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Über die Approximation konvexer Kurven durch
Polygonfolgen

von

L. Fejes
Budapest

Einleitung.

Die Approximation von Kurven durch Polygonfolgen spielt
seit Archimedes eine wichtige Rolle in der Elementargeometrie
und wurde auch in anderen Gebieten der Geometrie, ja auch in
der Analysis mit Erfolg angewendet. Man nimmt dabei aber in
den meisten Fâllen nur auf die Môglichkeit der Approximation
Rücksicht. Wir wollen uns dagegen hier folgender Frage zu-
wenden : mit welcher Genauigkeit liiBt sich eine gegebene konvexe
Kurve durch eine Folge ein-, bzw. umbeschriebener n-Ecke -
bezüglich des Flâcheninhaltes bzw. des Umfanges - appro-
ximieren ? 
Es seien hier einige Ergebnisse vorausgeschickt.
Die Approximation durch einbeschriebene und umbeschriebene

n-Ecke werden wir zusammen behandeln. Wir sehlieBen die

gegebene Kurve in einen ,,n-Eckring" ein und betrachten als

Maß der Approximation den Flâcheninhalt 7:n = Tn - tn, bzw.
den "Umfang" Ân = Ln - ln des n-Eckringes, wobei Tn, tn, Ln, ln
den Flâcheninhalt bzw. den Umfang des âuLieren bzw. inneren
n-Eckes bedeuten sollen. Wir untersuchen die beiden Fâlle, in
welchen der Umfang L bzw. das InhaltsmaB T der zu appro-
ximierenden Kurve vorgegeben ist. Dementsprechend erhalten
wir folgende Sâtze.
Es läßt sich zu jeder konvexen Kurve 1nit dem Flâcheninhalt T

ein n-Eckring angeben, dessen Flâcheninhalt

ausfiillt, wobei A eine universelle Konstante bezeichnen soll.
Als Korollarium erhalteii wir ,vege11 der isoperimetrischen

Ungleichung:
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Es liifJt sich zu jeder konvexen Kurve mit dem Umfang L ein
n-Eckring angeben mit dem Flächeninhalt:

Es gilt ferner der Satz:
Jede konvexe Kurve mit dem Flächeninhalt T läßt sich in einen

n-Eckring einschlief3en, dessen Umfang 

ist, wobei B eine universelle Konstante bedeutet.
Es ergibt sich daraus:
Man kann zu jeder konvexen Kurve mit dem Umfang L eine

n- Eckring konstruieren, dessen Umfang e

ausfiillt.
Diese Abschätzungen sind nicht die bestmügliehen, obwohl die

l

Größenordnung n2 sieh nicht verbessern läßt, was man z.B. fürn2

den Fall des Kreises leicht nachrechnet. Um in einigen Fällen
genauere Abschätzungen zu gewinnen, führen wir die vier Größen

1

ein und bezeichnen sie als die relativen Größen des n-Eckringes 1).
Die obigen Ergebnisse kbnnen wir nun im folgenden Satz zusam-
menfassen : 

Es sei eine beliebige konvexe Kurve gegeben. Man konstruiere
dazu die vier n-Eckringe, welche die kleinsten relativen Größen be-
sitzen. Dann gilt für diese:

1) Es gilt für jeden n-Eckring :

T
Diese Formeln folgen aus der Tatsache, daß der Quotient T’. sein Maximum fürL
das reguläre n-Eck annimmt.
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Die zweite Abschâtzung in (1) und die erste in (2) kônnen dabei
nicht verbessert werden 2).
Im folgenden behandeln wir die Approximation in bezug auf

den Flâcheninhalt und beweisen (1); danach besprechen wir die
Ungleichungen (2), d.h. die Approximation bezüglich des Um-
fanges. Dabei werden wir noch weitere Verallgemeinerungen
kennen lernen.

Approximation beziiglich des Flächeninhaltes.

1. Die erste Ungleichung in (1) h,I3t sich auf die zweite

zurückführen. Wir beginnen mithin mit der Ungleichung:

Diese ist abcr eine unmittelbare Folgcrung des

folgenden Satzes:

Schreibt man in eiîî, konvexes n-Eck Un mit dem Ulnfang Ln
ein zweites n-Eck U’n derart ein, dal3 auf jeder Seite von Un ein
Scheitelpunkt von un liegt und dabei die n Dreieckes, zvelche von Un
durch die Seiten von Un abgeschnitten werden, das gleiche lnhalts-

ma/3 
Tn 

besitzen, so ist die Summe des Flâcheninhaltes sâmtliche
n

abgeschnittenen Dreiecke: 

Betrachten wir zum Beweis eines der von Un abgeschnittenen
Dreiecke, etwa das k-te (Fig. 1), und bezeichnen wir es mit

d A BC wobei B gleichfalls ein Scheitelpunkt von Un sei. Setzen
wir (Ok = n - «: A BC so gilt:

2) Es sei schon hier bemerkt, dalil die Konstante 500 in (2) sich leicht durch
eine viel kleinere ersetzen läßt.
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Bildet man die Summe dieser Ungleichungen, so erhâlt man

auf der linken Seite den Umfang Ln von Un, und es gilt mit
Rücksicht auf den Jensenschen Satz 3) : 

w.z.b.w.

Fig. 1.

Man schreibe nun um die Kurve cin n-Eck und verbinde die

benachbarten Berührungspunkte. Es entsteht so ein aus n

Dreiecken zusammengesetzter n-Eckring, welcher derart gewâhit
werden kann, da13 sâmtliche Dreiecke gleiches InhaltmaB be-
sitzen 4). Folglich ist die relative GrÕl3e dieses n-Eckringes

womit unsere Behauptung bewiesen ist.

3) Es gilt für eine jede Funktion, welche eine nicht negative zweite Ableitung
1 n 

B 
1 n

f"(x ) &#x3E; 0 besitzt: f - m xk  - f(xt) (JENSEN, Sur les fonction convexes(’n k=l 1) n k=l
et les inégalités entre les valeurs moyennes [Acta Math. 30 (1906), 175-193]. Man

wende dies auf f(x) = sin-1/2 x an und beachte, daB für 0  x  n (sin-i x)" &#x3E; 0
n

und E wk = 2x ausiâllt.
k=1

4) Es sei p eine beliebige Stützgerade der Kurve, welche dièse in Pl berühre,
und man wâhle eine zweite Stützgerade P2 mit dem Berührutigspunkt P2 (bzw.
einen Punkt P2 mit der Tangente P2) derart, daB das InhaltsmaB t(P1P2) des von
pl, P2, P1P2 begrenzten Dreieckes einen gegebenen Werte t(P1P2) = t annehme.
Wir fahren so fort, indem wir Pa, P4’ ..., Pn derart bestimmen, daB t(P2P3) =
t(P3P4) = ... = t(Pn-tPn} = t ausflillt. Es leuchtet nun ein, daB t so gewühlt werden
kann, daß (pl und P1 immer festgehalten) auch t(PnPl) = t ausfällt.
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2. Es werde jetzt gezeigt, dal3 die soeben gegebene Konstruk-

tion auch der Ungleichung T.  - genüge leistet. Dies
Tn n2

beruht auf der - von Herrn F. Behrend herrührenden - Tat-
sache 5), daß jede konvexe Kurve sich mit Hilfe einer passend
gewàhlten affinen Transformation auf eine andere Kurve abbilden
läßt, deren Umfang L und Flâcheninhalt T der Ungleichung
L2  i2V3r genügen. Dabei h,l3t sich die Zahl 12V3- durch
keine kleinere ersetzen.

Man wende nun diesen Satz auf das äußere n-Eck des in 1

konstruierten Polygonringes an und bedenke, daB die GrÕ.f3e

T,. t. gegenüber affinen Transformationen invariant bleibt;
Tn

man erhält:

3. Es wird nicht ohne Interesse sein, zu bemerken, daß sich
aus unserer Konstruktion (d.h. eines n-Eckringes, welcher aus
n - bezüglich des Inhaltsmal3es - gleichen Dreiecken besteht)
für n  6 die genaue Schranke

ergibt 6). Wir haben nur zu zeigen, daß die Flàcheninhalte Tn
und tn der in 1 konstruierten n-Ecke Un bzw. Un der (für n = 3

trivialen) Ungleichung tn &#x3E; Tn COS2 n genügen. Wir stellen uns
n

daher folgende Aufgabe: unter allen konvexen n-Ecken gleichen
Inhaltsmal3es dasjenige n-Eck Un zu bestimmen, für welches das
nach der in 1 bestimmten Vorschrift einbeschriebene n-Eck

(s. Fig. 1) mit dem kleinsten Inhaltsmaß ún den kleinstmôglichen
Flâcheninhalt besitzt. Dieses n-Eck ist - wie leicht einzusehen
ist - dadurch ausgezeichnet, daß die Eckpunkte von un mit den

5) F. BEHREND, Über einige Affininvarianten konvexer Bereiche [Math. Ann.
113 (1937), 713-747].

6) Es ist dabei zu erwarten, daß dies auch für ein jedes n gilt. Der Beweis läßt
sich namtich nur wegen der verwickeltheit der Rechnung nicht im allgemeinen
leicht durchführen.
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Mittelpunkten der Seiten von Un zusammenfallen 7). Daraus

folgt ferner, daß 

wobei Qll Q2, ..., Qn die nacheinander folgenden Ecken von Un
bezeichnen. Für n = 4 und n = 5 wird aber das n-Eck durch
diese Bedingung - abgesehen von einer affinen Transformation
- vôllig bestimmt: es ist das regulâre n-Eck. Für n = 6 läßt
sich das obige Problem als eine Minimumaufgabe mit einem Ver-
ânderlichen behandeln, und man erhâlt als Lôsung wiederum das
reguh,re Sechseck8). Es gilt aber für das regulâre n-Eck

tn = Tn COS2 n ’, womit unsere Behauptung dargetan ist.
n

Es sei hier noch bemerkt, daß die soeben bewiesene Tatsache
ein wenig allgemeiner formuliert werden kann: Schreibt man in
eine konvexe Kurve mit dem Flâcheninhalt T ein n-Eck mit n  6

derart ein, dal3 die abgeschnittenen Teile gleiches 1 nhaltsmaf3 be-

sitzen, so ist der Flächeninhalt dieses n-Eckes: tn &#x3E; T COS2 n -
n

Um dies einzusehen, betrachten wir eine konvexe Kurve C7
mit dem Flâcheninhalt T und fassen das - nach unserer Vor-
schrift einbeschriebene - n-Eck un ins Auge. Wâre nun U
selber kein n-Eck, so kônnte U leicht - ohne die Abànderung
von un - durch ein n-Eck mit einem Flâcheninhalt Tn &#x3E; T

ersetzt werden.

4. Die obigen Ergebnisse beruhen auf keiner einfachen Kon-
struktion : sie sind vielmehr reine Existenzbeweise. Diesen Mangel
versuchen wir im Folgenden - wenigstens teilweise abzuhelfen, 

7) Setzen wir voraus, daß z.B. in Fig. 1 BC &#x3E; CD ist und ersetzen C durch

einen zwischen B und C liegenden Punkt C’. Dadurch wird u,, verkleinert, da die
von C’ gefallte Hôhe des Dreieckes A AC’E kleiner als die entsprechende Hôhe
von A A CE ist. Man drehe ferner BD um C’, bis A A B’C’ und A C’D’.E wieder
das gleiche InhaltsmaB besitzen, wobei B’ und D’ die neuen Eckpunkte von Un
auf A B bzw. DE bezeichnen. Ist CC’ genügend klein, so gilt BC’ &#x3E; C’D und
B’C’ &#x3E; C’D’. Daraus folgt, daB Un durch diese Verdrehung in ein grôBeres n-Eck

U’ übergeht und man sieht leicht ein, daB U"n besser ist als Un.
8) Wir kônnen uns auf Sechsecke ABCDEF mit  ABC =  BCD beschrân-

ken, da jedes Sechseck durch eine affine Transformation in ein solches überführt
werden kann. Man rechnet leicht nach, daB für diese Sechsecke, welche auBerdem
noch den Bedingungen AB Il CF Il DE, BC Il AD Il EF, A F I BE Il CD genügen,
der Quotient ,,Inhaltsmaß von ABC/Inhaltsmaß von ABCDEF" sein Maximum
für das regulâre Sechseck annimmt.
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wobei wir zugleich auch eine Verallgemeinerung für Kurvenbogen
erhalten werden. Wir beweisen den Satz:
Es läßt sich zu jedem konvexen Kurvenbogen mit der Bogenlânge

L und mit der totalen Biegung w 9) eine Folge von,,Polygonbändern"
konstru,ieren, deren Flâcheninhalt

ausfâllt.
Was ist hier unter einem Polygonband zu verstehen? Wir

zeichnen einen aus n Strecken bestehenden gebrochenen Linien-
zug, dessen Endpunkte A, B mit den Endpunkten des Kurven-
bogens zusammenfallen und dessen sämtliche Eckpunkte auf dem

Fig. 2.

Bogen liegen (Fig. 2). Wir zeichnen weiter einen zweiten Linienzug
mit n + 1 Strecken, dessen Endpunkte ebenfalls mit A und B
übereinstimmen, und dessen sâmtliche Strecken den Bogen be-
rühren. Wir erhalten so endlich ein den Bogen umschlieBendes
(2n + 1 )-Eck, das wir als ein zu dem Kurvenbogen gehôrendes
Polygonband vom Index n, oder kurz als ein n-Eckband bezeich-
nen wollen.
Wir zeichnen nun zu dem Bogen ein n-Eckband, wobei der

9) Besitzt der Kurvenbogen K mit den Endpunkten A, B in jedem Punkt P
mit A P = 1 sine Krümmung e(l), so läßt sich die totale Biegung von 1(. durch.
das Integral

definieren. Im Falle eines beliebigen konvexen Kurvenbogens K betrachte man
nun eine Folge von gegen K konvergierenden konvexen Kurvenbogen K K2, ...
mit den Endpunkten A, B, welche im von K und A B begrenzten Gebiet liegen
und in jedem Punkt eine Krümmung besitzen. Man sieht unmittelbar ein, da6
die totalen Biegungen £01’ w2, ... von K1, k2, ... stets gegen einen nur von

abbangigen Grenzwert streben, welchen wir als die totale Biegung bezeichnen
wollen.
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innere Linienzug aus n Strecken gleicher Lange dn bestehe; die
Strecken des au13eren Linienzuges sollen dabei den Bogen in den
Eckpunkten des inneren Streckenzuges berühren. Wir erhalten
dadurch ein Polygonband vom Index n, welches aus n Dreiecken
zusammengesetzt ist. Der Flächeninhalt des k-ten Dreieckes kann

2 wk
nicht die GrÕ.I3e d tg O)k überschreiten, wobei Cok die totale

4 2 

Biegung des entsprechenden Teilbogens bedeute. (Es wird hierbei
vorausgesetzt, daß kein ak &#x3E; c ausfällt.) Es gilt mithin:

und setzt man ron = max Cok, so gilt wegen

und ndn ç L die Ungleichung:

Daraus kann man noch nicht auf (la) schlieBen, weil ja (;)11,
nicht im allgemeinen gegen Null strebt. Wir verfahren daher
weiter wie folgt. Wir zerlegen den Bogen in m Teilbogen

K1, .K2, ..., Km’ welche dieselbe totale Biegung w besitzen sollen,
m

und wenden die soeben erhaltene Ungleichung auf jedes Ki
an 10). Dabei bedeute m eine noch nicht weiter festgelegte Zahl.
Der Index ni des zu Ki zu konstruierenden Polygonbandes genüge
der Bedingung 

wobei Li die Bogenlânge von Ki bezeichne. Wir erhalten schlieB-
lich ein Polygonband vom Index höchstens n mit dem Flâchen-

m

inhalt Tm = 2! 7:n.. Es gilt aber, wie wir gesehen haben
i=i , 

und demnach

la) Es sei bemerkt, daB - falls die Kurve Ecken hat - einige der Bôgen
Ki, K2 ... aus einzelnen Punkten bestehen kônnen.
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Durch passende Wahl von m und n kann erreicht werden, daß

der Zahl 1 beliebig nahekommt, womit

(la) bewiesen ist.

Approximation in bezug auf die Rogenldnge.

1. Wir beginnen mit der Ungleichung: Ln - n  2 sin2013. DieseL" 2n

kann ähnlieh wie früher auf den folgenden Satz zurückgeführt
werden:

Schreibt man in eine konvexe Kurve mit dem Umfang L ein n-Eck
mit den Eckpunkten Pi, P2, - - " P. ein, so dap

ausfällt, so gilt für den Umfang dieses n-Eckes:

Zum Beweis beachte man die Ungleichung:

wobei coi die totale Biegung des Bogens PiPi,l bezeichne. Es
ergibt sich daraus:

und demnach, gemaJ3 der Jensenschen Ungleichung 3):

w.z.b.w.
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Seien nun Pl, P2, ..., Pn beliebige n Punkte einer konvexen
Kurve. Man zeichne in Pl, P2, ..., P. die Tangenten bzw.

beliebige Stützgeraden ai, a2’ ..., an und bezeichne den Schnitt-
punkt von ai und ai+1 mit Q2- Wâhlt man die Punkte Pl, P2, ..., 
Pn derart, daB 

sei, so bilden die zwei n-Ecke P1, P2, ..., 1 P. und Q1, Q2, .., , Qn
einen die Kurve einschlieBenden n-Eckring, dessen relative

Größe L. 1. -  2 sin2 n ist.
L. 

2013 

2n

Wir schlagen nun zur gleichen Abschätzung von -"20132013" einenLn
zweiten Weg ein, welcher auf einer überaus einfachen Kon-

struktion beruht. Wir zeichnen ein die Kurve umgebendes, im
übrigen aber beliebiges regulâres n-Eck und verschieben allé

Seiten mit sich selber parallel, bis sie die Kurve berühren. Ver-
binden wir die nebeneinander liegenden Berührungspunkte, so
entsteht ein aus n Dreiecken zusammengesetzter n-Eckring.
Fassen wir ein Dreieck /B A BC, etwa das k-te, ins Auge. Die
innerhalb liegende Seite sei 4 B; wir setzen A B =:: dk, A C +

+ CB = Dk- Es gilt dk &#x3E; Dk cos n und es ergibt sich hiernach
n

2. Durch eine einfache Modifikation 11) erhalten wir den Satz:
Es läßt sich zu jedem konvexen Kurvenbogen mit der Bogen-

lange L und der totalen Biegung w eine Folge von Polygonbândern
angeben, deren "Umfang"

ist.

Dabei bedeutet A. die Differenz zwischen dem au13eren und
dem inneren Streckenzug in dem n-Eckband.

11) Man betrachte dasjenige n-Eckband, bei welchem die Eckpunkte des inneren

Streckenzuges A, Pl, P2,..., P n.-1’ B den Bogen in n Teilbogen mit derselben 
w 

Biegung - zerlegen und die Strecken des äußeren Linienzuges den Bogen in 
n

P1, PI, ..., P n-1 berühren.
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Wir machen hier auf die Analogie zwischen (la) und (2a)
aufmerksam und bemerken zugleich, daß in beiden Fâllen {en}
durch eine universelle Nullfolge ersetzt werden kann.

3. Jetzt ist nur noch der Beweis der Abschätzung Ti -  n’aT; n’

übrig.
Wir betrachten in der gegebenen Kurve die größte Sehne A C

und ziehen die auf A C senkrechten und gleichfalls die mit A C
parallelen Stützgeraden. Diese letzteren sollen die Kurve in

Fig. 3.

den Punkten B und D berühren (Fig. 3). Wir fâllen von B und
D Lote auf A C; die Ful3punkte bezeichnen wir mit B, und Dl.
Die Kurve zerfällt dadurch in vier Teile. Wir betrachten einen

dieser Teile, z.B. den von A B, BBI, B1A begrenzten, und nehmen
an, dal3 z.B. AB! &#x3E; BIB sei. Wir bestimmen ferner auf der

Strecke A B1 den Punkt Q1 durch die Gleichung AQ12 = AB1 . B1B
und errichten in Q, das Lot auf A C. Dieses môge die Kurve im
Punkt P1 schneiden. Es gelten nummehr die Ungleichungen

wo wir mit col, w2, bzw. mit l1, l2 die totale Biegung bzw. die

Bogenlänge von AP1 und PIB bezeichnet haben. Daraus folgt
die ganz grobe Abschâtzung :

Man bestimme nun in àhnlicher Weise die Punkte
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auf BC, CD bzw. DA. So wird schliel3lich die Kurve in acht

Teilbogen zerlegt und es gilt:

wobei T den Flâcheninhalt der Kurve bedeutet.
Wenden wir nun (2a) auf jeden der acht Teilbôgen an, so ist

- wie eine einfache Rechnung zeigt - unsere Behauptung
dargetan.

4. Es ist nach dem Vorigen zu erwarten, daB die erste Kon-
struktion in 1 die genaue Abschâtzung

liefert.
Diese Ungleichung lâBt sich übrigens -- und dasselbe gilt

für die Ungleichung T. - t.  sin2n -für n=3 und n = 4 .
T. 

::-- 

n

auch direkt leicht beweisen.

(Eingegangen den 17. Juni 1938.

Abgeândert eingegangen den 23. November 1938.)


