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Zahlentheoretische Eigenschaften ganzzahliger
Polynome

von 

Ernst Jacobsthal

Berlin

Herrn Max Dehn zum 60. Geburtstage gewidmet.

Einleitung.
vORBEMER,KUNGEN : "Ganze Zahlen" sind im folgenden stets

ganze rationale Zahlen, ,,Polynome" immer ganzzahlige Polynôme ;
die Begriffe "reduzibel" und "irreduzibel" beziehen sich stets
auf den Kôrper der rationalen Zahlen. - Bei Kongruenzen schrei-
ben wir den Modul in Klammern hinter die Kongruenz ohne den
Zusatz "mod" ; die Buchstaben e, 6’, e", ... bedeuten immer
eine der beiden Zahlen ± 1.

Die Fragen, um die es sich im folgenden handelt, knüpfen an
Begriffe an, die wir zunächst erkh,ren müssen.
ERKLARUNG 1: Ist f(x) ein Polynom und erfüllen zwei von

Null verschiedene ganze Zahlen a und b gleichzeitig die Kon-
gruenzen :

so soll das Paar [a; b] ein Paar von Wechselt,eile-rn des Polynonts
f (x ) heißen. - Als Abkürzung für Wechselteilerpaar schreiben
wir: Wtp.

Jedes Polynom besitzt 4 triviale Wtp., nämlich [± 1; :L 1].
ERKLARUNG 2: Ein Wtp. [a ; b] heil3t positiv (negativ), wenn

a und b beide positiv (negativ) sind.
Bei einem Polynom, das nur gerade (ungerade) Potenzen von

x enthâlt, genügt die Kenntnis aller positiven Wtp., um eine
Übersicht über allé Wtp. zu besitzen.
ERKLARUNG 3: Ein Wtp. [a; b], bei dem a und b teilerfremd

sind, nennen wir ein Wtp. erster Art; ist aber (a, b)= d &#x3E; 1, so
soll das Paar als Wtp. zweiter Art bezeichnet werden.
Da für ein Wtp. [a; b] des Polynoms f(x) stets d = (a, b) ein

Teiler des konstanten Gliedes von f(x) ist, so besitzt jedes Polynom,
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bei dem das konstante Glied gleich + 1 ist, nur Wtp. erster Art.
ERKLARUNG 4: Eine zweiseitige Folge von nicht verschwin-

denden ganzen Zahlen 

bei der für jeden Index n immer [xn; Xn+l] ein Wtp. des Polynoms
f(x) ist, heiBe eine Kette des Polynoms. - Eine nach rechts fort-
schreitende Folge

oder eine in umgekehrter Reihenfolge angeordnete Folge

heiBe eine Halbkette des Polynoms, wenn alle ganzen Zahlen

Xnl *- 0 sind und stets zwei Nachbarelemente ein Wtp. des

Polynoms bilden.
Wir beschaftigen uns im folgenden mit den Wtp. eines gegebe-

nen Polynoms. Ob es für ein solches nur endlich viele Wtp. gibt
oder unendlich viele, ist bereits eine Frage, die allgemein zu
beantworten wohl kaum môglich ist. Noch schwieriger dürfte
wohl eine vollstândige Übersicht der Gesamtheit aller vorhandenen
Wtp. zu erlangen sein. Immerhin ist es môglich, für einige be-
sondere Klassen von Polynomen eines beliebigen Grades n die
Existenz von unendlich vielen Wtp. zu beweisen (§ 1). Sehr viel
mehr la13t sich dagegen für die normierten Polynome des Grades
n = 2 aussagen (§ 2). Sie besitzen mit Ausnahme der beiden

Polynome X2 - X - 1 immer unendlich viele Wtp.; dagegen 
haben die beiden genannten Ausnahmepolynome nur die 4 stets
vorhandenen Wtp. [:i: 1; =f= 1]. Eine Übersicht über alle Wtp.
ist auch in diesem Falle der Polynome x2 + aix + a2 schwierig
zu erlangen; nur für das Polynom X2 + 1 kann man das Problem
vollkommen erledigen; hier liefert die Halbkette 1, 1, 2, 5, 13,
34, 89, ... alle positiven Wtp., woraus man sofort alle Wtp.
erhält. Diese Halbkette entsteht aus der Fibonaccischen Zahl-

folge durch Streichung der Glieder 3, 8, 21, 55, ....

§ 1.

Die Bestimmung der Wtp. eines Polynoms f(x) läßt sich auf
die Lôsung einer ternären diophantischen Gleichung zurück-

führen. 
Ist nâmlich erstetis [a; b] ein Wtp. erster Art für das Polynom
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so besitzt die diophantische Gleichung

die zu dem Polynom

gehôrt, sicher mit x = a ; y = b eine ganzzahlige Lôsung t. Glei-
chung (3) lâl3t sieh also ganzzahlig in ,x, y; t lôsen. Jede solche

Lôsung dieser Gleichung, bei der x und y#-O sind, liefert um-
gekehrt ein Wtp. [x; y] des Polynoms, das aber auch von der
zweiten Art sein kann. Stets kann man (3) auf folgende Art
lôsen : man setze x = s und ivàhle y als einen Teiler van f(e),
dann ergibt sich aus (3) ein ganzes t. Sollte hierbei f(s) = 0
sein, so kann nian y beliebig als von 0 verschiedene ganze Zahl

wählen und t = e’ f(.Y) a,, setzen. Oder man kann y = 0 nehmen
y

und t als ganz beliebige ganze Zahl wählen. Jede solche Lôsung,
bei der die eine der Grô3en x, y gleich 8 ist, nennen wir eine 8-
Lôsung von (3). Der besondere Fall, in dem f(e) = 0 ist, fâllt

unter den allgemeineren, in dem das Polynom eine ganze Null-
stelle xo besitzt. Dann besitzt (3) noch die Lôsung x = 0, y = x.
und t als beliebige ganze Zahl.

Besitzt unser Polynom ein Wtp. [a; b] zweiter Art, so ist

(a, b ) = d &#x3E; 1, wobei d ein Teiler von an sein muB. Ist dann
a = da’, b = db’, an = da’ so ist (a’, b’ ) = 1. Das Paar [a’; b’]
ist dann für das Polynom 

ein Wtp. erster Art. Umgekehrt liefert jedes solche Paar durch
Multiplikation seiner Elemente mit d ein Wtp. VOl1 f(x). Bildet
man also für jeden Teiler d von an das Polynom fd(x) und stellt
für dieses die Gleichung

auf, so ergibt jede ganze Lôsung dieser Gleichung, bei der x und
y*-O und zu einander teilerfremd sind, durch Multiplikation
dieser Zahlen mit d ein Wtp. von fa), dessen Elemente den

grô3ten gemeinsamen Teiler d besitzen. Für d = 1 handelt es
sich dabei um (3), also um die Ermittlung der Wtp. erster Art.
Die Schwierigkeit ist nur die, daß man mit diesen diophantischen
Gleichungen (3), (3a) i.A. sehr wenig anfangen kann. Bereits
die Frage nach denjenigen ganzen Werten t, für die eine ganze
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Liisung x, y existiert, scheint fast unlôsbar zu sein. Nur der Fall
n = 2 mit au = 1 ift weniger sprôde und Vird uns in § 2 be-
schäftigen.
Immerhin gibt es einige Fälle von Polynomen eines beliebigen

Grades -n, in denen man die Existenz von unendlich vielen Wtp.
aussagen kann. - Sehr an der Oberf lâche liegen die beiden fol-
genden leicht beweisbaren Sätze :

SATZ 1: Ein Polynoni mit einer ganzen Nullstelle xo besitzt stets
unendlich viel Wtp.

SATZ 2: I st das Polynome reduzibel und f(x) - g (x )h (x ) eine

Zerlegung in ganzzahlige Polynome und ist dabei g(o ) eine Null-
stelle von f (x), so besitzt f (x) unendlich viele Wtp.

Setzt man X0 - x = g (x ) im Falle des Satzes 1, so sind damit
alle Voraussetzungen des zweiten Satzes erfüllt; zugleich mit
Satz 2 ist also auch der erste Satz bewiesen.

Beweis von Satz 2: Es sei a irgend eine ganze Zahl, die nur
die beiden Bedingungen erfüllen soll: a :A 0; b = g(a) # 0; dann
ist stets [a; b] ein Wtp. von f(x). Ist das gezeigt, dann ist die
Existenz von unendlich vielen Wtp. sicher. Nun ist f(a ) =bh(a ) mo
(b). Andererseits ist a - 0 (a), also b = g(a) = g(o ) (a ); daher
ist /(&#x26;)=/{g(0)} (a). Da hier rechts der Wert Null steht, ist
demnach f(b) = 0 (a), womit alles gezeigt ist.

Ein weiterer Fall, in dem man ohne Verwendung von (3) und
(3a) im allgemeinen die Existenz von unendlich vielen Wtp.
zeigen kann, wird durch die Klasse der normierten reziproken
Polynome und, etwas allgemeiner, durch die normierten Poly-
nome geliefert, die der Funktionalgleichung

genügen. Dabei muB, wie man leicht sieht,

sein, also

Und bei geradem n und a. :A 0 muB

gelten. Da hier wegen a0 = 1 immer an = ee’ ist, kann es

sich bei diesen Polynomen nur um Wtp. erster Art handeln.
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Und da wegen (6) und (6b) bei ungeradem n das Polynom die
Nullstelle - E besitzt, also nach Satz 1 unendlich viele Wtp.
hat, kônnen wir im weiteren annehmen, daB n gerade und
auBerdem noch f(-+- 1) e 0 ist. Ist nun für unser Polynom f(x)
etwa [a; b] ein Wtp., dann ist

Hierin sind r und s ganz und von Null verschieden. Wegen

Nun folgt aus (la):

Setzt man hierin an = ee’ und beachtet (7), so bekommen wir

Hieraus und mit Verwendung von (6) ergibt sich nun mod a:

Daher wegen (7) schlieBlich

Und ebenso zeigt man

Also sind [er; a], [b; es] zwei Wtp. von f(x). Aus dem emen
Paare [a; b] sind jetzt zwei weitere entsprungen. Mit den neuen
Bezeichnungen

sind unsere drei Wtp.:

Fur die Elemente dieser Paare gilt daneben:

Nach (10) und (12) istf(0153o} durch x, teilbar. Wenn man daher

setzt, so ist dadurch ae-l als ganze Zahl --7É 0 erklârt. Genau so
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ist wegen (11 ) und (12) die von Null verschiedene ganze Zahl
x4 aus f 

zu entnehmen. Dieser ProzeB läßt sich nach beiden Seiten un-

begrenzt fortsetzen; dadurch erhâlt man für das Polynom f(x)
die Kette:

Für jeden Index m gilt hier immer:

Im allgemeinen wird die Kette (17) unendlich viele verschie-
dene Elemente enthalten, d.h. f(x) wird unendlich viele Wtp..
[x,,,; xm+1] besitzen. Nur für gewisse Polynome unserer Klasse
wird die Kette endlich viele verschiedene Xm liefern; dann ist die
Existenz von unendlich vielen Wtp. zweifelhaft. Man kann die
Konstruktion von (17) mit xo = 8* beginnen und dann x, als
Teiler von f(x0) wâhlen. Die übrigen Kettenglieder berechnen
sich dann der Reihe nach aus (18). Dieser Erzeugungsvorgang
ist auch bei den der Gleichung (6) genügenden normierten
Polynomen statthaft, die für eine der Zahlen + 1 verschwinden,
falls man dabei auf keine xm stôl3t, die Null sind; diese Bemerkung
gilt insbesondere auch für n = 1 (2). So haben wir:

SATZ 3: Ein normiertes der Gleichung (6) genügendes Polynom
besitzt i.A. unendlich viele Wtp. Ausnahmen kônnen nur bei ge-
wissen Polynomen geraden Grades eintreten.
Nimmt man z.B. das Polynom x4 + 1 mit e = e" = l, so er-

geben sich der Reihe nach aus xo = X1 = 1 die weiteren Xm : x2=2;
x3 = 17 usw. Man sieht sofort, daß man eine monoton steigende
Folge erhâlt, also durch die Konstruktion unendlich viele Wtp.
geliefert werden.

Betrachtet man dagegen die in der Einleitung erwâhnten
beiden Polynome X2 + X - 1, , so gehôren sie auch zu der durch
(6) charakterisierten Klasse; für sie ist - == 1 und s’ - -- 1.

Beginnt man hier die Konstruktion mit xo == rh 1, so wird von
selbst x, = 1 oder = - 1 und jedes xm wird nur einen dieser
beiden Werte bekommen; die Kette (17) liefert also nur triviale
Wtp. Wir werden später sehen, daB es in diesem Falle nicht
anders sein kann.
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§ 2.

Wir betrachten jetzt das normierte quadratische Polynom:

und hierzu die Gleichung (3) in etwas verânderter Bezeichnung:

Man kann sie auch schreiben:

Die Beziehung von (20) zum Wtp.-problem und die Lôsungs-
möglichkeit von (20) ist in § 1 gezeigt; insbesondere erinnern
wir an die sogenannte e-L,5sung von (20). - Die Diskriminante
unseres Polynoms ist D = a’ - 4a2. Die Frage nach denjenigen
ganzzahligen t, für die (20) sich in ganzen xo, Xl Ibsen la13t, wird
zum Teil beantwortet durch einen Satz, der die Frage in das Ge-
biet der quadratischen Reste und Formen versehiebt.

SATZ 1: Damit die Gleichung (20) sich für t == 2 in ganzen xO’
x1 lôsen läßt, ist folgende Bedingung notwendig und hinreichend :
bei ai # 0 mup D quadratischer Rest von 8a, sein; bei al = 0

mup D eine Quadratzahl, also f(x) reduzibel sein.
Damit sich aber (20) ficr ein gegebenes ganzes t # 2 in ga,nzen

x0, Xl auflôsen lassen soll, mup sich notwendigerweise die Gleichung

in ganzen u und v befriedigen lassen. Diese notwendige Bedingung
(21) ist bei gewissen Werten von t auch fiir die ganzzahlige Lôs-
barkeit von (20) hinreichend; z. B. wenn t = - 2; a + 2 ist,
wobei [ a] = 1 oder gleich einer Primzahl ist.

Beweis : Erstens der Fall t = 2. Es besitze F(xo, xl; 2) = 0 eine 3

ganze Lôsung xo, x1. Aus (20) folgt die für jedes xo, Xl geltende
Beziehung: 

Wenn also al = 0 ist, so muB D = - 4a, eine gerade Quadrat-
zahl sein, weil die linke Seite der Identitât ja für passende ganze
xo, xi den Wert Null annimmt. Und wenn bei al = 0 umgekehrt
D eine solche Quadratzahl ist, so lehrt die Identität, daB
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F (xo, xj ; 2) = 0 sich in ganzen xo, xi lôsen läßt. (f(x) ist reduzibel;
ist z eine Nullstelle, so ist x. = x1 + z ; vergleiche (20)).

Ist aber a1 0 und (20) bei t = 2 ganzzahlig lôsbar, so lehrt
unsere Beziehung, daß die Kongruenz U2 =-= D (8a,) lôsbar,
also D quadratischer Rest von 8a, ist; es lôst dann auch jede
zu u mod 2ai kongruente Zahl diese Kongruenz. Umgekehrt
findet man aus jeder Lôsung u dieser Kongruenz, weil dann

u - a, (2) ist, mittels x, - 
D - u2 2 

und xo - 1 = 
u-a 

ganze

X0, xi, die mit 1 = 2 wirklich (20) lôsen, womit der Fall t = 2
bewiesen ist.

Zweiten.s der Fall t # 2. Die Gleichung (20) sei mit einem ge-
gebenen ganzen t 2 in ganzen xo, x, lôsbar. Man rechnet nun
leicht die Richtigkeit der aus der Hauptachsentransformation
sich ergebenden in xo, xl; t identischen Beziehung

nach. Ist also (20) bei unserem t in ganzen Xv lôsbar, so wird (21 )
wegen (22) durch

in ganzen u, v gelôst. Die Lôsbarkeit von (21) ist also eine not-
wendige Bedingung für die von (20).
Es sei nun das ganze t *- 2 so beschaffen, daB mit ihm (21)

eine ganzzahlige Lôsung u, v besitzt. Ergibt sich dann für diese
u, v aus (23) auch xo, x, ganzzahlig, so folgt aus (22), daß für
diese xo, xI auch (20) erfüllt ist. Die Auflësung von (23) nach
xo, xi lautet:

Wir zeigen nun, daß in den Fâllen = - 2 und t = a + 2
(a=+l oder a gleich einer positiven oder negativen Primzahl),
bei geeigneter Wahl der Lôsung u, v von (21) sich auch aus

(23a) ganze xo, xi ergeben.
a. Es sei also (21 ) nlit t = - 2 lôsbar. Die Gleichung reduziert

sich auf D = V2, und demnach ist f(x) reduzibel und hat ganze
Nullstellen. Es ist v einer der beiden Werte v/D, und u ist zunächst
willkürlich; wàhlt man nun u - a, (4), so wird xo aus (23a)
ganz und ebenso xi, weil v2 = D - ai (2), also v = a1 (2) und
deshalb u = v (2) ist. Nach (20) ist in diesem Fall F(x0, xl; - 2)
f(x,+xl). Ist also z eine der Nullstellen von f(x), so ist aeO+xl =z
und F(xo, -xo+z; -2)=0 für jedes ganze X..



415

P. Die Gleichung (21) sei nun mit t = a + 2 als lôsbar ange-’
nomnien, worin a = + 1 oder = ± p und p eine Primzahl ist.
Wir trennen die Falle, in denen t gerade oder ungerade ist.

Pl. t sei gerade, d.h. a = + 2. Es ist dann t = 2 + 2s. Nach
Division durch 2 lautet (21 ) : 2ai + 4a2B === (2+B)U2 - EV2.
Hieraus folgt: u=v(2), also ist u2 v2 (4), 2u2 = 2ai (4),
u = al (2) und demnach ergeben die Gleichungen (23a) ganze
xo, xi.

P... Schließlich sei t = a + 2 ungerade, also a - 1 oder
a = % p (p eine ungerade Primzahl). Dann folgt aus dem Er-
fülltsein von (21) mod a, daß u2 == ai (a) ist; bei passender Wahl
des Vorzeichens von u ist also u + al = 0 (a ) und wegen t - 2 = a
ergibt die erste Gleichung (23a) daher ein ganzes xo. Da aber

aus (21) auch u == v (2) folgt, wird aus (23a) dann auch xi ganz,
womit der Satz 1 schließlich bewiesen ist.

Hiernach sind die Gleichungen (20) und (21) gleichzeitig
ganzzahlig lôsbar oder unlôsbar, wenn z.B. t = 0; 1; 3; 4; 5; 7;
9; 13; ...; - 1 ; - 2; - 3; - 5; - 9; ... ist.
Wir verstehen nun in Zukunft unter xo, xl, t ein Tripel ganzer

Zahlen, das die Gleichung (20) erfüllt. Mit Hilfe der Rekursions-
formel

ergeben sich der Reihe nach die ganzen Zahlen X2, X3, X4, - - ’;

X-l’ X-25 x-3, .... Durch (24) und xo, x, ist also xn für jeden
Index n &#x3E; 0 definiert. Insbesondere ist:

Setzt man noch für jedes ganze n

so ist (24) gleichbedeutend mit:

Die Gleichung (20a) lautet mit diesen neuen Bezeichnungen
kurz so:

Für jedes n gilt nun:
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Rewei,s von (28) und (29): Es ist

Hier wenden wir (24) ein zweites Mal an und erhalten:

Wegen F(xo, X1; t) = 0 folgt hieraus durch Induktion nach

beiden Seiten für jedes ganze n &#x3E; 0 die Richtigkeit von (28);
das Ende der ersten Gleichungskette des Beweises liefert dann
aus (28) die Richtigkeit von (29). Man verifiziert auf Grund der
Rekursionsformel (24) leicht, dals die xv Entwicklungskoeffi-
zienten rationaler Funktionen sind; wir übergehen die einfache
Rechnung und notieren die Formeln:

Vorweg betrachten zvir den Fall des Polynolns f (x ) = x2, bei
dem also a1 = a2 = 0 ist. Hier lautet die Gleichung (20):
x 2 0 - tX 0 x 1 + xî = 0. Lôst man sie mit x, = 0, so wird auch

x1 = 0; t ist ganz beliebig, und alle xn werden === 0. Will man
aber die Gleichung mit Xo #- 0 lôsen, dann ist für t nur der Wert
2e môglich. Bei 8 = 1 ist dann jedes xn = Xo =1= 0; bei e = - 1
aber ist für jeden Index n immer xn - (-I)nxo #- 0. Für unser
Polynom und die dazu vorgenommene Lôsung von (20) mit
x0 --A 0 und t = 2e handelt es sieh in (30) und (31) um die Ent-

wicklung von -1 Xo . In den Entwicklungsformeln hat sich dabei -eY

der Faktor (1 -y) zuerst wegen al = 0 weggehoben; das ist
für al = 0 charakteristisch.
Wir lassen nun von jetzt an das Polynom f(x) X2 auBer

Betracht; es kann also dann nie eintreten, da13 Xo === X1 = al=0 ist.
Wir betrachten nun weiter einige Fâlle, in denen durch die

Beschaffenheit der Lôsung von (20) entweder Ausnahmeverhält-
nisse hinsichtlich der Xn entstehen oder in denen der im spâteren
Satz 2 zu beweisende Sachv erhalt besonders einfach zu Tage
tritt; das sind solche Fâllen, die schon im Satz 1 eine Rolle spielten
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und sich darauf bezogen, daß (20) mit den besonderen Werten
t = 0; 1; - 1; 2; - 2 lôsbar ist.

(A) Gleichung (20) sei mit t = 0 gelôst. Durch Erweiterung
der Entwicklungsfunktionen (30), (31) mit l + y wird der

Nenner 1 - y4 ; daraus folgt für jeden Index n : Xn = Xn+4. Nach
(21) ist 2a1 - 4a2 - u2 + v2, und aus diesen Werten u, v liefert
dann (23a) xo, Xl als ganze Zahlen; weiter bekommt man durch
die Rekursionsformel (24) x-1, X2, woraus wegen der Periodizitàt
alle xn bekannt sind.

(B) t = 1 gestatte die ganzzahlige Lôsung von (20). Erweitert

man nun wie im Falle (A) und dann noch mit 1 + y + y2, so
wird der Nenner in beiden Entwicklungsformeln 1 - ys. Demnach
ist stets xn = Xn+6. Hier ist nach (21) 4(aî-a2) = 3u2 + V2;
diese u und v liefern nach Fall (fl2) auf S. [9] 415 mittels (23a)
ganze xo, x1; hieraus bekommt man aus (24) x-1, x2, X35 X4.

Wegen x. = Xn+6 sind damit alle xn bekannt.
(C) Es liege eine Lôsung von (20) mit t = - 1 vor. Dann ist

in den Entwicklungsformeln der Nenner 1 - y3, also stets

xn = Xn+3. Nach Gleichung (21) ist 4(aî--3a2) - u2 + 3v2;
nimmt man hierin das Vorzeichen von u passend, so ergeben die
Gleichungen (23a) nach Fall (p2) auf S. [9] 415 ganze xo, x1; berechnet
man dann aus (24) noch X2’ so sind damit alle Xn bekannt.

Die behandelten 3 Fâlle liefern also periodisches Verhalten
der xn, àhnlieh wie es bei dem vorweg behandelten Polynom
x2 war.

Anders liegt es in den noch zu behandelnden Fâlle, in denen
man (20) mit t = 2 oder mit t = - 2 lôsen kann.

(D) Es sei (20) n’lit t = 2 gelôst. Da der Nenner in (30) und
(31) jetzt (1-y)3 ist, kann man die Potenzreihenentwicklung
schnell erhalten; es folgt nach kurzer Rechnung: 

Mittels (31) zeigt sich, daß diese Formel für jedes ganze n &#x3E; 0
gilt. Ist dabei a1, = 0, so ist nach dem Beweise des ersten Teils
von Satz 1 das Polynom reduzibel; wenn dann z zA 0 eine Null-
stelle von f(x) bedeutet, so war xo - xi = z ; es geht dann also
bei a, = 0 unsere Formel in:

über. - Ist aber a1 "* 0, so war im ersten Teil des Beweises

gezeigt, wie man xo, xi mittels der Lôsung einer quadratischen
Kongruenz findet; dann ergeben sich alle xn aus (*).
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(E) Schlieplich sei (20) mit t = - 2 gelost. Dann ist nach

dem Beweise des zweiten Teils von Satz 1, (Fall (a) auf S. [8] 414
das Polynom f(x) reduzibel; ist z # 0 eine seiner Nullstellen, so
ist xg + xl = z ; durch Erweiterung der rechten Seiten in (30)
und (31) mit 1 - y wird dort der Nenner (1-y2)2. Daraus ergibt
die Potenzreihenentwicklung nach einfacher Rechnung:

Man überzeugt sich mittels (31), daß auch diese Formeln für
jedes ganze n &#x3E; 0 gelten. 

Wir beweisen nun den allgemeinen
SATZ 2: Làflt sich die Gleichung (20) mit einem 1 t &#x3E;2 ganz-

zahlig lôsen, so ist entweder für diese Lôsung mit 1 n 1-700 auch
zugleich ) 1 x n 1 -&#x3E; oo oder es existiert eine andere Lôsung von (20),
fiir die mit 1 n [ - oo a.ueh IXnB - oo gilt. Ausgenommen sind
nur die 3 Polynome f(x ) = X2; X2 X 1.

Beweis: Wir schicken dem Hauptteil des Beweises einige Be-
merkungen voraus: 1) Ist f(x) reduzibel, so besitzt unser Poly-
nom, da es nach Annahme "* x2 ist, eine ganze Nullstelle "* 0;
die Gleichung (20) läßt sich auf Grund der Bemerkungen, die
im ersten § über die Lôsungsmôglichkeiten von (3) gemacht
wurden, mit Xo = 0, X1 == z und willkiirlichem ganzen t lôsen.
Wir nehmen dann stets 1 t 1 &#x3E; 3; und es ist X1 "* x.. So denken
wir uns bei reduzibelem f(x) die Lôsung von (20) immer vor-
genommen.

2) So verfahren wir insbesondere in dem zuletzt behandelten
Falle (E), in dem t = - 2 und f(x) reduzibel war. Die hierzu
gehôrige Formel (*** ) lehrt nâmlieh nur dann, daß mit In ] -7 00
auch 1 xn 1 -&#x3E; oo gilt, falls die Nullstellen von f(x) verschieden
sind; sind sie aber gleich, so ist nach (***) stets xr2 = X n+2’
also die Folge der 1 Xn periodisch.
Deswegen anderen wir im Falle (E) immer die Lôsung von

(20) in der unter Nr. 1 geschilderten Weise ab. Ebenso handeln
wir im Falle (D), t = 2, a1 = 0, obgleich hier bereits (**) die
Richtigkeit des zu beweisenden Satzes lehrt; wir nehmen also
auch hier eine andere Lôsung von (20) entsprechend der in Nr. 1
gemachten Vorschrift. -- Liegt aber der Fall (D), 1 = 2, mit
al -::/=- 0 vor, so liefert (*) unmittelbar: mit 1 n 2013&#x3E; ce gilt auch
1 x a : 00. 

Ist also (20) mit 1 t 1 = 2 gelôst, so ist entweder unsere Be-

hauptung schon richtig oder die Lösung laBt sich so ândern,
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daB 1 t 1 &#x3E;3 ist. Wir setzen daher für den eigentlichen Beweis
voraus:

3) Es sei (20) mit r t 1 &#x3E; 3 gelôst,. Dann hat das Polynom
?î 2 - ti + 1 zwei verschiedene reelle Nullstellen, zv, w’; die

Bezeichnung sei so gewählt, daB ]zv] 1  1, 1 w’ 1 &#x3E; 1 ist. Führt
man dann statt der Grë)f3en x. neue Größen Yn durch

ein, so besitzen diese Yn die homogene Rekursionsformel

Hieraus ergibt sich dann mittels der in der Differenzenrechnung
üblichen Methoden für y. der explizite Ausdruck:

Aus (33) folgt nun:

Die in den diesen beiden Limesgleichungen rechts stehenden
Brüche haben wegen der Irrationalitât von w’ nur dann den Wert

Null, wenn yo = y, = 0 ist. Ist also 1 Yo + 1 Yli &#x3E; o, so folgt
aus (34) und (35), daß mit 1 n 1 -&#x3E; oo auch 1 Yn 1 -&#x3E; oo und deshalb

ebenfalls 1 Xn 1 -&#x3E; oo gilt. In diesem Falle ist also der Satz erledigt;
wir müssen daher nur noch die Sachlage untersuchen, die bei
Jo = y1 = 0 vorliegt. Hier haben wir wegen (24b) für jedes

ganze n stets Yn = o. Also ist jedes Xn = t a12. Wegen x0 = x1t-2

muß auf Grund der Vorbemerkung 1 unseres Beweises f(x)
irreduzibel sein; denn bei reduzibelem f(x) sollte ja nach der
dort getroffenen Vereinbarung die Lôsung von (20) mit xi :A xo
vorgenommen sein. Aul3erdem ist al #- 0, da sonst wegeii x. _ t-2
die Beziehung x, = xi = ai = 0 bestände, die zum ausgeschlos-
senen Polynom x2 gehôrt. Führt man nun in (20) die Bedingung
X0 =X1 t a 1 2 ein, so liefert eine kurze Rechnung : a 1 2+ (t -2 )a2 = 0.
Das bedeutet: a1x0 + a2 = 0. Deswegen ist a, - r eine ganzeai

Zahl 0. Dann ist x. - r und ai = (t-2) r; weiter ergibt
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sich daraus: a2 air = - ( t - 2 ) r2 0. Demnach wird:
a2a2 ’ =- - t + 2 s eine ganze Zahl =1= 0. Schließlich erhaltena2

wir: a1 = rs; a2 = - r2s. Das irreduzibele Polynom ist daher

f(x) = x2 -;- rsx - r2s, wobei die ganzen Zahlen r und s von 0
verschieden sind. Die für dieses f(x) vorgenommene Lôsung von
(20) war: x, - xi = r; t = s + 2. Da wir 1 t 3 voraussetzten,
müssen wir annehmen, daß s &#x3E; 1 oder s  - 5 ist. - Indem
wir nun die beiden im Satz 2 angegebenen Polynome X2 X - 1
ausscheiden, schalten wir damit den Fall aus, in dem r2 = s = 1
ist. In den sonstigen Fâllen unseres Polynoms werden wir eine
Lôsung von (20) konstruieren, die alle Bedingungen erfüllt,
unter denen bereits der Satz als richtig nachgewiesen ist.
Hierzu bilden wir eine E-L,5sung von (20) und setzen zu diesem
Zweek xo = s = - sign (r). Dann wird f(xo) - f(e) = 1 + rs(e-r).
Dieser Ausdruck ist wegen der Irreduzibilität von f(x) sicher

=1= 0 und wegen der Wahl voii e auch :A 1; und weil r 2S - A 1 ist,
ist f(x0) - 1, wie man leicht zeigt. Somit ist jedenfalls
If(xo)1 &#x3E; 2. Indem wir jetzt, um die e-Lösung von (20) zu Ende
zu führen, noch x1 ef(e), also als Teiler von f(x0) und xo
wâhlen, ergibt f(x0) f(e) = xlx-, = x-lsf(e), daB 1t_1 = e ist.

Mit den angegebenen Werten für xo, xi, x-, erhalten wir schließlich
aus x1 = txo - x-i - al nach kurzer Rechnung: t = 2 + rs(2s-r).
Hier ist der zweite Summand rechts bei 1 r 2 selbst absolut
&#x3E; 8, also dann ] t [ &#x3E; 6. Ist aber 1 ri ] 1, dann folgt aus r2s # 1,
daI3 Isl &#x3E; 2 ist; dann ist der soeben betrachtete zweite Summand
auf der rechten Seite des Ausdrucks für t auch noch absolut
&#x3E; 6, also 1 t 1 &#x3E; 4. Bei unserer e-Lösung ist also stets 1 tf 1 &#x3E; 4

und xl x,. Wir befinden uns also in dem Fall, für den der Satz
bereits bewiesen war. Somit ist der Beweis von Satz 2 vollendet.

Für die beiden Ausnahmepolynome, bei denen r2s = 1, also
S = 1 und r = e ist, liegen die Verhâltnisse anders. Bildet man
nâmlieh für das Polynom f(x) = x2 + sx - 1 mit xo = e’ eine
Lôsung von (20), so wird f (xo) = f(s’) = S8’. Da man nun x1,
als Teiler von ee" zu wâhlen hat, ist zwangslaufig x, = e". Aus
(27) ergibt sieh X-l = ee’ e" und aus (25) erhalten wir t = ee’+
E’ e" + s"s. Sind hier alle 3 Vorzeichen einander gleich, so ist

t = 3 und x0 = x1 = t a12 === B und alle xn werden - e. Das ist
gerade der im Beweise von Satz 2 erbrterte Fall, in dem trotz
t = 3 die Grâl3en 1 xnl 1 nicht gegen oo strebten. Sind aber von

den 3 Vorzeichen nur zwei einander gleich, so wird t = - 1;



421

wir befinden uns jetzt im Fall (C) von Seite [11] 417, in dem immer
aen =::: Xn+3 war. Die s-Lôsung führt also bei diesen beiden Aus-
nahmepolynomen immer auf eine periodische Folge der xn. DaI3
man die zu diesen Polynomen gehôrige Gleichung (20) nur mit
t = 3 und t = - 1 lôsen kann, werden wir spâter zeigen
(Satz 5).
Aus Satz 2 folgt nun: wenn es für ein Polynom f(x), das von

X2 und x2 + Ex - 1 verschieden ist, keine Lôsung von (20)
gibt, für die mit 1 n 1 - oo auch 1 Xn 1 ---&#x3E; oo gilt, dann muB sich
(20) fur dieses Polynom nur mit t = 0 oder t = + 1 lôsen lassen.
Diese Polynome, bei denen (20) sich nur mit 1 t 1  1 lôsen läßt,
wollen wir bestimmen. Da sie irreduzibel sind, dürfen wir von

f(x) im folgenden voraussetzen, daB das Polynom keine ganze
Nullstelle hat und auch keins der Ausnahmepolynome des

Satzes 2 ist. StoBen wir bei unserer Untersuchung auf ein reduzi-
bles Polynom oder auf x2 + BX - 1 oder auf ein solches, bei,
dem (20) sich mit 1 t 1 2 lôsen läßt, dann kônnen wir das Po-
lynom als ungeeignet auBer Betracht lassen. Das Verfahren zur
Auffindung der Polynome, bei denen (20) sich nur mit Itl  1
lôsen lâlxit, beruht auf der Ausnutzung der 8-LÕsung. Indem wir
nâmlieh x. = 8 setzen und x1 als Teiler von f(xo ) wâhlen, ergibt
sich X-I aus (27) und t aus (25). Es wird t = B(XI +X-I +al).

Fall I : ] f(s ) ) = 1 f( -8) ] = 1. Entweder ist f(8) === - f( -8)
oder = f(- e). Das erste hieBe aber: a2 = - 1, also wegen

1 f(e) 1 = 1, daß zugleich 1 a, 1 =1 wäre; f(x) wäre also eins der
beiden irreduzibelen Ausnahmepolynome. Daher brauchen wir
nur f(e) = f ( -e ) zu verfolgen. Daraus ergibt sich, daB al == 0
ist; wegen f(e) = 1 +a2 = + 1 und a2"* 0 folgt weiter: 1 + a2 = 1 ,
also ist a2 = - 2. Wir stoBen so auf das neue Polynom f(X) = X2 - 2.
Für dieses ist f(e) =- - 1; daher bekommt x1 nur einen der Werte
+ 1, dazu ergibt sich stets t = 0. Wir befinden uns im Falle
(A) von Seite [11] 417 mit xn = Xn+4. Wir werden spater sehen,
daB sich in der Tat für dieses Polynom (20) nur mit t = 0 lôsen
lâBt (Satz 5). 

Fall II : Mindestens eine der Zahlen f(1), f(-1) ist absolut

&#x3E; 1; für ein passendes e ist also if(e)j &#x3E; 1. Mit noch unbestimm-

tem e’ setzen wir dann neben xo === 8 die Grôf3e x1 = 8’f(8); dann
ist Xl "* Xo und X-1 = 8’. In der oben angegebenen Weise folgt
für t der Ausdruck: t = 2ee" + 88’a2 + ai(s+s’ ). Nimmt man
nun zuerst e’ = - e, dann wird t = a. - 2. Bei a2 &#x3E; 1 und
bei a2  - 4 ist daher 1 t 1 &#x3E; 2. Dann ist also das Polynom keins
der gesuchten; es bleibt daher nur noeh a2 = - 1, - 2, - 3
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zu untersuchen. Dazu setzen wir jetzt E’ = e. Dann wird

t = 2 + a2 + 2eal. Demnach wird t + a2 = 2f(e). Wegen lf(e)j &#x3E; 2
ist also ) t + a21 1 &#x3E; 4 und 1 tl 1 &#x3E; 4 - 1 a21. Daher scheiden nun
noch die Fâlle a2 === - 1, - 2 aus, und es bleibt nur a2 = - 3

übrig. Für diesen Fall ist t - 3 ] &#x3E; 4; da wir nur y’Verte t brau-
chen kônnen, die abolut kleiner als 2 sind, ist t = - 1 der einzige
Wert, der unsere Ungleichheit erfüllt. Wegen a2 = - 3 und
t = - 1 liefert die Geichung für t schlieBlich noch a, = 0; wir
erhalten dadurch das Polynom f(x) = X2 - 3. Rechnet man für
dieses alle aus xo = e folgenden Lôsungsansàtze durch, so hat
man wegen f(x0) - - 2 nur die Wahl xi = e’ oder x, = 2e’.
In diesen beiden Fâllen erhâlt man t = - ee’ und t = ce’. Also
ist entweder der Fall (B) von Seite [11] 417 mit t = 1 und x,,=x,,,,
gegeben oder mit t === - l und xll - Xn+3 der Fall (C) von Seite
[11] 417. Auch für dieses Polynom werden wir später im Satz 5
zeigen, da13 die zu ihm gehôrende Gleichung (20) nur mit t = + 1
lôsbar ist. Unter Vorwegnahme eines ’l’eiles der Aussagen von
Satz 5 haben wir also folgenden

SATZ 3: FÜT jedes normierte Polynom f(X) = X2 + alx + a2
existiert eine Lösung von (20), bei der zugleich mit ln 1 --&#x3E; oo auch
x,, -&#x3E; 00 gilt. Ausgenommen sin,d nur die 5 Polyn01ne X2;

Hieraus ergibt sich nun ein groBer Teil des folgenden Satzes.
SATZ 4: Abgesehen von den beideii Polynomen x2 ± ae - 1

besitzt jedes Polynom f(x) = X2 + a1x + a2 1tnendlich viele Wtp. 
Beweis: I) Das Polynonl f(x) = X2 besitzt auf3er den 4 M"ti).

[±I; =L1] sicher noch unendlich viele andere Wtp.; demi mit
irgend welchen r verschiedenen Primzahlen pl, P2’ ..., Pr und

den positiven ganzen Exponenten cn, dn, (n = 1, 2, ..., r) bilde
man

und unterwerfe die Expomenten nur der Bedingung

dann ist sicher a2 durch b und b2 durch a teilbar. Also sind alle

diese Paare [a; b] wirklich Wtp. des Polynoms x2.
II ) Es sei nun f(x) keines der 5 Ausnahmepolynome des Satzes

3; dann gibt es nach diesem Satze eine solche Lôsung von (20),
daß für sie mit 1 n 1 -&#x3E; oo auch 1 xn 1 -&#x3E; oo gilt. Für genügend
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große ln ist also Xn *- 0; und außerdem enthält die zweiseitige
Folge der xn unendlich viele verschiedene Elemente. Wegen (29)
ist f(xn) == Xn-IXn+l und ebenso f(xn+l) - XnXn+2; also ist für

genügend grol3e Inl [ immer [x,,; x,, , 1 ] ein Wtp. unseres Polynoms.
Es besitzt also wirklich unendlich viele Wtp. Ist keines der Xn
gleich Null, so stellt die zweiseitige Folge der Xn eine Kette des
Polynoms dar; verschwinden aber einige xn, so braucht man in
der zweiseitigen Folge der xn nur eine Aufeinanderfolge von
endlich vielen Elementen zu streichen; der übrig bleibende Teil
der zweiseitigen Folge stellt dann 2 Halbketten des Polynoms dar.

III) Die 4 Polynome x2 -I- ae - 1; x2 - 2; x2 - 3 erfordern
besondere Betrachtungen; die Sâtzen 5 und 6 sind ihnen gewidmet.
Dazu brauchen wir folgenden

Hilfssatz: Ist [a; b] ein Wtp. erster Art von f(x) undf(a)=bc::j=O,
so ist [c; a] ein Wtp. i,on f(x). Ist ferner t to die aus (3) zu-
x = a, y = b erntittelte ganze Zahl, so ist b to a - c - a1 und
in der Bezeichnung von (20) gilt neben F(a, b; to) 0 auch
F(c, a; to) = 0. Ist dabei a, = 0 oder a2 == =Í= 1, .so ist [c; a] ein
Wtp. erster Art.

Beweis : Es ist bc = a2 (a) und b2f(c)=(bc)2 + a1b(bc) + a2b2;
also ist b2 f(c) = a2 2 + a1ba2 + a2b2 - a2f(b) == 0 (a). Wegen
(a, b ) = 1 ist somit a ein Teiler von f(c) und daher [c; a ] cin Wtp.
von f(x). Weiter folgt aus F (a, b; to ) = f(a) + f(b) - toab - a2 = 01
dals bc -f-- b2 + alb - toab - 0 ist. Die Auflôsung nach b liefert:
b == toa - c - a,. Mit diesem Ausdruck für b erhalten wir:

f(a)== bc === c(toa-c-al) == toac-f(c)+a2, d.h. F(c, a; t,)=O. - Bei
a1 = 0 folgt aus b = t,a - c, daß [c; a] ein Wtp. erster Art ist; und-
bei a2 = + 1 ist das klar, da ja dann f(x) nur Wtp. erster Art hat.
Damit ist der Hilfssatz bewiesen. 

In den folgenden Sàtzen koolbinieren wir diesen Hilfssatz mit
folgender SchluBweise.

Ist in einem Wtp. erster Art [a; b ] etwa la 1  1 b 1, so kann

hierin wegen (a, b) - 1 das Gleichheitszeichen nur gelten, wenn
es sich um eines der 4 triirialen Paare [ +i ; %i ] handelt. Sobald
also 1 al&#x3E; 1 ist, gilt sicher 1  1 a 1  1 b 1. Wenn es ein dieser
Bedingung genügendes Wtp. erster Art gibt, denken wir uns
ein solches herausgesucht, in dem [ a[ minimal ist. Wir wollen,

ein solches ein Minimalpaar nennen. Definiert man dann für

dieses nach unserem Hilfssatz die Größe c und ergibt sich dann,
daß (c, a) = 1 und 1  1 eu [  1 al ist, dann hat man einen Wider-
spruch, da ja [a; b] nun kein Minimalpaar wäre. Also kann es
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daher kein Wtp. erster Art mit der Bedingung 1  lai  )b)
geben. Es mu6 also lai = 1 für jedes Wtp. erster Art sein; und
da b ein Teiler von f(a) ist, besitzt das Polynom nur endlich
viele Wtp. erster Art, nâmlich nur solche, bei denen 1 al = 1 ist.

Mit diesen Schlüssen beweisen wir jetzt
SATZ 5: 1"on den 4 Polynomen X2 l x - 1 ; X2 - 2; x2 - 3

besitzen die 3 ersten nur je 4 Wtp. erster Art, nâmlich die stets

vorhandenen Paare [+i, +i]. Das letzte .Polynom X2 - 3 hat

aufler diesen 4 Paaren nur noch die 4 weiteren Wtp. erster Art

=1; :1::2]. - Für die beiden ersten Polynome lâflt sieh (20) nur
mit t = - 1 und t = 3 ganzzahlig lôsen; für x2 - 2 ist dies aber
nur rnit t - 0 und für x2 - 3 nur mit t = + 1 möglich. - Die
beiden ersten Polynome besitzen demnach überhaupt nur die 4 Wtp.
[ + 1; +i], da sie keine Wtp. zweiter Art haben kônnen.

Beweis : Für unsere 4 Polynome ist a2  0 und al ist = 0

oder === ::f: 1. Gâbe es für eines von ihnen ein Minimalpaar [a; b],
worin also (a, b) == 1 und 1  lai  Ibl [ bei minimalem la 
wäre, so sei c die GrôBe des Hilfssatzes. Aus ihm folgt für unser
4 Polynome, daß [c; a] ein Wtp. erster Art sein müßte. Nun ist
a2 + a1a + a2 = bc wegen 1 al &#x3E; 2 sicher positiv. Also ist

1 ac 1  1 bc 1 = bc = a2 + ala + a2 C a2 + aia = la2 + ala 1 
lal2 + lalal. Daraus folgt ici [  lai ] + a1 . Für die beiden
letzten Polynome ist daher 1 e [  1 a 1. Und für die beiden ersten
gilt zunächst 1 eu  1 al. Nun mül3te bei 1 ci === J al doch a in a2 = -1 p

aufgehen, was wegen 1 al &#x3E; 2 nicht der Fall ist; also ist auch für
die beiden ersten Polynome 1 e [  1 al; das gilt demnach für alle
4 Polynome. Wegen f(c) = 0 (a) und 1 al [ &#x3E; 2 ist für die 3 ersten

Polynome 1 eu &#x3E; 1; das gilt auch für das Polynom f(x) = x2 - 3.
Denn bei c === l 1 wäre f( c) = - 2, also mü13te la ] = 2 und
f(a) = 1 sein; dann ginge aber b nicht in .fla) auf. Es ist also
für alle 4 Polynome: (c, a) = 1 und 1  Ici 1  1 a 1. Damit ist

der vorher geschilderte Widerspruch vorhanden. Die 4 Polynome
besitzen also nur solche Wtp. erster Art, bei denen 1 = 1 a  1 b 1
ist. Dann wird für die 3 ersten Polynome If(a)1 = 1. Also ist

für sie b = + 1. Für das Polynom f(x) - x2 - 3 aber ist dann
f(a) = - 2, und deshalb ist b = -4- 1 oder + 2. Damit ist
im wesentlichen alles bewiesen; denn die Behauptungen über die
Lôsung von (20) folgen aus früheren Darlegungen, insbesondere
aus dem Beweise von Satz 3, der jetzt erst vôllig erledigt ist;
der noch ausstehende Teil des Beweises von Satz 4 erledigt sich
durch:
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Satz 6 : Für jede positive Primzahl p besitzt das Polynom x2 + ep
unendlich viel Wtp. zweiter Art.

Bemerkung: bei p = 2 und p - 3 handelt es sieh mit e = - 1
gerade um die beiden letzten Ausnahmepolynome des Satzes 3.

Beweis: Besitzt x2 + ep ein Wtp. [a; b] zweiter Art, so ist

(a, b) = p und p geht in a und b nur in der ersten Potenz auf.
Mit a = pa’; b = pb’ ist (a’, b’ ) = (p, a’ ) = (p, b’ ) =1 und [’; b’]
ist ein Wtp. erster Art für das Polynom px2 + c, das nur Wtp.
erster Art besitzt. Aus jedem solchen erhâlt man umgekehrt
durch Multiplikation seiner beiden Elemente mit p ein Wtp.
zweiter Art für X2 + gp. Man hat also nur die Wtp. von pX2 + e
zu bestimmen und findet sie aus den Lôsungen der zugehôrigen
Gleichung (3): pX2 - txy + py2 = - ë. Jede Darstellung der

Zahl 1 durch die quadratische Form 

liefert durch [px; py] ein Wtp. zweiter Art für das Polynom
x2 + ep. Hat die Form dabei eine negative Diskriminante, so

erhalten wir nur endlich viele Darstellungen von 1, also auch

nur endlich viele Wtp. Bei positiver Diskriminante erhalten wir
unendlich viele Wtp. Die quadratische Form hat eine positive
oder negative Diskriminante, je nachdem 1 &#x3E; 2p oder  2p
ist; sie stellt die Zahl 1 dann und nur dann dar, wenn sie zur

Hauptklasse gehôrt. Gehôrt sie bei e = 1 zur Hauptklasse, so
hat sie von selbst eine positive Diskriminante, wie sich leicht
ergibt. Nun gehôrt die Form für t = 2p + e und für t = p2+ep+1
sicher zur Hauptklasse. Denn für den ersten Wert t = 2p + s
stellt die Form den Wert 1 durch x = y = 1 dar. Dieser Wert
von t ist übrigens im Falle e = - 1 das einzige positive t, bei
dem mit negativer Diskriminante die quadratische Form zur
Hauptklasse gehôrt. Für den zweiten Wert t = p2 + ep + 1
stellt die Form durch x = 1 und y = p + e den Wert 1 dar.
Dieser Wert t liefert bei e = 1 immer eine positive Diskriminante;
dagegen bei e - - 1 nur für p &#x3E; 3; für p = 2 und e = - 1
ist dieses t = 3  2p = 4, und die Form hat dann auch noch eine

negative Diskriminante. Also ist für x2 - 2 die Existenz von

unendlich vielen Wtp. noch nicht gesichert. Bevor wir diese

Lücke ausfüllen, bemerken wir nur, daß die beiden angegebenen
Werte von t zu den positiven Wtp. zweiter Art [p; p] und
[p; p2+ep] des Polynoms x2 + Ep gehôren. Aus ihnen entspringen
also mittels der Theorie der quadratischen Formen im Falle
e = 1 unendlich viele Wtp. zweiter Art; dagegen liefert bei
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s _ - 1 das zweite Wtp. [p; p2-p ] bei p a 3 auf déni gleichen
Wege unendlich viele Wtp. zweiter Art. - Wenn man nun für
p == 2 und e = - 1 die Frage stellt "für welches t hat die Form
(2, -t, 2) die Eigenschaft, zur Hauptklasse zu geh,5ren", so

ergibt sich als notwendige Bedingung leicht: es muß t =- 24n !- 3
sein, und gleichzeitig muf3 jede der beiden Zahlen t’± 4 nur
durch Primteiler der C estait 8111 1 teilbar sein. Im ersten

Hundert gibt es nur 5 solche t : 3; 27; 45; 75; 93. Im zweiten

Hundert: 123; 195. Im dritten Hundert: 237; 267; 285. Die erste
Zahl t &#x3E; 3 von den angegebenen ist t = 27; für sie ist die qua-
dratische Form 2X2 - 271ty + 2y2 von positiver Diskriminante
und erweist sich als brauchbar, da sie für x = 47; y = 631 die
Zahl 1 darstellt. Aus dem zugehôrigen Wtp. zweiter Art [9 1; 1262]
von ae2 - 2 flie13en also unendlich viele andere Wtp. zweiter Art.

Für e = - 1 und p = 3, also für das Polvnom x2 - 3 ist der
oben angegebene zweite Wert von t gleich 7; in diesem Falle
stellt z.B. aul3er dem mitgeteilten Paare x = 1, Y = 2 noch
x = 13, y = 23 oder x = 3553922, y = 2010601 den Wert 1 dar.
Aul3erdem ist noch t = 17 mit x = 2, y = 11 brauchbar. 2013

Damit ist Satz 6 bewiesen. 

Schliel3lich wenden wir uns nun noch dem in der Einleitung
genannten Polynom .z2 + 1 zu und beweisen:

SATZ 7 : Stellt 1nan für X2 + 1 aus (20) die Lösung ntit xo = x1 =1
und t = 3 und aus (24) die Rekursion XU+l = 3xn - xn-1 her, so
liefern die so definierten Zahlen xn (n&#x3E;O) die Halbkette 1; 1;
2; 5; 13; 34; 89; .... Diese lIalbkette liefert alle positiven lJTtp.
unseres Polynorns, d.h. jedes positive Wtp. von x2 + 1 besteht

aus zwei Nachbarglieden unserer Halbkette. Diese entsteht aus der
Fibonaccischen Zahlfolge durch Streichung von 3; 8; 21; 55; ....
Die Gleichung (20) läßt sieh fiir X2 + 1 nur mit t = 3 losen.

Beweis : Für x2 + 1 gibt es überhaupt nur Wtp. erster Art.

Gesetzt es gäbe aul3er den durch die Halbkette gelieferten Wtp.
noch ein positives Wtp. [a; b] mit a  b, das nicht aus zwei
Nachbargliedern der Halbkette bestànde, dann ist von selbst
1 C a  b. Denn bei a = 1 wäre b = 1 oder = 2, und das Paar
wäre dann das erste oder zweite der Halbkette entstammende

Wtp. Somit ist a &#x3E; 1 und wegen (a, b ) - 1 ’ ist nun auch a  b.

Wir suchen nun ein der Bedingung 1 C a : b genügendes und
nicht der Halbkette entstammendes Wtp. mit kleinstem a heratis
und verwenden die im Satz 5 benutzte Sehlul3weise. Nach dem

dort gebrauchten Hilfssatz ist mit a2 + 1 - bc auch [a; c] ein
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Wtp. und wegen bc &#x3E; ac folgt. daß c  a + (; also c :5: ci ist.

Wegen a &#x3E; 1 ist c = a ausgeschlossen und daher c  a. Wäre

c = 1, so lieferte c2 + 1 = 2 -- 0 (a), daf3 a = 2 wâre. Dann

folgte aus a2 + 1 = 5 = 0 (b), daf3 b = 5 sein müf3te. Also

würde [a; b] doch der Halbkette entstammen. Somit ist 1  c  a.

Würde das Paar [c; a] nicht der Halbkette entstanimeii, so hatten
wir einen Widerspruch zur Definition von [a; b]. Also mul3

[c; a] ein Paar benachbarter Zahlen der Folge der x III sein. Es

sei etwa c = xn; a = xn+1. Nun ergibt die Gleichung (3) mit
x = a, y = b ein ganzes t = to und nach déni Hilfssatz folgt
daraus b == to a - c und a2 - toac + c2 + 1 = 0. Es ist aber

für jeden Index rn &#x3E; 0, also auch für m = n, immer

X2 - m 3XmXIll+l + x;n+l + 1 - 0. Wegen c = xn, a = xn+1 folgt
daher aus den beiden letzten Gleichungen, daß to = 3, also

b = toa - c = 3xn+1 - x,, - Xn +2 ist. Daher geh5rte das Paar
[a; b] doch zur Halbkette gegen unsere Annahme. Dieser Wider-
spruch zeigt, daù es aul3erhalb der Halbkette keine positif-en
Wtp. von X2 + 1 gibt. Der Zusammenhang der x,, mit der Fibonac-
cischen Folge, die mit yo = yl = 1 mittels YII ,1 = Yn + YIl-l 1
entsteht, ist leicht einzusehen; «Tir halten uns damit nicht auf. -
Da jede Lôsung von (3) oder (20) ein Wtp. von X2 + 1 liefert,
so hat die Gleiehung X2 - txy + y2 + 1 = 0 mit der Neben-
bedingung 1 ae 1 :S 1 yi keine andern Lösungen als solche, bei

denen 1 xl==- XII; y f = Xn+l ist. Dann ergbit sich aber nach der
vorher durchgeführten Schlußweise, daf3 )t) 1 = 3 ist; also läßt

sich (20) nur mit t = --T-- 3 lôsen.

Bemerkung: Es folgt hieraus, daf3 für D = t2 - 4 &#x3E; 5 die

Gleichung - 4 = U2 - DV2 nie eine ganzzahlige Lôsung u, v
besitzt.

Die beim Beweise von Satz 5 und 7 verwendeten Schiusse lassen

sich auch bei manchen anderen Polynomen verwenden. So ergibt
sich z.B. für X2 + 2, das ja nach Satz 6 unendlich viele Wtp.
zweier Art besitzt, folgende Aussage über die Wtp. erster Art:
Die c-Lôsung der zugehôrigen Gleichung (20) a; -t,.l’O0153l + xi = - 2,
die in x. = xi 1; t = 4 besteht, liefert 111it der Rekursions-

formel (24) x,,,, = 4xn - Xn-1 die Halbkette 1; 1; 3; 11; 41 ; ....
Au13er den hierdurch erzeugte positiven WTtp. erster Art gibt es
für x2 + 2 keine anderen; die der zweiten Art bestimmen sich
aus Satz 6.

(Eingegangen den 24. September 1938.)


