckes A AC’E kleiner als die entsprechende Hohe
von A ACE ist. Man drehe ferner BD um C’, bis A AB’C’ und A C’D’E wieder
das gleiche Inhaltsmaf3 besitzen, wobei B’ und D’ die neuen Eckpunkte von U,
auf AB bzw. DE bezeichnen. Ist CC’ geniigend klein, so gilt BC’ > C'D und
‘B’C’ > C’D’. Daraus folgt, daB U, durch diese Verdrehung in ein groBeres n-Eck
U! iibergeht und man sieht leicht ein, daB U, besser ist als U,.

8) Wir konnen uns auf Sechsecke A BCDEF mit <t ABC = < BCD beschrin-
ken, da jedes Sechseck durch eine affine Transformation in ein solches iiberfiihrt
werden kann. Man rechnet leicht nach, daB fiir diese Sechsecke, welche auBerdem
noch den Bedingungen AB ||CF || DE, BC | AD || EF, AF || BE || CD geniigen,
der Quotient ,,Inhaltsmafl von 4 BC/Inhaltsma3 von A BCDE F” sein Maximum
fiir das regulire Sechseck annimmt.
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wobei wir zugleich auch eine Verallgemeinerung fiir Kurvenbogen
erhalten werden. Wir beweisen den Satz:
Es laft sich zu jedem konvexen Kurvenbogen mit der Bogenlinge
L und mat der totalen Biegung w ?) eine Folge von ,, Polygonbdindern”
konstruieren, deren Fldcheninhalt
wL?

rn<(1+8n)§;£

(g, — 0) (1a)

ausfdllt.

Was ist hier unter einem Polygonband zu verstehen? Wir
zeichnen einen aus n Strecken bestehenden gebrochenen Linien-
zug, dessen Endpunkte 4, B mit den Endpunkten des Kurven-
bogens zusammenfallen und dessen samtliche Eckpunkte auf dem

Fig. 2.

Bogen liegen (Fig. 2). Wir zeichnen weiter einen zweiten Linienzug
mit n + 1 Strecken, dessen Endpunkte ebenfalls mit 4 und B
tbereinstimmen, und dessen sdmtliche Strecken den Bogen be-
rithren. Wir erhalten so endlich ein den Bogen umschlieBendes
(2n + 1)-Eck, das wir als ein zu dem Kurvenbogen gehérendes
Polygonband vom Index n, oder kurz als ein n-Eckband bezeich-
nen wollen.

Wir zeichnen nun zu dem Bogen ein n-Eckband, wobei der

?) Besitzt der Kurvenbogen K mit den Endpunkten 4, B in jedem Punkt P

mit 4P =l eine Kriimmung ¢(l), so 148t sich die totale Biegung von K durch
das Integral

L
w = f o(l)dl
0

definieren. Im Falle eines beliebigen konvexen Kurvenbogens K betrachte man
nun eine Folge von gegen K konvergierenden konvexen Kurvenbogen K,, K,, . . .
mit den Endpunkten A4, B, welche im von K und AB begrenzten Gebiet liegen
und in jedem Punkt eine Kriimmung besitzen. Man sieht unmittelbar ein, daB
die totalen Biegungen w,, w,, ... von K,, K,, ... stets gegen einen nur von K
abhingigen Grenzwert streben, welchen wir als die totale Biegung bezeichnen
wollen.
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innere Linienzug aus n Strecken gleicher Linge d, bestehe; die
Strecken des duBleren Linienzuges sollen dabei den Bogen in den
Eckpunkten des inneren Streckenzuges beriihren. Wir erhalten
dadurch ein Polygonband vom Index n, welches aus n Dreiecken

zusammengesetzt ist. Der Flacheninhalt des k-ten Dreieckes kann

Wy

. . " d: .. . . .
nicht die Grofle iitg? iiberschreiten, wobei w, die totale

Biegung des entsprechenden Teilbogens bedeute. (Es wird hierbei
vorausgesetzt, dal kein w, = = ausfillt.) Es gilt mithin:

dan ® — .
T, = Z" % tg;k, und setzt man @, = maxw,, so gilt wegen

k=1
o w; 2 o, & . .
tg—<—"_tg—, X w, = und nd, < L die Ungleichung:
2 2 w, 2
2 2 Py
"= 8ntw, © 2

Daraus kann man noch nicht auf (1a) schlieBen, weil ja @,
nicht im allgemeinen gegen Null strebt. Wir verfahren daher
weiter wie folgt. Wir zerlegen den Bogen in m Teilbogen

K, K,, ..., K,, welche dieselbe totale Biegung "__a: besitzen sollen,

und wenden die soeben erhaltene Ungleichung auf jedes K;
an 19). Dabei bedeute m eine noch nicht weiter festgelegte Zahl.

Der Index n; des zu K, zu konstruierenden Polygonbandes geniige
der Bedingung

L L
(n~—m)f‘ =n; < (n——m)z‘ +1,

wobei L; die Bogenlidnge von K; bezeichne. Wir erhalten schlief3-
lich ein Polygonband vom Index héchstens 7 mit dem Flachen-

m
inhalt 7, = X 7, . Es gilt aber, wie wir gesehen haben
i=1 '
tg — tg —
L2 8o o L2 € om
7, <2 <2
foom 8n? o m 8(n—m)?: o
2m 2m

und demnach

ol 1 tgz_m
Tn<'8ﬁw pn

10) Es sei bemerkt, da3 — falls die Kurve Ecken hat — einige der Bogen
K,, K,,... aus einzelnen Punkten bestehen konnen.
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Durch passende Wahl von m und n kann erreicht werden, da3

w
tg —
der Faktor — wzm der Zahl 1 beliebig nahekommt, womit
- 2
n 2m

(1a) bewiesen ist.
ECS

Approxzimation in bezug auf die Bogenldinge.

L,—1,
L

1. Wir beginnen mit der Ungleichung: =< 25sin? 2% Diese

n

kann &hnlich wie frither auf den folgenden Satz zuriickgefiihrt
werden:

Schreibt man in eine konvexe Kurve mit dem Umfang L ein n-Eck
mit den Eckpunkten P,, P,, ..., P, ein, so daf3

P —— S R —_ —_—
PP, — P,P, = PyPy — PyPy=...=P,P, — P, P,
ausfdllt, so gilt fiir den Umfang dieses n-Eckes:

T
l, = L cos —.
n

wobei w; die totale Biegung des Bogens P;P;., bezeichne. Es
ergibt sich daraus:

PPr; = ——— (PiPoy—PiPi)
2 sin? Z‘

und demnach, geméif3 der Jensenschen Ungleichung ?):

g
n 1 n COS ?
ln:2PiP1+1g;(PiPi+1“—PiPz+1)Z w-z—
i=1 i=1 gip2 —*
4
T
Ccos —
n
=(L—1,) ,
2 sin? —

w.z.b.w.
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Seien nun P,, P,, ..., P, beliebige n Punkte einer konvexen
Kurve. Man zeichne in P, P,, ..., P, die Tangenten bzw.
beliebige Stiitzgeraden a,, @, . . ., @, und bezeichne den Schnitt-
punkt von a; und a;,; mit Q,. Wahlt man die Punkte Py, P,, .. .,
P, derart, da3

PyQy + Q1Py — PPy = PyQy + QyPy — PPy = ... =
= P,0, + QnPy — PP,
sei, so bilden die zwei n-Ecke Py, Py, ..., P, und Q;, Qs, ..., Q,
einen die Kurve einschlieBenden n-Eckring, dessen relative

L,—1 . T,
GroBle =-——— < 2sin? — ist.
L 2n

n

. . . L,— Ln. .
Wir schlagen nun zur gleichen Abschitzung von einen

n

zweiten Weg ein, welcher auf einer iiberaus einfachen Kon-
struktion beruht. Wir zeichnen ein die Kurve umgebendes, im
ibrigen aber beliebiges reguldres m-Eck und verschieben alle
Seiten mit sich selber parallel, bis sie die Kurve beriihren. Ver-
binden wir die nebeneinander liegenden Beriihrungspunkte, so
entsteht ein aus n Dreiecken zusammengesetzter n-Eckring.
Fassen wir ein Dreieck A ABC, etwa das k-te, ins Auge. Die
innerhalb liegende Seite sei AB; wir setzen E:d,‘,-A—C + -

+ CB=D,. Esgilt d, =D, cos% und es ergibt sich hiernach

n n X 7 L,—1, . n
2 d, =cos — X Dy, d.h. 1, =L, cos —, oder < 2sin% —,
k=1 L n L, 2n
w.z.b.w,

2. Durch eine einfache Modifikation 1) erhalten wir den Satz:
Es lipt sich zu jedem konvexen Kurvenmbogen mit der Bogen-

ldnge L und der totalen Biegung w eine Folge von Polygonbdindern
angeben, deren ,,Umfang”

2L
I <(L+e)%s (8 —0) (2a)
ist.
Dabei bedeutet 4, die Differenz zwischen dem &ufBleren und

dem inneren Streckenzug in dem n-Eckband.

11)  Man betrachte dasjenige n-Eckband, bei welchem die Eckpunkte des inneren
Streckenzuges A4, Py, P,, ..., P, ,, B den Bogen in n Teilbogen mit derselben -

]
Biegung — zerlegen und die Strecken des #ufleren Linienzuges den Bogen in
n
P, P,,..., P, beriihren.

30
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Wir machen hier auf die Analogie zwischen (la) und (2a)
aufmerksam und bemerken zugleich, da3 in beiden Fillen {e,}
durch eine universelle Nullfolge ersetzt werden kann.

L,—1, 500
T3 n?

n

3. Jetzt ist nur noch der Beweis der Abschitzung

iibrig.

Wir betrachten in der gegebenen Kurve die gré8te Sehne AC
und ziehen die auf AC senkrechten und gleichfalls die mit AC
parallelen Stiitzgeraden. Diese letzteren sollen die Kurve in

B
2
D, |
A 1 C
D
Fig. 3.

den Punkten B und D berithren (Fig. 8). Wir fillen von B und
D Lote auf AC; die Fulpunkte bezeichnen wir mit B; und Dj,.
Die Kurve zerfallt dadurch in vier Teile. Wir betrachten einen
dieser Teile, z.B. den von ﬁ, BB,, B;A begrenzten, und nehmen
an, daB z.B. AB, = B,B sei. Wir bestimmen ferner auf der
Strecke 4 B, den Punkt @, durch die Gleichung Ang =AB,-B,B
und errichten in @, das Lot auf AC. Dieses moge die Kurve im
Punkt P, schneiden. Es gelten nummehr die Ungleichungen

0, < =, l, < 4B, + B,B,

P, B,B
101 < 1 ,
AQ, T 40,

Wy < tgwy, < l, < AB, + BB,

wo wir mit w,, w, bzw. mit I,, I, die totale Biegung bzw. die

Bogenlinge von AP; und P;B bezeichnet haben. Daraus folgt
die ganz grobe Abschéatzung:

w?l, + 0¥, < 7* VAB, - B,B.

Man bestimme nun in dhnlicher Weise die Punkte P,, P,, P,
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auf /B-C, CD bzw. DA. So wird schlieBlich die Kurve in acht
Teilbogen zerlegt und es gilt:

8
S0l < 6x T,
i=1

wobei T den Fliacheninhalt der Kurve bedeutet.

Wenden wir nun (2a) auf jeden der acht Teilbdgen an, so ist

— wie eine einfache Rechnung zeigt — unsere Behauptung
dargetan.

4. Es ist nach dem Vorigen zu erwarten, daB3 die erste Kon-
struktion in 1 die genaue Abschitzung

L,—1, [ AP/
< Z sin?
T,% = 4«Vn tg p -
liefert.
Diese Ungleichung 1aBt sich iibrigens — und dasselbe gilt
T, —t,

fir die Ungleichung

o T .
<sin?~ —firn=8 und n =4 -
n

n

auch direkt leicht beweisen.

(Eingegangen den 17. Juni 1938.
Abgeiindert eingegangen den 23. November 1938.)



