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Zahlentheoretische Eigenschaften ganzzahliger
Polynome

von

Ernst Jacobsthal

Berlin

Herrn Max Dehn zum 60. Geburtstage gewidmet.

Einleitung.

VORBEMERKUNGEN: ,,Ganze Zablen” sind im folgenden stets
ganze rationale Zahlen,,,Polynome” immer ganzzahlige Polynome;
die Begriffe ,,reduzibel” und ,,irreduzibel” beziechen sich stets
auf den Korper der rationalen Zahlen. — Bei Kongruenzen schrei-
ben wir den Modul in Klammern hinter die Kongruenz ohne den
Zusatz ,,mod”’; die Buchstaben ¢, &, £’,... bedeuten immer
eine der beiden Zahlen - 1.

Die Fragen, um die es sich im folgenden handelt, kniipfen an
Begriffe an, die wir zunéchst erkldren miissen.

ErxvLARUNG 1: Ist f(z) ein Polynom und erfiilllen zwei von
Null verschiedene ganze Zahlen a und b gleichzeitig die Kon-
gruenzen:

(1) flay=0 (b); f(b)=0 (a),

so soll das Paar [a; b] ein Paar von Wechselteilern des Polynoms
J(z) heiBen. — Als Abkiirzung fiir Wechselteilerpaar schreiben
wir: Wtp.

Jedes Polynom besitzt 4 triviale Wtp., namlich [4 1; + 1].

ERrRkLARUNG 2: Ein Wtp. [a; b] heiflt positiv (negativ), wenn
a und b beide positiv (negativ) sind.

Bei einem Polynom, das nur gerade (ungerade) Potenzen von
 enthilt, geniigt die Kenntnis aller positiven Wtp., um eine
Ubersicht iiber alle Wtp. zu besitzen.

ErxLARUNG 8: Ein Wtp. [a; b], bei dem a und b teilerfremd
sind, nennen wir ein Wtp. erster Art; ist aber (a, b)=d > 1, so
soll das Paar als Wtp. zweiter Art bezeichnet werden.

Da fiir ein Wtp. [a; b] des Polynoms f(z) stets d = (a, b) ein
Teiler des konstanten Gliedes von f(z) ist, so besitzt jedes Polynom,
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bei dem das konstante Glied gleich -+ 1 ist, nur Wtp. erster Art.
ErkLARUNG 4: Eine zweiseitige Folge von nicht verschwin-
denden ganzen Zahlen

(2) c e Bgy Bgy B_q, Ty Ly, Lgy Bgy oo oy

bei der fir jeden Index » immer [2,; Z,.,] ein Wtp. des Polynoms
f(z) ist, heiBBe eine Ketle des Polynoms. — Eine nach rechts fort-

schreitende Folge

(2a) Ty Tpyi1s Ty ros « -

oder eine in umgekehrter Reihenfolge angeordnete Folge
(2b) v e ey @yp_gy Ty_15 Ty

heiBe eine Halbkette des Polynoms, wenn alle ganzen Zahlen
2, 70 sind und stets zwei Nachbarelemente ein Wtp. des
Polynoms bilden.

Wir beschéftigen uns im folgenden mit den Wtp. eines gegebe-
nen Polynoms. Ob es fiir ein solches nur endlich viele Wtp. gibt
oder unendlich viele, ist bereits eine Frage, die allgemein zu
beantworten wohl kaum méglich ist. Noch schwieriger diirfte
wohl eine vollstindige Ubersicht der Gesamtheit aller vorhandenen
Wtp. zu erlangen sein. Immerhin ist es moglich, fiir einige be-
sondere Klassen von Polynomen eines beliebigen Grades n die
Existenz von unendlich vielen Wtp. zu beweisen (§ 1). Sehr viel
mehr 148t sich dagegen fiir die normierten Polynome des Grades
n = 2 aussagen (§ 2). Sie besitzen mit Ausnahme der beiden
Polynome a2 4 # — 1 immer unendlich viele Wtp.; dagegen
haben die beiden genannten Ausnahmepolynome nur die 4 stets
vorhandenen Wtp. [+ 1; - 1]. Eine Ubersicht iiber alle Wtp.
ist auch in diesem Falle der Polynome 22 4+ a,x + a, schwierig
zu erlangen; nur fiir das Polynom 22 4 1 kann man das Problem
vollkommen erledigen; hier liefert die Halbkette 1, 1, 2, 5, 18,
34, 89, ... alle positiven Wtp., woraus man sofort alle Wtp.
erhilt. Diese Halbkette entsteht aus der Fibonaccischen Zahl-
folge durch Streichung der Glieder 3, 8, 21, 55, .. ..

§ 1.
Die Bestimmung der Wtp. eines Polynoms f(z) 148t sich auf
die Losung einer terndren diophantischen Gleichung zuriick-

fithren.
Ist ndmlich ersternis [a; b] ein Wtp. erster Art fir das Polynom
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so besitzt die diophantische Gleichung

(3) f(w) +f(y) - twy — a, = O,
die zu dem Polynom
(4) fle) = Zy_pa,2" ", (ap=1),

gehort, sicher mit @ = a; y = b eine ganzzahlige Losung ¢. Glei-
chung (8) laBt sich also ganzzahlig in z, y; ¢ 16sen. Jede solche
Losung dieser Gleichung, bei der # und y = 0 sind, liefert um-
gekehrt ein Wtp. [2; y] des Polynoms, das aber auch von der
zweiten Art sein kann. Stets kann man (8) auf folgende Art
I6sen: man setze x = ¢ und wihle y als einen Teiler van f(e),
dann ergibt sich aus (8) ein ganzes {. Sollte hierbei f(¢) =0
sein, so kann man y beliebig als von 0 verschiedene ganze Zahl

fy) —a

wéhlen und ¢t = ¢ " setzen. Oder man kann y = 0 nehmen

Y
und ¢ als ganz beliebige ganze Zahl wahlen. Jede solche Losung,
bei der die eine der GréBen , y gleich ¢ ist, nennen wir eine &-
Losung von (8). Der besondere Fall, in dem f(¢) = 0 ist, féllt
unter den allgemeineren, in dem das Polynom eine ganze Null-
stelle 2z, besitzt. Dann besitzt (8) noch die Losung x = 0, y = @,
und ¢ als beliebige ganze Zahl.

Besitzt unser Polynom ein Wtp. [a; b] zweiter Art, so ist
(a, b) = d > 1, wobei d ein Teiler von a, sein muB. Ist dann
a=da, b=db, a,=dd, soist (a’,b’)=1. Das Paar [a’; b']
ist dann fiir das Polynom

(5) fol@) = By g a,d" a4 a,

ein Wtp. erster Art. Umgekehrt liefert jedes solche Paar durch
Multiplikation seiner Elemente mit d ein Wtp. von f(z). Bildet
man also fiir jeden Teiler d von «, das Polynom f;(z) und stellt
fir dieses die Gleichung

(3a) fa(@) + faly) — tay — a), = 0.

auf, so ergibt jede ganze Losung dieser Gleichung, bei der @ und
¥ # 0 und zu einander teilerfremd sind, durch Multiplikation
dieser Zahlen mit d ein Wtp. von f(2), dessen Elemente den
groBten gemeinsamen Teiler d besitzen. Fiir d = 1 handelt es
sich dabei um (8), also um die Ermittlung der Wtp. erster Art.
Die Schwierigkeit ist nur die, dafl man mit diesen diophantischen
Gleichungen (3), (8a) i.A. sehr wenig anfangen kann. Bereits
die Frage nach denjenigen ganzen Werten ¢, fiir die eine ganze
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Loésung z, y existiert, scheint fast unlosbar zu sein. Nur der Fall
n = 2 mit a, = 1 jgt weniger spréde und wird uns in § 2 be-
schaftigen.

Immerhin gibt es einige Fille von Polynomen eines beliebigen
Grades n, in denen man die Existenz von unendlich vielen Wtp.
aussagen kann. — Sehr an der Oberfliche liegen die beiden fol-
genden leicht beweisbaren Sitze:

Sat1z 1: Ein Polynom mit einer ganzen Nullstelle x, besitzt stets
unendlich viel Wip.

Satz 2: Ist das Polynom reduzibel und f(x) = g(z)h(x) eine
Zerlegung in ganzzahlige Polynome und ist dabei g(0) eine Null-
stelle von f(z), so besitzt f(x) unendlich viele Wip.

Setzt man @, — @ = g(x) im Falle des Satzes 1, so sind damit
alle Voraussetzungen des zweiten Satzes erfiillt; zugleich mit
Satz 2 ist also auch der erste Satz bewiesen.

Beweis von Satz 2: Es sei a irgend eine ganze Zahl, die nur
die beiden Bedingungen erfiillen soll: @ # 0; b = g(a) s 0; dann
ist stets [a; b] ein Wtp. von f(z). Ist das gezeigt, dann ist die
Existenz von unendlich vielen Wtp. sicher. Nun ist f(a)=bk(a)=0
(b). Andererseits ist a =0 (a), also b = g(a) = g(0) (a); daher
ist f(b) = f{2(0)} (a). Da hier rechts der Wert Null steht, ist
demnach f(b) =0 (a), womit alles gezeigt ist.

Ein weiterer Fall, in dem man ohne Verwendung von (8) und
(8a) im allgemeinen die Existenz von unendlich vielen Wtp.
zeigen kann, wird durch die Klasse der normierten reziproken
Polynome und, etwas allgemeiner, durch die normierten Poly-
nome geliefert, die der Funktionalgleichung

(6) anf (%) = ec'f(a)
geniigen. Dabei muf3, wie man leicht sieht,
(6a) ' gr =1

sein, also

(6b) e =1 bein=1 (2)

Und bei geradem n und a» #% 0 mull
2

1241
(6c) ee?2 =1

gelten. Da hier wegen @, =1 immer a, = ¢¢’ 1st, kann es
sich bei diesen Polynomen nur um Wtp. erster Art handeln.
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Und da wegen (6) und (6b) bei ungeradem n das Polynom die
Nullstelle — ¢ besitzt, also nach Satz 1 unendlich viele Wtp.
hat, kdénnen wir im weiteren annehmen, daBl n gerade und

auBerdem noch f(4+ 1) 7 0 ist. Ist nun fiir unser Polynom f(z)
etwa [a; b] ein Wtp., dann ist

(1a) fla) = rb; f(b) = sa.

Hierin sind 7 und s ganz und von Null verschieden. Wegen
a, = + 1 ist

(7) (a,b) = (a,r) = (b,s) = 1.

Nun folgt aus (1la):
(8) rb =a, (a); sa = a, (b).

Setzt man hierin a,, = ¢’ und beachtet (7), so bekommen wir
9) =2 (a); s =2 (b).

Hieraus und mit Verwendung von (6) ergibt sich nun mod a:
brfler) = brf () = ec'f(b) = ee'sa = 0 (a).
Daher wegen (7) schlieBlich

(10) f(er) = 0 (a).
Und ebenso zeigt man
(11) f(es) = 0 (b).

Also sind [er; a], [b; es] zwei Wtp. von f(z). Aus dem ciucu
Paare [a; b] sind jetzt zwei weitere entsprungen. Mit den neuen
Bezeichnungen

(12) & =y @ = Ty; b = p; &8 = 24
sind unsere drei Wtp.:
(18) [®o; 1], [®15 23], [@a5 25)-
Fiir die Elemente dieser Paare gilt daneben:
(14) flay) = exgxy; f(@y) = exy2,.
Nach (10) und (12) ist f(z,) durch z, teilbar. Wenn man daher
(15) f(@o) = ex_yy

setzt, so ist dadurch z_, als ganze Zahl = 0 erkldrt. Genau so
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ist wegen (11) und (12) die von Null verschiedene ganze Zahl
x, aus ,

(16) Sflzs) = 35”2‘1'4“

zu entnehmen. Dieser ProzeB8 148t sich nach beiden Seiten un-
begrenzt fortsetzen; dadurch erhilt man fiir das Polynom f(z)
die Kette:

(17) ceesX_gy X_gy T gy Ty, Loy Xy Loy Ly Xygy o« -

Fiir jeden Index m gilt hier immer:

B

(18) f(mm) = &l p—1Lm+1-

Im allgemeinen wird die Kette (17) unendlich viele verschie-
dene Elemente enthalten, d.h. f(#) wird unendlich viele Wtp.
[ ®pyq] besitzen. Nur fiir gewisse Polynome unserer Klasse
wird die Kette endlich viele verschiedene z,, liefern; dann ist die
Existenz von unendlich vielen Wtp. zweifelhaft. Man kann die
Konstruktion von (17) mit @y = ¢* beginnen und dann z, als
Teiler von f(x,) wihlen. Die ubrigen Kettenglieder berechnen *
sich dann der Reihe nach aus (18). Dieser Erzeugungsvorgang
ist auch bei den der Gleichung (6) geniigenden normierten
Polynomen statthaft, die fiir eine der Zahlen 4- 1 verschwinden,
falls man dabei auf keine 2, stoB3t, die Null sind; diese Bemerkung
gilt insbesondere auch fiir n =1 (2). So haben wir:

Satz 8: Kin normiertes der Gleichung (6) geniigendes Polynom
besitzt 1.A. unendlich viele Wip. Ausnahmen kiénnen nur bei ge-
wissen Polynomen geraden Grades eintreten.

Nimmt man z.B. das Polynom 2* 4 1 mit ¢ = ¢’ =1, so er-
geben sich der Reihe nach aus @, = #; = 1 die weiteren 2,, : ,=2;
s = 17 usw. Man sieht sofort, dafl man eine monoton steigende
Folge erhilt, also durch die Konstruktion unendlich viele Wtp.
geliefert werden.

Betrachtet man dagegen die in der Kinleitung erwihnten
beiden Polynome z* 4 # — 1, so gehéren sie auch zu der durch

(6) charakterisierten Klasse; fiir sie ist ¢ =1 und ¢ = — 1.
Beginnt man hier die Konstruktion mit @, = + 1, so wird von
selbst #; =1 oder = — 1 und jedes #,, wird nur einen dieser

beiden Werte bekommen; die Kette (17) liefert also nur triviale
Wtp. Wir werden spiter sehen, dafl es in diesem Falle nicht
anders sein kann.



71 Zahlentheoretische Eigenschaften ganzzahliger Polynome. 413

§ 2.
Wir betrachten jetzt das normierte quadratische Polynom:
(19) fl@) = 2% 4 ax + a,

und hierzu die Gleichung (8) in etwas verdnderter Bezeichnung:

(20) F(zo, @15 t) = f(xg) + flzy) — ooz, — ay
= af — twgry + 2} + ay(@yt+2,) + a,
= f(@ota,) — (t+2)2o2,
= f(@y—1) — (t—2)22; + 2032, = 0.

Man kann sie auch schreiben:
(20a) fl@y) = &y (teg—a;—a,).

Die Beziehung von (20) zum Wtp.-problem und die Lésungs-
moglichkeit von (20) ist in § 1 gezeigt; insbesondere erinnern
wir an die sogenannte ¢-Losung von (20). — Die Diskriminante
unseres Polynoms ist D = a? — 4a,. Die Frage nach denjenigen
ganzzahligen ¢, fiir die (20) sich in ganzen z,, @, 16sen 1a8t, wird
zum Teil beantwortet durch einen Satz, der die Frage in das Ge-
biet der quadratischen Reste und Formen verschiebt.

Satz 1: Damit die Gleichung (20) sich fir t = 2 in ganzen x,,
&y losen ldft, ist folgende Bedingung notwendig und hinreichend:
bei a; =0 mufi D quadratischer Rest von 8a, sein; bei a; = 0
muf D eine Quadratzahl, also f(x) reduzibel sein.

Damit sich aber (20) fiir ein gegebenes ganzes t= 2 in ganzen
&g, 2, auflosen lassen soll, muf sich notwendigerweise die Gleichung

(21) - 402 + day(t—2) = (1+2)u? — (t—2)0?

in ganzen u und v befriedigen lassen. Diese notwendige Bedingung
(21) ist bet gewissen Werten von t auch fiir die ganzzahlige Los-
barkeit von (20) hinreichend; z.B. wenn t= — 2; a + 2 ist,
wobet |a| = 1 oder gleich einer Primzahl ist.

Beweis: Erstens der Fall t = 2. Es besitze F(zy, @;; 2) = 0 eine °
ganze Losung z, x;. Aus (20) folgt die fir jedes x, x,; geltende
Beziehung:

AF (2, @15 2)={2(@y—a;) + a,}" + 8a,z, — D.

Wenn also @; = 0 ist, so muBl D = — 4a, eine gerade Quadrat-
zahl sein, weil die linke Seite der Identitit ja fir passende ganze
&y, ¢; den Wert Null annimmt. Und wenn bei a; = 0 umgekehrt
D eine solche Quadratzahl ist, so lehrt die Identitiat, daB
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F(xy, x;; 2) = 0 sich in ganzen x,, x; 1osen 14Bt. (f(z) ist reduzibel;
ist z eine Nullstelle, so ist @, = #; + z; vergleiche (20)).

Ist aber a; % 0 und (20) bei ¢ = 2 ganzzahlig 16sbar, so lehrt
unsere Beziehung, dall die Kongruenz u? =D (8a,) losbar,
also D quadratischer Rest von 8a, ist; es 16st dann auch jede
zu uw mod 2a,; kongruente Zahl diese Kongruenz. Umgekehrt
findet man aus jeder Lésung w dieser Kongruenz, weil dann
D —u? —a,

8a, 2
2y, @5, die mit ¢ = 2 wirklich (20) l6sen, womit der Fall £ = 2
bewiesen ist.

Zweitens der Fall t 7 2. Die Gleichung (20) sei mit einem ge-
gebenen ganzen ¢ 7% 2 in ganzen &, 2, losbar. Man rechnet nun
leicht die Richtigkeit der aus der Hauptachsentransformation
sich ergebenden in @y, @;; ¢t identischen Beziehung

(22) 4a} + 4a,(t—2) — 4(t—2)F(xg, 213 t) =

- (+2)[2g(t—2) — ay]® — (t—2)[22,+a, 1)
nach. Ist also (20) bei unserem ¢ in ganzen «, l6sbar, so wird (21)
wegen (22) durch

(28) U = 2y(t—2) — ay; v =2, + a; — tx,

% = a,; (2) ist, mittels 2, = und 2, — 2y == ganze

in ganzen u, v gelost. Die Losbarkeit von (21) ist also eine not-
wendige Bedingung fiir die von (20).

Es sei nun das ganze t # 2 so beschaffen, dal mit ihm (21)
eine ganzzahlige Losung u, v besitzt. Ergibt sich dann fiir diese
u, v aus (28) auch z, x; ganzzahlig, so folgt aus (22), daB} fiir
diese x4, x; auch (20) erfiillt ist. Die Auflésung von (28) nach
Zy, x; lautet:

u+ a u 4+ v
(23a) Ty = 21; 2y = @y + >
Wir zeigen nun, dal in den Féllen t = — 2 und t =a + 2

(a=-+1 oder a gleich einer positiven oder negativen Primzahl),
bei geeigneter Wahl der Losung w, v von (21) sich auch aus
(28a) ganze a,, 2, ergeben.

a. Esseialso (21) mit t = — 2 losbar. Die Gleichung reduziert
sich auf D = »2, und demnach ist f(x) reduzibel und hat ganze
Nullstellen. Es ist v einer der beiden Werte V' D, und u ist zunéchst
willkiirlich; wihlt man nun w = — a, (4), so wird z, aus (23a)
ganz und ebenso z;, weil v2 =D =a} (2), also v=4a, (2) und
deshalb u=wv (2) ist. Nach (20) ist in diesem Fall F(z,, 2;; —2) =
f(@o+;). Ist also % eine der Nullstellen von f(z), so ist zg+a,=2%
und F(zy, —xy+z; —2)=0 fiir jedes ganze x,.
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B. Die Gleichung (21) set nun mit t = a + 2 als losbar ange-"
nommen, worin @ = 4+ 1 oder = + p und p eine Primzahl ist.
Wir trennen die Fille, in denen ¢ gerade oder ungerade ist.

By t sei gerade, d.h. a = 4 2. Es ist dann ¢ = 2 + 2&. Nach
Division durch 2 lautet (21): 262 + 4a,e = (2-+¢e)u® — ev?
Hieraus folgt: u =wv (2), also ist u? =% (4), 2u?=2a} (4),
% = g, (2) und demnach ergeben die Gleichungen (23a) ganze
Loy X1

B,- Schlieplich sei t = a + 2 ungerade, also a = + 1 oder
a@ = 4 p (p eine ungerade Primzahl). Dann folgt aus dem FEr-
filltsein von (21) mod a, daB u? = a2 (a) ist; bei passender Wahl
des Vorzeichens von u ist also 4 +a, =0 (a¢) und wegent — 2 = a
ergibt die erste Gleichung (23a) daher ein ganzes z,. Da aber
aus (21) auch u = v (2) folgt, wird aus (28a) dann auch z, ganz,
womit der Satz 1 schliellich bewiesen ist.

Hiernach sind die Gleichungen (20) und (21) gleichzeitig
ganzzahlig 16sbar oder unlésbar, wenn z.B. £ = 0;1; 3; 4; 5; 7;
9;18;...; —1; —2; —8; — 5; — 9;... ist.

Wir verstehen nun in Zukunft unter x,, a;, ¢ ein Tripel ganzer

Zahlen, das die Gleichung (20) erfiillt. Mit Hilfe der Rekursions-
formel

(24) 2y =t2,—2, ,—a; (n=1,2,8,..., n=0, —1, —2,...)

ergeben sich der Reihe nach die ganzen Zahlen x,, 5, 2, ...;
T_qy ®_g, T_g5 . ... Durch (24) und z, z; ist also z, fiir jeden
Index n 2 0 definiert. Insbesondere ist:

(25) T_q =ty — x; — Q4.
Setzt man noch fiir jedes ganze n
(26) T, =a, (rg=uy;x_1=1,),
so ist (24) gleichbedeutend mit:
(24a) X, =lx, —a, ; —a, (n=0,+1, +2, +3,...).

Die Gleichung (20a) lautet mit diesen neuen Bezeichnungen
kurz so:

(27) fl@y) = a2,
Fir jedes n gilt nun:
(28) F(mns Ty l) =0,

(29) f@n) = @ 12541
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Beweis von (28) und (29): Es ist

F(wn’ Zpt15 t) :f(wn) + f(er—l) — W,y — Gy
= f(wn) + wn+1(mn+ldtwn+a1)
= f@,) — @p-1@p41-

Hier wenden wir (24) ein zweites Mal an und erhalten:

F(@y, @pi15t) = f(@,) — @pa(tw,— n-1—01)
= f(@,) + &5y + Gy + Ay — @y 1Ty —a,
= f(@n—y) + fl@y) — t2, 32, — ay
= F(&,_1s Tp; ).

Wegen F(x,, @;;¢) = 0 folgt hieraus durch Induktion nach
beiden Seiten fiir jedes ganze n 2 0 die Richtigkeit von (28);
das Ende der ersten Gleichungskette des Beweises liefert dann
aus (28) die Richtigkeit von (29). Man verifiziert auf Grund der
Rekursionsformel (24) leicht, dafl die @z, Entwicklungskoeffi-
zienten rationaler Funktionen sind; wir iibergehen die einfache
Rechnung und notieren die Formeln:

21 Y — (ay+@o+a 1)y + 2
A—y)A—ty+y®)

o ’ 21y — (a+@p+2)y + @
31 X sy = = .
(31) v=0®Y 1=y —ty+y*)

e
(30) Zv=0 wvyv =

Vorweg betrachten wir den Fall des Polynoms f(x) = a?, bei
dem also a; = a, =0 ist. Hier lautet die Gleichung (20):
22 — twyr, + ¥ = 0. Lost man sie mit 2, =0, so wird auch
2, = 0; ¢ ist ganz beliebig, und alle z, werden = 0. Will man
aber die Gleichung mit @, % 0 16sen, dann ist fiir ¢ nur der Wert
2¢ moglich. Bei ¢ = 1 ist dann jedes z, = 2, 7~ 0; bei ¢ = — 1
aber ist fir jeden Index n immer 2, = (—1)"%, 7 0. Fir unser
Polynom und die dazu vorgenommene Loésung von (20) mit
&y # 0 und ¢ = 2¢ handelt es sich in (80) und (81) um die Ent-

wicklung von 7 % __ In den Entwicklungsformeln hat sich dabei

der Faktor (1—y) zuerst wegen a, = 0 weggehoben; das ist '
fiir a, = 0 charakteristisch.

Wir lassen nun von jetzt an das Polynom f(z) = a? auller
Betracht; es kann also dann nie eintreten, dal z, = #; = a,=0 ist.

Wir betrachten nun weiter einige Fille, in denen durch die
Beschaffenheit der Lésung von (20) entweder Ausnahmeverhilt-
nisse hinsichtlich der z,, entstehen oder in denen der im spéteren
Satz 2 zu beweisende Sachverhalt besonders einfach zu Tage
tritt; das sind solche Fille, die schon im Satz 1 eine Rolle spielten
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und sich darauf bezogen, dal (20) mit den besonderen Werten
t=0; 1; —1; 2; — 2 losbar ist.

(A) Gleichung (20) sei mit t = 0 gelost. Durch Erweiterung
der Entwicklungsfunktionen (80), (81) mit 1 +y wird der
Nenner 1 — y*; daraus folgt fiir jeden Index n : , = #,,,. Nach
(21) ist 242 — 4a, = u? + v?, und aus diesen Werten u, v liefert
dann (28a) x,, z; als ganze Zahlen; weiter bekommt man durch
die Rekursionsformel (24) z_;, ,, woraus wegen der Periodizitéit
alle z, bekannt sind.

(B) ¢ =1 gestatte die ganzzahlige Losung von (20). Erweitert
man nun wie im Falle (A) und dann noch mit 1 + y 4 y?2, so
wird der Nenner in beiden Entwicklungsformeln 1 — 3% Demnach
ist stets a, = @,,. Hier ist nach (21) 4(a}—a,) = 3u? 4 v%
diese » und v liefern nach Fall (f,) auf S. [9] 415 mittels (23a)
ganze ,, ®;; hieraus bekommt man aus (24) x_;, @, T3, ;.

Wegen @, = #,,.4 sind damit alle z, bekannt.

(C) Es lege eine Lisung von (20) mit t = — 1 vor. Dann ist
in den Entwicklungsformeln der Nenner 1 — 33, also stets
@, = &p.3. Nach Gleichung (21) ist 4(a}—38a,) = u? 4 3v%
nimmt man hierin das Vorzeichen von u passend, so ergeben die
Gleichungen (28a) nach Fall (f,)auf S.[9] 415 ganze x,, ,; berechnet
man dann aus (24) noch x,, so sind damit alle #, bekannt.

Die behandelten 8 Fille liefern also periodisches Verhalten
der @,, dhnlich wie es bei dem vorweg behandelten Polynom
% war.

Anders liegt es in den noch zu behandelnden Féllen, in denen
man (20) mit { = 2 oder mit { = — 2 losen kann.

(D) Es sei (20) mit t = 2 gelist. Da der Nenner in (80) und
(81) jetzt (1—y)? ist, kann man die Potenzrelhenentwmklung
schnell erhalten; es folgt nach kurzer Rechnung:
n(l—mn)

2

(*) x, = xo(1—n) + 2n + a;

Mittels (81) zeigt sich, daB3 diese Formel fiir jedes ganze n 2 0
gilt. Ist dabei a, = 0, so ist nach dem Beweise des ersten Teils
von Satz 1 das Polynom reduzibel; wenn dann z # 0 eine Null-
stelle von f(x) bedeutet, so war z, — @, = 2; es geht dann also
bei a; = 0 unsere Formel in:

(**) Z, = Ty — NI

uber. — Ist aber a; £ 0, so war im ersten Teil des Beweises
gezeigt, wie man =z, x; mittels der Losung einer quadratischen
Kongruenz findet; dann ergeben sich alle @, aus (*).

27
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(E) Schlieflich sei (20) mit t = — 2 geldst. Dann ist nach
dem Beweise des zweiten Teils von Satz 1, (Fall («) aufS. [8] 414
das Polynom f(x) reduzibel; ist z == 0 eine seiner Nullstellen, so
ist y + @; = 2; durch Erweiterung der rechten Seiten in (30)

und (31) mit 1 — y wird dort der Nenner (1 ~y2)2. Daraus ergibt
die Potenzreihenentwicklung nach einfacher Rechnung:

(*¥**) Ry, = By — 2NZ — NAy; X,y = 202 + @ + na;.

Man iiberzeugt sich mittels (31), da3 auch diese Formeln fiir
jedes ganze n Z 0 gelten. )

Wir beweisen nun den allgemeinen

Sarz 2: Ldft sich die Gleichung (20) mit einem |[t| =2 ganz-
zahlig losen, so ist entweder fiir diese Losung mit |n|—co0 auch
zugleich |x,|— oo oder es existiert eine andere Lisung von (20),
fir die mit |n| — © auch |x,| - o gilt. Ausgenommen sind
nur die 8 Polynome f(x) = @?; a® + « — 1.

Beweis: Wir schicken dem Hauptteil des Beweises einige Be-
merkungen voraus: 1) Ist f(z) reduzibel, so besitzt unser Poly-
nom, da es nach Annahme £ a2 ist, eine ganze Nullstelle z £ 0;
die Gleichung (20) 1a8t sich auf Grund der Bemerkungen, die
im ersten § iiber die Losungsméglichkeiten von (8) gemacht
wurden, mit z, = 0, @; = z und willkiirlichem ganzen ¢ l5sen.
Wir nehmen dann stets |¢| = 3; und es ist @; # @,. So denken
wir uns bei reduzibelem f(x) die Losung von (20) immer vor-

genommen.
2) So verfahren wir insbesondere in dem zuletzt behandelten
Falle (E), in dem ¢t = — 2 und f(2) reduzibel war. Die hierzu

gehorige Formel (*#%) lehrt ndmlich nur dann, da8 mit |n| — oo
auch |@,| — oo gilt, falls die Nullstellen von f(z) verschieden
sind; sind sie aber gleich, so ist nach (¥***) stets a, = @, .,
also die Folge der |a,| periodisch.

Deswegen anderen wir im Falle (E) ¢mmer die Losung von
(20) in der unter Nr. 1 geschilderten Weise ab. Ebenso handeln
wir im Falle (D), { = 2, a; = 0, obgleich hier bereits (**) die
Richtigkeit des zu beweisenden Satzes lehrt; wir nehmen also
auch hier eine andere Losung von (20) entsprechend der in Nr. 1
gemachten Vorschrift. — Liegt aber der Fall (D), { = 2, mit
a; # 0 vor, so liefert (*) unmittelbar: mit |n| — oo gilt auch
|z,| = oo.

Ist also (20) mit |¢| = 2 gel6st, so” ist entweder unsere Be-
hauptung schon richtig oder die Losung laBit sich so &ndern,
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daB |t| = 8 ist. Wir setzen daher fiir den eigentlichen Beweis
voraus: ‘ '

3) Es sei (20) mit |t| = 8 gelost. Dann hat das Polynom
n? —tny + 1 zwei verschiedene reelle Nullstellen, w, w’; die
Bezeichnung sei so gewahlt, da |w| <1, |w'| > 1 ist. Fiihrt
man dann statt der GréBen x, neue GréBen y, durch

(32) Yo =T — 5, (R=03 +15 £2;...)

ein, so besitzen diese y, die homogene Rekursionsformel

(24b) Y1 = Wn — Yn-1> (n:O; +1; +£25.. ')’

Hieraus ergibt sich dann mittels der in der Differenzenrechnung
iiblichen Methoden fiir y, der explizite Ausdruck:
Yo (= ) (w2 1)

(33) y,= (@ 1) (n=0; +1; +2;...).

Aus (33) folgt nun:
Yu . ylw’ — Yo

34 s lim = .
( ) n—>+ ® w’ ™+ w’(w'2_1)
w' —
(85) Iim  y,w"-1= yo/’zﬁ .
n—>—® w?—1

Die in den diesen beiden Limesgleichungen rechts stehenden
Briiche haben wegen der Irrationalitit von w’ nur dann den Wert
Null, wenn y, =y, = 0 ist. Ist also |yo| + |y;| > 0, so folgt
aus (34) und (85), daB3 mit |n| — co auch |y, | — oo und deshalb
ebenfalls |z,| — co gilt. In diesem Falle ist also der Satz erledigt;
wir miissen daher nur noch die Sachlage untersuchen, die bei

Yo = Yy, = 0 vorliegt. Hier haben wir wegen (24b) fiir jedes
t_f‘? Wegen 2y = a4
mull auf Grund der Vorbemerkung 1 unseres Beweises f(x)
irreduzibel sein; denn bei reduzibelem f(z) sollte ja nach der
dort getroffenen Vereinbarung die Losung von (20) mit z; # @,

a
t—2
die Beziehung z, == #; = @, = 0 besténde, die zum ausgeschlos-
senen Polynom «? gehort. Fiihrt man nun in (20) die Bedingung
To=a; = ri‘—2 ein, so liefert eine kurze Rechnung : a2+ (t—2)a, =0.
Das bedeutet: a,zy + a, = 0. Deswegen ist % = — r eine ganze

ganze n stets y, = 0. Also ist jedes z, =

vorgenommen sein. Aulerdem ist @, # 0, da sonst wegen z,, =

1
Zahl 0. Dann ist oy =7r und a, = (¢—2)r; weiter ergibt
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sich daraus: a, = — ar = — (t—2)r2 £ 0. Demnach wird:
2

% = — ¢+ 2 = — s eine ganze Zahl £ 0. Schlie3lich erhalten

wir: a; = rs; a, = — r%s. Das irreduzibele Polynom ist daher

f(@) = 2% + rsz — r%s, wobei die ganzen Zahlen » und s von 0
verschieden sind. Die fiir dieses f(2) vorgenommene Losung von
(20) war: @y = a; = r; t = s + 2. Da wir |{| = 8 voraussetzten,
miissen wir annehmen, daB s =1 oder s < — 5 ist. — Indem
wir nun die beiden im Satz 2 angegebenen Polynome 2% 4+ 2 — 1
ausscheiden, schalten wir damit den Fall aus, in dem 72 = s =1
ist. In den sonstigen Fillen unseres Polynoms werden wir eine
Loésung von (20) konstruieren, die alle Bedingungen erfiillt,
unter denen bereits der Satz als richtig nachgewiesen ist.
Hierzu bilden wir eine e-Losung von (20) und setzen zu diesem
Zweck zy = ¢ = — sign (r). Dann wird f(z,) = f(¢) =1 + rs(e—r).
Dieser Ausdruck ist wegen der Irreduzibilitit von f(z) sicher
# 0 und wegen der Wahl von ¢ auch 5 1; und weil 7% £ 1 ist,
ist f(zy) # — 1, wie man leicht zeigt. Somit ist jedenfalls
|f(z9)] = 2. Indem wir jetzt, um die e-Losung von (20) zu Ende
zu fiithren, noch x; = &f(¢), also als Teiler von f(z,) und # z,
wahlen, ergibt f(z,) = f(¢) = @, = x_;¢f(¢), daB x_; = ¢ ist.
Mit den angegebenen Werten fiir @, #;, _; erhalten wir schlieBlich
aus @, = to, — #_; — a, nach kurzer Rechnung: ¢t = 2 + rs(2e—r).
Hier ist der zweite Summand rechts bei |r| = 2 selbst absolut
= 8, also dann [{| = 6. Ist aber || = 1, dann folgt aus 7% +# 1,
daf3 |s| = 2 ist; dann ist der soeben betrachtete zweite Summand
auf der rechten Seite des Ausdrucks fiir ¢{ auch noch absolut
= 6, also |t| = 4. Bei unserer &-Losung ist also stets |{] = 4
und @; # z,. Wir befinden uns also in dem Fall, fiir den der Satz
bereits bewiesen war. Somit ist der Beweis von Satz 2 vollendet.

Fir die beiden Ausnahmepolynome, bei denen r2s = 1, also
s =1 und r = ¢ ist, liegen die Verhéltnisse anders. Bildet man
nédmlich fiir das Polynom f(z) = 2% 4+ e — 1 mit @, = &' eine
Loésung von (20), so wird f(z,) = f(¢') = e¢’. Da man nun a
als Teiler von e’ zu wahlen hat, ist zwangslaufig x; = ¢'. Aus
(27) ergibt sich x_; = e¢’¢”” und aus (25) erhalten wir ¢t = e¢’+

r_tr

e'e"" 4 &'’e. Sind hier alle 8 Vorzeichen einander gleich, so ist

a .
=8 und 2, =2, = ;—; = ¢ und alle , werden = ¢. Das ist

gerade der im Beweise von Satz 2 erérterte Fall, in dem trotz
t = 8 die GréBen |z,| nicht gegen oo strebten. Sind aber von
den 8 Vorzeichen nur zwei einander gleich, so wird ¢t = — 1;
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wir befinden uns jetzt im Fall (C) von Seite [11] 417, in dem immer
x, = @,+3 war. Die e-Losung fithrt also bei diesen beiden Aus-
nahmepolynomen immer auf eine periodische Folge der z,. Da3
man die zu diesen Polynomen gehérige Gleichung (20) nur mit
t=8 und ¢t= — 1 losen kann, werden wir spiter zeigen
(Satz 5).

Aus Satz 2 folgt nun: wenn es fiir ein Polynom f(z), das von
22 und 22 4+ ex — 1 verschieden ist, keine Lo6sung von (20)
gibt, fir die mit |n| — oo auch |z,| - co gilt, dann muB sich
(20) fiir dieses Polynom nur mit £ = 0 oder ¢ = 4 1 l6sen lassen.
Diese Polynome, bei denen (20) sich nur mit |[¢| < 1 16sen 1aBt,
wollen wir bestimmen. Da sie irreduzibel sind, diirfen wir von
f(z) im folgenden voraussetzen, daB das Polynom keine ganze
Nulilstelle hat und auch keins der Ausnahmepolynome des
Satzes 2 ist. StoBen wir bei unserer Untersuchung auf ein reduzi-
bles Polynom oder auf 22 + ez — 1 oder auf ein solches, bei
dem (20) sich mit |¢| = 2 losen 1aBt, dann kénnen wir das Po-
lynom als ungeeignet auler Betracht lassen. Das Verfahren zur
Auffindung der Polynome, bei denen (20) sich nur mit || <1
16sen 148t, beruht auf der Ausnutzung der ¢-Losung. Indem wir
namlich z, = ¢ setzen und z, als Teiler von f(x,) wihlen, ergibt
sich z_; aus (27) und ¢ aus (25). Es wird ¢ = ¢(xy+2_+a,).

Fall 1: |f(e)] =|f(—¢)] = 1. Entweder ist f(e) = — f(—¢)
oder = f(—e). Das erste hieBe aber: a, = — 1, also wegen
|f(e)] =1, daB zugleich |a,| =1 wire; f(x) wire also eins der
beiden irreduzibelen Ausnahmepolynome. Daher brauchen wir
nur f(e) = f(—e) zu verfolgen. Daraus ergibt sich, daBl a, =0
ist; wegen f(¢) = 14 a, =+ 1 und a, = 0 folgt weiter: 1-}-a,=—1,
also ist a,= —2. Wir stoBen so auf das neue Polynom f(z)=x2—2.
Fiir dieses ist f(¢)= — 1; daher bekommt z, nur einen der Werte
s 1, dazu ergibt sich stets ¢ = 0. Wir befinden uns im Falle
(A) von Seite [11] 417 mit x,, = z,,,4. Wir werden spater sehen,
dafB sich in der Tat fiir dieses Polynom (20) nur mit ¢ = 0 16sen
138t (Satz 5).

Fall 1I: Mindestens eine der Zahlen f(1), f(—1) ist absolut
> 1; fiir ein passendes ¢ ist also |f(¢)| > 1. Mit noch unbestimm-
tem ¢’ setzen wir dann neben z, = ¢ die GroBe z, = ¢'f(¢); dann
ist #; # xy und z_; = ¢’. In der oben angegebenen Weise folgt
fiir £+ der Ausdruck: t = 2e¢’ + eg’ay + a,(¢+¢’). Nimmt man
nun zuerst ¢’ = — ¢, dann wird { = — a, — 2. Bei ¢, = 1 und
bei @y < — 4 ist daher |¢| = 2. Dann ist also das Polynom keins
der gesuchten; es bleibt daher nur noch ¢, = —1, — 2, — 38
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zu untersuchen. Dazu setzen wir jetzt ¢ = ¢ Dann wird
t =2 4 a, + 2¢ea,. Demnach wird ¢ + a, = 2f(¢). Wegen | f(¢)| = 2
ist also |t + a,] = 4 und |{| = 4 — |a,|. Daher scheiden nun
noch die Fille ¢, = — 1, — 2 aus, und es bleibt nur a, = — 3
iibrig. Fiir diesen Fall ist | — 8| = 4; da wir nur Werte ¢ brau-
chen kénnen, die abolut kleiner als 2 sind, ist = — 1 der einzige
Wert, der unsere Ungleichheit erfiillt. Wegen a, = — 8 und
t = — 1 liefert die Geichung fiir ¢ schlieBlich noch a, = 0; wir
erhalten dadurch das Polynom f(z) = @ — 8. Rechnet man fiir
dieses alle aus x, = ¢ folgenden Losungsansitze durch, so hat
man wegen f(z,) == — 2 nur die Wahl a; = ¢’ oder a; = 2¢.
In diesen beiden Fillen erhilt man ¢ = — e¢’ und ¢t = ¢&’. Also
ist entweder der Fall (B) von Seite [11] 417 mit{ = 1und z,,=2,, .
gegeben oder mit { = — 1 und #, = @, ., der Fall (C) von Seite
[11] 417. Auch fiir dieses Polynom werden wir spater im Satz 5
zeigen, daB3 die zu ihm gehdrende Gleichung (20) nur mit ¢ = 41
l6sbar ist. Unter Vorwegnahme eines Teiles der Aussagen von
Satz 5 haben wir also folgenden

Satz 8: Fiir jedes normierte Polynom f(z) = a® + a,@ + a,
existiert eine Losung von (20), bei der zugleich mit [n| — oo auch
|@,| — oo gilt. Ausgenommen sind nur dic 5 Polynome %
% - x —1; 22 — 2; 2% — 3.

Hieraus ergibt sich nun ein groBer Teil des folgenden Satzes.
Satz 4: Abgesehen von den beiden Polynomen a? 4 x — 1
besitzt jedes Polynom f(a) = 2% + a@ + a, unendlich viele Wip.
Beweis: 1) Das Polynom f(x) = a? besitzt auller den 4 Wtp.
[-+1; +1] sicher noch unendlich viele andere Wtp.; denn mit
irgend welchen r verschiedenen Primzahlen py, ps, ..., p, und
den positiven ganzen Exponenten ¢,, d,, (n=1,2,...,r) bilde
man
a =+ pi'ps - P,
b=+ pppyr- oy
und unterwerfe die Exponenten nur der Bedingung

d
2d, =c¢, = ?", (n=1,2,...,71),

dann ist sicher @® durch b und 5% durch a teilbar. Also sind alle
diese Paare [a; b] wirklich Wtp. des Polynoms a2
IT) Es sei nun f(«) keines der 5 Ausnahmepolynome des Satzes
8; dann gibt es nach diesem Satze eine solche Losung von (20),
daB fiir sie mit |n| - o auch |z,| - oo gilt. Fir geniigend
¥
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groBBe |n| ist also @, 7 0; und auBerdem enthilt die zweiseitige
Folge der @, unendlich viele verschiedene Elemente. Wegen (29)
ist f(x,) = @,_4x,,; und ebenso f(z,,;) = Z,%,4q; also ist fir
geniigend grofle |n| immer [z,; z,.,] ein Wtp. unseres Polynoms.
Es besitzt also wirklich unendlich viele Wtp. Ist keines der z,
gleich Null, so stellt die zweiseitige Folge der , eine Kette des
Polynoms dar; verschwinden aber einige @,, so braucht man in
der zweiseitigen Folge der z, nur eine Aufeinanderfolge von
endlich vielen Elementen zu streichen; der iibrig bleibende Teil
der zweiseitigen Folge stellt dann 2 Halbketten des Polynoms dar.

IIT) Die 4 Polynome 22 + 2 — 1; a® — 2; a? — 8 erfordern
besondere Betrachtungen; die Sétze 5 und 6 sind ihnen gewidmet.
Dazu brauchen wir folgenden

Hilfssatz: Ist [a; b] etn Witp. erster Art von f(x) und f(a)==bc #0,
so ist [c; a] ein Wip. von f(x). Ist ferner t =i, die aus (8) zux-
x = a, y = b ermittelte ganze Zahl, so ist b =t,a —c — a; und
in der Bezeichnung von (20) gilt neben F(a, b;ty) = 0 auch
F(c, a; ty) = 0. Ist dabei a; = 0 oder ay, = 41, so ist [c; a] ein
Wip. erster Art.

Beweis: Es ist bc = a, (a) und b2f(c)=(bc)? + a.b(bc) + asb?;
also ist b%f(c) = a5 + a,ba, + ah® = a,f(b) =0 (a). Wegen
(a, b) = 1 ist somit a ein Teiler von f(c) und daher [c; a] cin Wtp.
von f(x). Weiter folgt aus F(a, b; t,) = f(a) + f(b) — teab—ay, = 0,
daB bc + b% + a.b — tyab = 0 ist. Die Auflosung nach b liefert:
b=ty —c — a;. Mit diesem Ausdruck fiir b erhalten wir:
fla)=bc=c(tya—c—a,) =tyac—f(c)+a, d.h. F(c, a; t,)=0. — Bei
a,; =0 folgt aus b =ta—c, dafl [c; a] ein Wtp. erster Art ist; und-
bei a, = 4+ 1 ist das klar, da ja dann f(z) nur Wtp. erster Art hat.
Damit ist der Hilfssatz bewiesen.

In den folgenden Satzen kombinieren wir diesen Hilfssatz mit
folgender SchluBlweise.

Ist in einem Wtp. erster Art [a; b] etwa |a| < |b|, so kann
hierin wegen (a, b) = 1 das Gleichheitszeichen nur gelten, wenn
es sich um eines der 4 trivialen Paare [4-1; 4-1] handelt. Sobald
also |a| > 1 ist, gilt sicher 1 < |a| < |b|. Wenn es ein dieser
Bedingung geniigendes Wtp. erster Art gibt, denken wir uns
ein solches herausgesucht, in dem |a| minimal ist. Wir wollen
ein solches ein Minimalpaar nennen. Definiert man dann fiir
dieses nach unserem Hilfssatz die GroBle ¢ und ergibt sich dann,
daB (c,a) = 1und 1 < |¢| < |a] ist, dann hat man einen Wider-
spruch, da ja [a; b] nun kein Minimalpaar wire. Also kann es
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daher kein Wtp. erster Art mit der Bedingung 1 < |a| < |b]|
geben. Es muB also |a| = 1 fiir jedes Wtp. erster Art sein; und
da b ein Teiler von f(a) ist, besitzt das Polynom nur endlich
viele Wtp. erster Art, namlich nur solche, bei denen |a| = 1 ist.

Mit diesen Schliisssen beweisen wir jetzt

Satz 5: Von den 4 Polynomen 2?2 +ax — 1; a* — 2; 2> — 8
besitzen die 8 ersten nur je 4 Wip. erster Art, ndmlich die stets
vorhandenen Paare [41, +1]. Das letste Polynom 2* — 8 hat
aufer diesen 4 Paaren nur noch die 4 weiteren Wip. erster Art
[+1; +2]. — Fir die beiden ersten Polynome lift sich (20) nur
mit t = — 1 und t = 8 ganzzahlig losen; fir x®> — 2 ist dies aber
nur mit t = 0 und fir 2> — 8 nur mit ¢ = + 1 moglich. — Die
beiden ersten Polynome besitzen demnach iiberhaupt nur die 4 Wip.
[+1; +1], da ste keine Wip. zweiter Art haben kionnen.

Beweis: Fiir unsere 4 Polynome ist a, <0 und a, ist =0
oder = 4 1. Gébe es fiir eines von ihnen ein Minimalpaar [a; b],
worin also (a,b) =1 und 1 < |a| < |b| bei minimalem |a|
wire, so sei ¢ die GréBe des Hilfssatzes. Aus ihm folgt fiir unsere
4 Polynome, daB [¢; a] ein Wtp. erster Art sein miilte. Nun ist
a® + a,a + a, = bc wegen |a| =2 sicher positiv. Also ist
|ac| < |be| = be = a® + aya 4 a, < a® + a0 = |a® + aa| <
|a|? + |a,a|. Daraus folgt |c¢| < |a| + |ay|. Fir die beiden
letzten Polynome ist daher |¢| < |a|. Und fiir die beiden ersten
gilt zunéchst |¢| <|a|. Nun miiBte bei |¢| =|a|doch a in @, =—1 .
aufgehen, was wegen |a| = 2 nicht der Fall ist; also ist auch fiir
die beiden ersten Polynome |c| < |a|; das gilt demnach fiir alle
4 Polynome. Wegen f(c) = 0 (a) und |a| = 2 ist fiir die 8 ersten
Polynome |¢| > 1; das gilt auch fiir das Polynom f(z) = 22 — 3.
Denn bei ¢ = + 1 wire f(c) = — 2, also miufite |a| =2 und
f(a) = 1 sein; dann ginge aber b nicht in f(a) auf. Es ist also
fiir alle 4 Polynome: (¢,a) =1 und 1 < |¢| < |a|. Damit ist
der vorher geschilderte Widerspruch vorhanden. Die 4 Polynome
besitzen also nur solche Wtp. erster Art, bei denen 1 =|a| <|b|
ist. Dann wird fiir die 3 ersten Polynome |f(a)| = 1. Also ist
fiir sie b = 4 1. Fiir das Polynom f(z) = #* — 3 aber ist dann
f(a) = — 2, und deshalb ist b = 41 oder = 4 2. Damit ist
im wesentlichen alles bewiesen; denn die Behauptungen iiber die
Losung von (20) folgen aus fritheren Darlegungen, insbesondere
aus dem Beweise von Satz 3, der jetzt erst vollig erledigt ist;
der noch ausstehende Teil des Beweises von Satz 4 erledigt sich
durch:
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Satz 6: Fiir jede positive Primzahl p besitzt das Polynom x* + ep
unendlich viel Wip. zweiter Art.

Bemerkung: bei p = 2 und p = 3 handelt es sich mit ¢ = — 1
gerade um die beiden letzten Ausnahmepolynome des Satzes 3.

Beweis: Besitzt 22 + ep ein Wtp. [a; b] zweiter Art, so ist
(a, b) = p und p geht in @ und b nur in der ersten Potenz auf.
Mit @ = pa’; b = pb’ ist (a’, b') = (p, a’) = (p, b')=1 und [a’; b’]
ist ein Wtp. erster Art fiir das Polynom pa? + &, das nur Wtp.
erster Art besitzt. Aus jedem solchen erhdlt man umgekehrt
durch Multiplikation seiner beiden Elemente mit p ein Wtp.
zweiter Art fiir 22 + ep. Man hat also nur die Wtp. von pa? + &
zu bestimmen und findet sie aus den Losungen der zugehorigen
Gleichung (8): pa? — tey + py? = — ¢. Jede Darstellung der
Zahl 1 durch die quadratische Form

(—pe, te, —pe) = — pea? + texy — pey?

liefert durch [pz; py] ein Wtp. zweiter Art fir das Polynom
2% 4+ ep. Hat die Form dabei eine negative Diskriminante, so
erhalten wir nur endlich viele Darstellungen von 1, also auch
nur endlich viele Wtp. Bei positiver Diskriminante erhalten wir
unendlich viele Wtp. Die quadratische Form hat eine positive
oder negative Diskriminante, je nachdem |[t| > 2p oder < 2p
ist; sie stellt die Zahl 1 dann und nur dann dar, wenn sie zur
Hauptklasse gehort. Gehort sie bei ¢ = 1 zur Hauptklasse, so
hat sie von selbst eine positive Diskriminante, wie sich leicht
ergibt. Nun gehort die Form fiir t = 2p + eund fiir t = p?+ep+1
sicher zur Hauptklasse. Denn fiir den ersten Wert ¢t = 2p + ¢
stellt die Form den Wert 1 durch @ = y = 1 dar. Dieser Wert
von t ist lbrigens im Falle ¢ = — 1 das einzige positive ¢, bei
dem mit negativer Diskriminante die quadratische Form zur
Hauptklasse gehort. Fir den zweiten Wert ¢ == p2 + ep + 1
stellt die Form durch x =1 und y = p + ¢ den Wert 1 dar.
Dieser Wert £ liefert bei ¢ = 1 immer eine positive Diskriminante;
dagegen bei ¢ = — 1 nur fiir p =8; fir p=2 und e = — 1
ist dieses t = 8 << 2p = 4, und die Form hat dann auch noch eine
negative Diskriminante. Also ist fiir #2 — 2 die Existenz von
unendlich vielen Wtp. noch nicht gesichert. Bevor wir diese
Liicke ausfiillen, bemerken wir nur, daf3 die beiden angegebenen
Werte von ¢ zu den positiven Wtp. zweiter Art [p; p] und
[p; p2+ep] des Polynoms 22 + ep gehoren. Aus ihnen entspringen
also mittels der Theorie der quadratischen Formen im Falle
¢ = 1 unendlich viele Wtp. zweiter Art; dagegen liefert bei
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e = — 1 das zweite Wtp. [p; p2—p| bel p = 3 auf dem gleichen
Wege unendlich viele Wtp. zweiter Art. — Wenn man nun fiir
p = 2 und ¢ = — 1 die Frage stellt ,fiir welches ¢ hat die Form

(2, —t, 2) die FEigenschaft, zur Hauptklasse zu gehéren’, so
ergibt sich als notwendige Bedingung leicht: es mull ¢ = 24n - 3
sein, und gleichzeitig mul3 jede der beiden Zahlen ¢+ 4 nur
durch Primteiler der Gestalt 8m -+ 1 teilbar sein. Im ersten
Hundert gibt es nur 5 solche t:38; 27; 45; 75; 98. Im zweiten
Hundert: 123; 195. Im dritten Hundert: 237; 267; 285. Die erste
Zahl t > 3 von den angegebenen ist ¢ = 27; fiir sie ist dic qua-
dratische Form 22? — 272y + 2y% von positiver Diskriminante
und erweist sich als brauchbar, da sie fiir ¥ = 47; y = 631 die
Zahl 1 darstellt. Aus dem zugehorigen Wtp. zweiter Art [94; 1262]
von 2% — 2 flieBen also unendlich viele andere Wtp. zweiter Art.

Fir e = — 1 und p = 38, also fir das Polynom 2? — 8 ist der
oben angegebene zweite Wert von ¢ gleich 7; in diesem Falle
stellt z.B. auBler dem mitgeteilten Paare # =1, y = 2 noch
x = 18, y = 23 oder @ = 8553922, y = 2010601 den Wert 1 dar.
AuBlerdem ist noch ¢t =17 mit @ =2, y = 11 brauchbar. —
Damit ist Satz 6 bewiesen. )

SchlieBllich wenden wir uns nun noch dem in der Einleitung
genannten Polynom 2% + 1 zu und beweisen:

Sarz 7: Stellt man fiir 2* 41 aus (20) die Losung mit xy=a, =1
und t = 8 und aus (24) die Rekursion x, ., = 3z, — v, _, her, so
liefern die so definierten Zahlen x, (n=0) die Halbkette 1; 1;
2; 3; 18; 34; 89;.... Diesc Halbkette liefert alle positiven Wip.
unseres Polynoms, d.h. jedes positive Wip. von 2% + 1 besteht
aus ~wet Nachbargliedern wunserer Halbkette. Diese entsteht aus der
Fibonaccischen Zahlfolge durch Streichung von 8; 8; 21; 55; .. ..
Die Gleichung (20) ldft sich fiir a® + 1 nur mit ¢t = - 8 losen.

Beweis: Fir 2 + 1 gibt es lberhaupt nur Wtp. erster Art.
Gesetzt es gidbe auBler den durch die Halbkette gelieferten Wtp.
noch ein positives Wtp. [a; b] mit a =< b, das nicht aus zwel
Nachbargliedern der Halbkette bestinde, dann ist von selbst
1 <a<b. Denn bei a =1 ware b = 1 oder = 2, und das Paar
wire dann das erste oder zweite der Halbkette entstammende
Wtp. Somit ist @ > 1 und wegen (a, b) = 1'ist nun auch a < b.
Wir suchen nun ein der Bedingung 1 << a < b geniigendes und
nicht der Halbkette entstammendes Wtp. mit kleinstem a heraus
und verwenden die im Satz 5 benutzte SchluBBweise. Nach dem
dort gebrauchten Hilfssatz ist mit a® + 1 = bc auch [a;c] ein
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Witp. und wegen bc > ac folgt, daBl ¢ < (H—,l_z’ also ¢ < a ist.

Wegen a > 1 ist ¢ = a ausgeschlossen und daher ¢ << a. Wire
¢ =1, so lieferte ¢ +1 =2 =0 (a), daBl a = 2 wire. Dann
folgte aus a® +1 =5 =0 (b), daB b =5 sein milite. Also
wiirde [@; b] doch der Halbkette entstammen. Somitist1 < ¢ < a.
Wiirde das Paar [¢; @] nicht der Halbkette entstammen, so hitten
wir einen Widerspruch zur Definition von [a;b]. Also mufl
[¢; a] ein Paar benachbarter Zahlen der Folge der x,, sein. Es
sei etwa ¢ =x,; a = x,,,. Nun ergibt die Gleichung (8) mit
x=a, y=> ein ganzes t = ¢t, und nach dem Hilfssatz folgt
daraus b =1{,a —c¢ und a? —fac + ¢* +1 = 0. Es ist aber
fir jeden Index m =0, also auch fir m =mn, immer
x:, — 82,8, + a2, +1=0. Wegen ¢ =z,, a =ua,,, folgt
daher aus den beiden letzten Gleichungen, dal ¢, = 3, also
b=1ta—c=3x,, — &, = &,,, ist. Daher gehorte das Paar
[a@; b] doch zur Halbkette gegen unsere Annahme. Dieser Wider-
spruch zeigt, daBl es auBerhalb der Halbkette keine positiven
Wtp. von 2% + 1 gibt. Der Zusammenhang der o, mit der Fibonac-
cischen Folge, die mit y, =y, =1 mittels vy, , =y, + ¥,
entsteht, ist leicht einzusehen; wir halten uns damit nicht auf. —
Da jede Losung von (8) oder (20) ein Wtp. von a2 4 1 liefert,
so hat die Gleichung 2% — fay + y* + 1 = 0 mit der Neben-
bedingung |2| < |y| keine andern Lésungen als solche, bei
denen |2z| = a,; |y| = @, ist. Dann ergbit sich aber nach der
vorher durchgefithrten SchluBweise, daB |t| = 3 ist; also 1aBt
sich (20) nur mit ¢ = + 3 l6sen.

Bemerkung: Es folgt hieraus, dafl fir D = — 4 > 5 die
Gleichung — 4 = u? — Dv? nie eine ganzzahlige Losung u, v
besitzt.

Die beim Beweise von Satz 5 und 7 verwendeten Schliisse lassen
sich auch bei manchen anderen Polynomen verwenden. So ergibt
sich z.B. fir 2% + 2, das ja nach Satz 6 unendlich viele Wtp.
zweiter Art besitzt, folgende Aussage iiber die Wtp. erster Art:
Die ¢-Losung der zugehorigen Gleichung (20) a? —twya, +af = —2,
die in #, = #; = 1; t = 4 besteht, liefert mit der Rekursions-
formel (24) @, ,; = 4@, — x,_; die Halbkette 1; 1; 3; 11; 41; .. ..
AuBler den hierdurch erzeugte positiven Wtp. erster Art gibt es
fiir 22 + 2 keine anderen; die der zweiten Art bestimmen sich
aus Satz 6.

(Kingegangen den 24. September 1938.)



