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Über meromorphe Funktionen von zwei
komplexen Veränderlichen

von

Stefan Bergmann

§ 1. Einleitung.

In der Theorie der meromorphen F. v. 2 k. V. (Funktionen
von zwei komplexen Verânderlichen) liegt es nahe, zwei Fragen
zu untersuchen:

1. die Beziehungen, die zwischen den Wachstumsverhält-
nissen einer meromorphen F. v. 2 k. V. f einerseits und den
Eigenschaften des Durchschnittes der Flache f = a mit vor-

gegebenen Mannigfaltigkeiten andererseits, bestehen,
2. die Beziehungen zwischen den Wachstumsverhàltnissen

von f in verschiedenen Mannigfaltigkeiten.
Zu den einfachsten Aufgaben des unter 1 angegebenen Problem-

kreises gelangen wir, wenn wir denjenigen Fall betrachten, in

dem die erwâhnten Mannigfaltigkeiten analytische Flächen sind,
z.B. Fhächen z2 = const, .2 = const usw. In diesen Fâllen handelt

Z2

es sich eigentlich um Untersuchungen von meromorphen Funk-
tionen einer komplexen Verânderlichen, die von einem Parameter
abhângen.

Will man analoge Fragen im Falle von nichtanalytischen
Fh,chen betrachten, so wird man zwar zu einer sehr wichtigen
Aufgabe der Theorie geführt 1), doch sind mir keine Methoden
zur Untersuchung dieser Probleme bekannt.
Demgegenüber stellt sich heraus, daB im Falle von dreidimen-

sionalen nichtanalytischen Mannigfaltigkeiten spezieller Art die
Theorie der ausgezeichneten Randflâchen gewisse Sâtzen auf-

zustellen erlaubt, die zu dem unter 1 angegebenen Problemkreis
gehôren.

1) Es sei besonders der Fall erwähnt, wo die angegebene Mannigfaltigkeit
die reelle Ebene darstellt.
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Den Ausgangspunkt dieser Untersuchungen bilden die folgenden
Betrachtungen :
Wie in einigen in den letzten Jahren 2) erschienenen Arbeiten

gezeigt wurde, lassen sich die Sâtzen aus dem Ideenkreis des
Schwarzschen Lemmas auf den Fall F. 2. k. V. dann verall-

gemeinern, wenn man gewisse spezielle Bereiche betrachtet,
nanllich Bereiche mit einer ausgezeichneten Randf lâche. Diese
(zweidimensionale) Flache, die auf dem (dreidzmensionalen ) Rande
des Bereiches liegt, spielt in funktionentheoretischer Hinsicht

eine analoge Rolle wie die Randkurve im Falle 1 k. V. Betrachtet
man insbesondere an Stelle der biharmonischen Funktionen (d.h.
der Real- und Imaginärteile der F. v. 2 k. V.) eine geeignet
gebildete erweiterte Funktionenklasse, so hat das verallgemeinerte
Dirichletsche Problem stets eine Lôsung: es existiert namlieh

zu jeder auf der ausgezeichneten Randf lâche gegebenen stetigen
Funktion eine im Bereiche regulâren Funktion der erweiterten
Klasse, die auf der ausgezeichneten Randflâchen die vorgegebenen
Randwerte annimmt. Man kann ferner eine der Jensen-Nevan-

linnaschen analoge Formel aufstellen und ausgehend hiervon

Sâtzen über die Werteverteilung der meromorphe F. v. 2 k. V.

erhalten, die zu dem unter 1 angegebenen Problemkreis gehôren.
Es gestalten sich dabei die Verhâltnisse in zweierlei Hinsicht

anders als im Falle der F. 1 k. V.
00

I. Während die Gesamtheit cJ c1(r) der Randkurven c1(r)
r=0

der Kreise 1 z 1  r die volle Ebene überdeckt, ist die Vereini-

gungsmenge einer einparametrigen Schar von ausgezeichneten

2) Vgl. dazu "Zwei Sâtze aus dem Ideenkreis des Schwarzschen Lemmas über
die Funktionen von zwei komplexen Veranderlichen [Math. Ann. 102 (1934),
324-348] und "Zur Theorie der meromorphen Funktionen von zwei komplexen
Veränderlichen" [Compositio math. 3 (1936), 1362013173 und Recueil Mathématique
2 (44) (1937), 599-616].

Ein Versehen aus der letzten Arbeit môge hier berichtigt werden: Auf Seite
k(e)

140, Zeile 15 von unten, muß unter 2(r; 9-1(z, é)) uicht L. log 1 a,,(Q) 1 sondern
k(e) 
log 1 as((}) 1- L ô.(e) log r(s)(e) verstanden werden. Dabei bedeutet r 8 (g ) die-
sel r (8) (e)  r

jenigen Werte von r, wo die Anzahl der Nullstellen v (r, g-1(Z, p)) von g(z, e) = 0
einen Sprung erleidet, ô,(,o) die GrôBe dieses Sprunges mit dem entsprechenden
Vorzeichen. Dementsprechend muB auf S. 163 in Z. 22 und Z. 23, auf S. 164 in
Z. 24 und auf S. 602 in Z. 14 von oben und in Z. 2 von unten mehrfach Z,, log 1 ak(Z2)1 
durch[L,.loglak(zz)l- L Ô.(92) log r(,) (P2)] ersetzt werden.

r(s) (tp2)  ,
Die übrigen Betrachtungen werden dadurch nicht beeinfluBt.



307

Randflâchen eine dreidimensionale Mannigfaltigkeit (im folgenden
mit #3 bezeichnet). Dementsprechend stellt es sich heraus, daB
wâhrend man im Falle 1 k. V. das Waehstum der Funktion in

der gesamten Ebene betrachten mu13 (die Ordnung Â des Wachs-

tums einer meromorphen F. 1 k. V. wird durch lim log T(r)
log r

definiert), m an im Falle der F. v. 2 k. V. nnr die JVachstums-
verhf.iltnisse von f auf #3 zu betrachten braucht.

II. f(z) nimmt einen konstanten Wert (etwa a) im Kreise
1 z 1 r in einer diskreten Punktmenge xtâ an, die aus n[r, ( f - a) -1 ]
Punkten {z(V) (a)}, v = 1, 2, ..., n[r, (f - a )-1] besteht, und es liegt
nahe, der Punktmenge nà die Summen

zuzuordnen. Die Sâtze aus dem Ideenkreis des Schwarzschen

Lemma liefern gewisse Aussagen über die Zusammenhang
zwischen dem Wachstum der Funktion f und dem Verhalten
der angegebenen Größe.
Im Falle der F. v. 2 k. V. nimmt f(Z1, Z2) einen konstanten

Wert auf einer zweidimensionalen Fläche W’ an; der Schnitt

von W" und #3 ist im allgemeinen eine eindimensionale Menge
f,l = E [Zl = Z1(Y)l Z2 = Z2( 1jJ) J, s und es liegt nahe [nachdem
auf f§ ein Umlaufssinn definiert ist], dem Teil f:l von t’, für

dessen zi-Koordinaten ) 1 Zl (1jJ) 1  T gilt, die GrôBen 3)

zuzuordnen und den Zusammenhang zwischen dem Wachstum
dieser GrÕBen (als Funktionen von r betrachtet) und dem
Wachstum der Funktion f andererseits zu untersuchen.

In einem speziellen Falle, nàmlich wenn #3 eine Vereinigungs-
menge der ausgezeichneten Randflâchen von Bizylindern ist,
erlaubt die Anwendung der geschilderten Methode die erwähnten
Beziehungen aufzustellen.

In der vorliegenden Arbeit wenden wir sie in einem allgemeineren
Falle an. Wir nehmen an, daß #3 eine Vereinigungsmenge der
ausgezeichneten Randflâchen von Bereichen viel allgemeineren
Charakters ist. Es zeigt sich, daß auch in diesem Falle zwischen

3) Diese GrôBen werden im weiteren in einer prâzisen Art definiert. (Siehe § 9.)
y hângt nur von der Hyperf lâche j3 ab. Über fl müssen dabei gewisse Voraus-
setzungen gemacht werden (vgl. § 4).



308

dem (geeignet definiertem) Wachstum einer Funktion auf #3 einer-
seits und einer Art von Integralen der unter (1.1) angegebenen
Gestalt Beziehungen bestehen.
Im Zusammenhang mit diesen Untersuchungen steht natürlich

die unter 2 aufgeworfene Frage - die Zusammenhänge zwischen
dem Wachstum einer F. v. k. V. auf verschiedenen Hyperfh,chen.
Aus diesem Problemkreis wurde bis jetzt - wiederum ausgehend
von der Betrachtung der Gebiete mit ausgezeichneter Randfh,che
- die folgende Frage untersucht.

00

Man betrachtet die Vereinigungsmenge iT@() wo Q)2(T) eine

Flâche des Bereiches IDl(r) mit ausgezeichneter Randfh,che

g2(r) bedeutet; mit Hilfe der verallgemeinerten Jensenschen
Formel kann man dann aus den Wachstumsverhältnissen auf

c5’ g2(r) auf die Wachstumsverhaltnisse auf c5’ Q)2(r) schliel3en.
r=r° r=r°

Dabei kann man zeigen, dal3 den Flâchen Q)2(r) einige (für
diese Problemstellung) charakteristische Größen 4) zugeordnet
werden kônnen, so daB man im Falle von ganzen Funktionen
obere Schranken für das Wachstum der Funktion f erhâlt, welche

00

nur von dem Wachstum der Funktion auf c5’ 2(r) und den er-
r=r°

wàhnten für Q)2(r) charakteristischen GrôBen abhängt.5)
Was die in der vorliegenden Arbeit benutzten Bezeichnungen

anbetrifft, so werden wir mit gotischen Buchstaben die Mannig-
faltigkeiten bezeichnen, dabei gibt für 0  k  4 der obere Index
k die Dimension der betreffenden Mannigfaltigkeit an. Der Rand
der Mannigfaltigkeit wird im allgemeinen durch die gleichen
Buchstaben bezeichnet, so z.B. ist m3 der Rand von 9K usw.
Es sei bemerkt, daB die Aussage "eine Funktion f sei in einem
Bereiche £n", n  4, "regulâr" stets so zu verstehen ist, dal3
ein 2n im Innern enthaltender vierdimensionaler Bereich existiert,
in dem f regulär ist.

4) Vgl. dazu auBer der ersten die in der FuBnote 2) zitierte Arbeit (Zusatz,
S. 347), "Über eine Abschâtzung von meromorphen F. v. 2 k. V." [Travaux de
l’Institut mathématique de Tbilissi 1 (1937), 187-204], insbesondere S. 202,
und P. LELONG, "Limitation d’une fonction analytique de deux variables com-

plexes" [Bulletin de sciences mathématiques 73 (1938), 199-204], wo die in
den oben zitierten Arbeiten eingeführten "charakterischen GrôJllen" für einen

bestimmten Fall berechnet wurden.

5 ) Bezüglich des Problems 2 wollen wir uns mit diesem Hinweis in der vor-
liegenden Arbeit begnügen.
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Die Zeichen c5B + (Vereinigungsmenge), - (Durchschnitt ),
X (topologisches Produkt von Bereichen), - (Differenzmenge)
sollen in üblicher Weise angewendet werden. 6) So soll die Ver-
einigungsmenge einer Schar von einem Parameter a abhängigen
Mengen OEn(a)@ wenn « eine Menge ffim durchlâuft, durch cf OEn(ot)

ex C 91.
bezeichnet werden. Mit E [...] bezeichnen wir die Mengen von
Punkten, deren Koordinaten den in der Klammer angegebenen
Gleichungen oder Ungleichungen genügen.

Ich môchte noch die Gelegenheit benutzen, Herrn N. Aronszajn
für mannigfache Ratschläge meinen besten Dank auszusprechen.

§ 2. Der Bereich rot und seine Eigenschaften.

Sei Z2 = h (z1, t, t ), h(0, t, i) = t, Zk = Xk + iyk, eine für 1 zll  p( 1 t 1)
analytische und eindeutige Funktion der Verânderlichen Zl, t, 1.
Dabei ist p (0) eine für eO  e  oo positive Funktion, welche
genügend rasch mit e ins Unendliche wächst, so dal3 für jedes t

Fig. 1. 1) Der Bereich 9K

h(z1, t, i) regulâr ist in einem Bereich der z1-Ebene, der so groB
sei, wie es dies unsere weiteren Betrachtungen verlangen.
Für jedes feste z1 = Z(0) und jedes s môge die Menge

6) Wegen der Regeln beim Operieren mit diesen Symbolen vgl. z.B. Hausdorff,
Mengenlehre, 2. Aufl. [1928], § 1.

7 ) Veranschaulichung der hier angegebenen vierdimensionalen Gebiete ge-
schieht in der Weise, daB man die Koordinate Im (Z2) als Zeit interpretiert. Die
einzelnen Figuren sind Schnitte der betrachteten Gebiete mit dem Raum Im (Z2)=
const. (Im = Imaginärteil). Vgl. dazu ,,Über die Veranschaulichung der Kreis-
kôrper und Bereiche mit ausgezeichneter Randflâche" [Jber. deutsch. Math. Ver.
42 (1933), 238-252]. Aus Versehen wurden in den Zeichnungen an Stelle von
gedruckten gotischen Buchstaben, die im Text auftreten, geschriebene gotische
Buchstaben benutzt. Es wurde ferner in den Abb. 1 und 2 t2 anstatt t geschrieben.

f,
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einen einfachzusamnenhängenden Bereich der Ebene z, = z(O)
bilden, der von der differenzierbaren (geschlossenen) doppelt-
punktlosen Kurve

berandet ist. Sei

wo

bedeutet. Den Rand E[Z2 = h(reiqJ, t, 1), 0  fJJ  2nJ von Sî(t)
werden wir mit 1)(t) bezeichnen.

Die Berandung von ID1 besteht aus zwei analytischen Hyper-
flaehen

Der Schnitt

bildet die ausgezeichnete Randfliiche von rot. Wir werden nâmlich

zeigen:
1. jede in 9K a. F. g(Zl’ z,) v. 2 k. V. nimmt ihr Maximum

bezüglich 9K auf g2 an,
2. für eine in geeigneter Weise erweiterte Klasse von Funk-

tionen (welche die in M biharmonischen Funktionen als eine
Unterklasse enthâlt) existiert eine der Poissonschen analoge
Integraldarstellung, wobei die Intégration längs b’2 erstreckt ist.
BEWEIS von 1. Ist g(Z,, Z2) in M reguh,r, so muß 1 g sein Maxi-

mum am Rande annehmen, also entweder in einer "Lamelle"
Ô( (t°&#x3E; ) , ] t°&#x3E; 1 === s, oder in einer Lamelle §JJg (ziO)), 1 ziG) ] = r.
Im ersten Falle ist in §jfl(t°) ), g(z Z2) :--: g[zi, h(z t(O) Î(O»] -
g* (zl), 1 z, ç r, eine analytische Funktion von Z1 und mut.3
deshalb des Maximum bezüglich î(t(O») in einem Punkte der
Randkurve iî(t(O» C lS-2 annehmen.
Im zweiten Falle ist ,(z(O), z2) in ;(ziO)) eine analytische

Funktion von Z2, und 1 g(z01, Z2) ] muB sein Maximum bezüglich
;(ziO)) in einem Punkte von i(ziO)) C tr2 annehmen.

Die Konstruktion der Funktionen der erweiterten Klasse und
die Aufstellung der in 2 angekündigten Integraldarstellung wird
im § 6 erfolgen.
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§ 3. Die Hyperfläche S3.

Im Weiteren werden wir eine Schar von Bereichen 9R betrach-

ten, indem wir annehmen, daB r von r° bis co variiert und

s S (r) oS (zl, Zl)J, S( o) = 0, ist. S (r ) ist eine für alle r positive
wachsende, für 0  r  r(O) stetig differenzierbare, für 1"(0)  r  oo

analytische Funktion der reellen Veränderlichen r 8).
Wir werden im folgenden anstatt 9R, %2, ... unter Umständen

M(r, s), iS’2(r, s), ... schreiben.
Die Vereinigungsmenge

bildet eine dreidimensionale Mannigfaltigkeit, deren Gleichung
in dem z1t-Raume die Gestalt 1

hat.

Fig, za. Der Schnitt von À3

mit dem Raum CP2 = 0.
Fig. 2b. Der Schnitt von S3

init deiu Raum ’lP2 = ().

Es liegt nahe, die Gleichung von â3 auch in den Verânderlichen
zi, z, aufzustellen, was darauf hinauskommt, aus den Gleichungen
(3.2) und z. = h(z1, t, t ) die Verànderlichen t, f zu eliminieren.
Nach dem Satz über die inlpliziten Funktionen ist dies in der

Umgebung jedes Punktes Qv C #3 môglich, wo die Funktional-
determinante des Systems nicht verschwindet. Man erhâlt dann
einen Ausdruck, der in genügend kleiner Umgebung des Punktes
Qv gilt.

8) Für r(o)  1 z,  oc ist somit cr(Zl’ zl ) eine analytische Funktion von zwei
komplexen Veränderlichen zl, Si.
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Um eine Gleichung H,(zl, Z2, ii, Z2) = o von 3 in der Umgebung
eines Punktes Q, zu erhalten, kann man auf verschiedene Weise
aus (3.2) und z, = h(z1, t, l) die Veràriderlichen t, 1 eliminieren.
In jedem Falle erhalten wir eine Ungleichung, deren Bestehen
in einem Punkte Q, eine hinreichende Bedingung darstellt für
die Existenz der Darstellung HV(Zl’ Z2, ’11 i2) = 0 von &#x26;3 in der

Umgebung von Q,. Z.B. 

1.

Es ist nämlich 
D (h, h) 

= B7 1 (h); nach dem Satz über impliziteD (t, t )
Funktionen erhalten wir

woraus nach (3.2)

folgt.
e II.

Wir setzen in diesem Falle

wir kônnen somit

schreiben.

Beispiel. Sei 3 = E t [ - ] zi ] = o], Z2 = h(Zl’ t, l) == t + 1 t I! Zl.
Die zweite Methode ergibt t = Z2 2013 ) 1 zll zi, woraus

folgt.

§ 4. Die Nullinie 1).
Sei uns eine ganze a. F. !(I)(Zl’ Z2) v. 2 k. V. gegeben und

setzen wir 

Den Schnitt von #3 mit W2 0 bezeichnen wir mit ô.
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Nach (3.2) und (4.1) ist t’ in Polarkoordinaten durch die

Gleichungen

gegeben.
In jedem Punktè Q C t§, wo keine der drei folgenden Relationen

Re = Realteil, Im = Irnaginârteil,

besteht, gilt in einer genügend kleinen Umgebung Uv bzw. f;
erstens für lll§ die Darstellung

zweitens für Il die Darstellung

wobei r(v) (1p), 91(’V) (1p) regulare Funktionen der reellen Verander-
lichen y sind. r(v) (y) ist dabei eine umkehrbar eindeutige Funktion
von y.

Diejenigen r - lzll, für welche Punkte (re’w, seiV’} von Il 0 auf-
treten, wo mindestens eine der drei Gleichungen (4.3), (4.4),
(4.5) erfüllt ist, wollen wir kurz Ausnahmekoordinaten von
nennen und stets mit Rk bezeichnen. (Es kônnen natürlich zu
einem Rk mehrere Punkte {Rkei’P(P)l S(Rk)eV’ p = l, 2, ...,
gehôren, für welche eine der angegebenen drei Gleichungen
erfüllt ist. )
Die Vbraussetzung bezüglich f’, auf die wir bereits im § 1 hin-

gewiesen haben, besteht nun darin, dafl die Menge der Ausnahnie-
koordinaten hôchstens aus abziihlbar vielen Rk, ’ k = l, 2, ...,
Rk  Rk+1, besteht, die sich nirgends im Endlichen haufen. Wir
werden in diesem Falle kurz über eine 0-Kurve der Klasse B

sprechen.

Beispiel. Sei
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Es ist dann FU)

In jedem Punkte von existiert die Darstellung (4.6), denn
aus (4.9) folgt

Die Verzweigungsstellen (auI3er t=0) befinden sich aul3erhalb
von ]t] = 1,2, denn der unter der Wurzel stehende Ausdruck

verschwindet nur für t = 4 3 V, und dann haben wir 1 t = 4r2, d.h.
diese Punkte befinden sich auBerhalb #3.
Um zur Darstellung (4.7) zu gelangen, ersetzen wir in (4.9)

Z1 durch 1’eiqJ, t durch r2ei1jJ. Trennt man dann den Real- und

In1aginiirteil, so erhâlt man

woraus

folgt.
Für cos q = - 1, sin y === =:1: 1 verschwindet der Ausdruck

(6+8 cos "p - 2V9-8 cos 1p). Man erhâlt somit als Ausnahme-

koordinaten 

Für alle anderen Werte von y sind die Ausdrücke (4.7a) regulare
Funktionen von y, und wir müssen nun noch feststellen, für
welche r der zweite in (4.7a) auftretende Ausdruck nicht um-
kehrbar eindeutig ist.

Zu diesem Zweek wollen wir feststellen, für welche Werte

D (G,,, G*) verschwindet G* = G2D (G1, G*) verschwmdet ( * G2)
Wir müssen somit Werte 1 bestimmen, für die simultan die

r2

drei Gleichungen
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bestehen.

Ersetzt man aus G, = 0 cos y durch

so erhalten wir

Man erhâlt als Lôsungen dieser Gleichung

Berechnet man nun aus Gi = 0 die entsprechenden y, so

erhâlt man aus G2 = 0 neben den in (4.10) angegebenen die
folgenden Ausnahmekoordinaten Rk

Betrachten wir ein Intervall r(1)  Ir  r(2), das keine Aus-
nahmekoordinaten Rk enthâlt, und bezeichnen wir

Nach dem Heine-Borelschen Satz gibt es zu jedem Punkt’
Qv (r°e’W°, S(l’O)ei1pO} von fcil = là . 4*3 eine Umgebung

so da13 für lô [bzw. R§] in f§ [bzw. in ltvJ die Darstellungen (4.7)
[bzw. (4.6)] gelten und durch diese Darstellung allé Punkte,
die in dieser Umgebung liegen, erschôpft werden. (Dabei sind
e, fP und Y &#x3E; 0 und unabhiingig von der Wahl des Punktes.)
Insbesondere werden auch die Flàchen E [r = rtl -+- p],

p = 0,1,..., P - 1, Pg = r(2) - T(l}, E[p = lW], l = 0, 1,..., L - 1,
LW = 2n, durch t§ in einer endlichen Anzahl von Punkten ge-
schnitten, deren Projektionen auf die y-Achse wir (der GrÕJ3e
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nach geordnet) mit lp(V) bezeichnen. Indem wir ev. zu groBe
Intervalle [V(v), 1p(V+l)] in endlich viele Teile t’ = [1pcx’ oc+iL
y  y,,,+, unterteilen 9) (wir brauchen die neue Einteilung nur

Fig. 3. 10)

so zu wâhlen, daß die Lange der tk  P wird), erreichen wir,
daß 4*3 in endlich viele Teile

zerlegt wird, und da13 f . T1et.p entweder leer ist oder einen Kurven-
zug p§ bildet, der in TîCt.p die Darstellung

zuläßt, wobei 1 zia.V) ("p) 1 eine umkehrbar eindeutige Funktion von
1p, 1p C tk ist. (Dabei existiert eine Umgebung Ula.p, fla.p C Uza.p, wo
%E die Darstellung Z1 = ziCXV) (t, l) zuläßt.) 

In jedem Hyperflachenstück

9) Sowohl die alten Teilpunkte yv&#x3E; ’wie die neuen werden durchweg mit 1pa.
bezeichnet.

10) In der Abb. 3, wo ein Stück E [0  g  2 «  y  y«+5, r 11  [zi j  r 2&#x3E; ] der
Hyperflâche § auf einem rechtwinkligen Parallepipedon des rwy-Raumes abge-
bildet wurde und vorausgesetzt wird, da6 L = P = 2 ist, wurden die Schnitte

von P mit den Flächen 1 zll = (!, rp = f/J mit kleinen Kreisen angedeutet. Ihre
Projektionen auf die 1p-Âchse sind die Punkte tp(v) = V’a.+2’ 1p(V+1) = ’fJJa.+3’
1p(V+2) = V’a.+4. Da aber die Projektionen der durch diese Einteilung entstandenen
Teilstücke von f10 größer als 1JI sind, wurde weitere Zerstückelung vorgenommen,
so daß das Intervall [tpa., V’a.+rd durch die Punkte tpa.+k, k = 1, 2, 3. 4, unterteilt

wurde. Die Kurvenstûcke Pdl wurden punkt-strichliert, pà+,i 1 volldick, p)+z,
volldünn, P+3. v’ y =1,2, wellenartig, P+4V’ v = 1, 2, punktiert ausgezogen.
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wird somit eine endliche Anzahl, etwa art.’ von Kurvenzügen pk,
v = 1, 2, ..., a,,,, liegen, von denen jeder ein umkehrbar eindeu-
tiges Bild des Intervalles t’ oc == [1f’rt.’ "i’r:t.+l] ist. Es ist

wo e die Menge von (endiich vielen) Punkten von Î§/ bedeutet,
deren 1p-Koordinaten die Werte 1prx’ ce = 1, 2, ..., b haben.

§ 5. Einführung eines Umlaufssinnes auf 1§.
Den Betrachtungen des § 4 gemäß [vgl. insbesondere (4.6)]

kônnen wir %§ in der Umgebung Uv 11 ) (vgl. § 4, S. [12] 316 von f§ in
der Form Zl = zlV) (seiVJ, se-iVJ) darstellen. Für nI = lJl§ . (y = 1p°)
gilt dementsprechend die Darstellung Zl = ziV) (sei1pO, se’V° ). Auf
jedem = n1 - Uv führen wir einen bestimmten Umlaufssinn ein,
namlich denjenigen, der den wachsenden s entspricht. Die so
orientierte Kurve n00FF werden wir mit n; bezeichnen.

Sei 1p i= 1p(X. (yoe bedeuten die iIll 9 4, S. [12], 316 eingeführten
Endpunkte der Intervalle t/§.)
Da r(v) (1p) [s. (4.7) ] eine umkehrbar eindeutige Funktion von

tp ist und f) = Uv . #* ist, liegt auf nv nur ein Punkt P von f;l.
P zerlegt nv in zwei Teile, von denen der eine in [ t - S( [zi) ) &#x3E; 0,
der andere in t - S(IZll)  0 liegt 12). Denn im Punkte P ist

und nach (4.4) ist

11) Wir benutzen in diesem Paragraphen der Kürze halber an Stelle des Doppel-
indexes (ocv ) bzw. anstatt (lcxp) den Index (v).

12) Vgl. Abb. 2a oder 2b, in der allerdings bei n’ die Bezeichnung 9î’ 0 steht,
eine Bezeichnung, die sich auf die Vereinigungsmenge aller ni bezieht, die auf-

treten, wenn y im Intervall [0, 2n] variiert.
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dz(J’) F d’"&#x3E;’(v) F-
da nach (4.1) dt Fz . dt Fz 
in einem Punkte P C fci1 (5.2) positiv oder negativ ist, definieren
wir in dem entsprechenden Punkte P auf fril denjenigen Um-
laufssinn, der den wachsende’n bzw. abnehmenden 1p, entspricht.
[Vgl. die Darstellung (4.16) von -tJ;, (t§1 = cf p) + e ). ]
[Im ersten Fall befindet sich derjenige Teil von °°i’§ , der den

kleineren Werten von s = ] t ) entspricht, in s - S( 1 Zl f) &#x3E; 0,
der andere Teil in 8 - S( 1 zll)  0, d.h. die Kurve nv führt aus
s - S( 1 zll) &#x3E; 0 heraus, im zweiten Falle ist es umgekehrt, d.h.
die Kurve n; führt in s - S(]zi]) &#x3E; o hinein. ]
Die so orientierte Kurve f:1 werden wir mit t§/ bezeichnen,

die eÎnzeInen Kurvenstücke, aus denen Ici1 besteht, entsprechend
lllit ’$; [vgl. (4.16)]. Wir ordnen schlie13lieh Iri1 die Funktion

p(P) zu, wobei fl(P) = + 1, wenn in P der Ausdruck (5.2)
positiv, p(P) = - 1, wenn in P (5.2) negativ ist.

Nach den Ausführungen im § 4 (s . S. [9] 313) entspricht j edem
r = é ein einziger Punkt {Zl = (!cÍfp(’lpO).. t = S ( g )eiv°) von pl Auf
der Kurve 

’

kônnen deshalb hôchstens q - bPL Punkte Pk(Q, "PO), k = 1, 2, ..., p,
p  q, von fcil liegen. (Im allgemeinen werden sich auf bl(Q, "PO)
überhaupt keine Pu»ktc von f 0 *’ bef inden . )
Wir setzen

Bezeichnet man mit ôl(p, y’) [bzw. °2(e, VO)] die Anzahl der
Punkte von T,, die auf b1(e, y°) liegen, und in welchen fl 0 dem
wachsenden [bzw. abnehrnenden] V entsprechenden Umlaufssinn
hat, so ist

Unseren Ausführungen gemäß treten in Punkten Pk, Pk C bl(Q, y 0),
ô, (,o, y°) Zweige p) in t 2013 S( ] zi ] ) &#x3E; 0 ein und ô, (e, y°) Zweige
pl aus 1 t 1 - S( 1 Zll) &#x3E; 0 aus. Andererseits ist der Unterschied der

Anzahl der Nullstellen von F k[ Z, S(r)eÍ1f’] im Kreise 1 zi  r für
r = e + e und r - e - e bei genügend kleinem e, gleich dem
Unterschied, der die Flaehe §3. (y == VII) in Punkten Pk, PkCbl(QIVO),
durchstol3enden, in 1 t 1 - S(j z, 1) &#x3E; 0 eintretenden und aus

t S z, &#x3E; 0 austretenden Zweige p) (s. Abb. 2b), so daß



319

man die Beziehung

erhâlt.

§ 6. Erweiterte Funktionenklasse. Die Integraldarstellung.
Die Funktionen H(z1, Z2) der erweiterten Klasse môgen dadurch

definiert werden, daB
1. H(Zl’ Z2) in jedem analytischen Flächenstück (Zl)’ 1 Zll  r

eine harmonische Funktion der Verânderlichen X2, Y2 bildet;
2. H(zl, Z2) in jeder Lamelle 3(t), Itl = s [vgl. (2.4)] eine

harmonische Funktion der Verânderlichen zi bildet, m.a.W.

H[ Zl’ h(Zl’ t) ] für jedes feste t, 1 t 1 = s, und 1 z, r eine har-
monische Funktion der Verânderlichen xi, Y1 ist.
Wir gehen zur Aufstellung der Integralformel über und wollen

zunâchst einige Abkürzungen einführen.
Sei W(Z2, Z1), w(0, Z1) = 0, w/(O, zl) &#x3E; 0 diejenige Funktion,

Fig. 4.

welche das Gebiet §§§(zi) auf den Kreis vom Radius s abbildet
und X(Z2’ Zl) = arc W(Z2’ Z1). [arc w = Argument von w.]
Wir setzen



320

Nach der Jensenschen Formel ist 13)

In jedem Sî(t) ist wieder nach der Jensenschen Formel (der
Annahme 2 gemaB)

wo akV(t), k = 1, 2, die Null- bzw. Polstellen von f[ z, h(z, t, 1)],
t const., bedeuten, die  r ausfallen. Aus (6.5) folgt:

§ 7. Die verallgemeinerte Jensen-Nevanlinnasche Formel.

Setzt man in (6.7) Z, = Z, = 0, so erhâlt man mit Rück-
sicht darauf, daI3 h(O, t, t ) = t und Z(z,, 0) = y ist,

13) Falls das Gegenteil nicht hervorgehoben wird, sind die Integrale im Lebes-
gueschen Sinne zu verstehen.
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Wir setzen nun f = f2 wo fi und 12 zwei ganze teilerfremdef2
Funktionen sind, und führen die folgenden Bezeichnungen ein:

Unter Benutzung dieser Bezeichnungen schreibt man (7.1)

Indem man in üblicher Weise vorgeht, gelangt man zu dem

meromorphe Funktion, die im -,4 nfang regulâr ist. Dann ist

zoo

ist.

14) Diese und andere GrôBen, sofern sie sich auf den Fall der F. v. 2 k. V. bezie-

hen, bezeichnen wir mit fetten Buchstaben im Gegensatz zu der Bezeichnung
mit gewôhnlichen Buchstaben der entsprechenden GrôBen im Falle der F. 1 k. V.
Wird der Operator i’T, n, m bzw. T bei einer F. v. 2 k. V. gebildet, wobei eine der
Verânderlichen als ein fester Parameter auftritt, so wird diejenige Verânderliche,
auf welche sich der angegebene Operator bezieht, stets mit z bezeichnet.
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§ 8. Blätteranzahl ei ner Fläche in einent analytischen
Hyperflächenstück.

Sei fk (z1, Z2) eime ganzc a. F. v. 2 k. V. Z1, zz und

die Anzahl der Schnitte der Flache R20 = E[!k(Zl’ Z2) = 0] mit
der Lamelle Sî(t) [vgl. (2.4)], d.h. die Anzahl der Nullstellen

akV(t) ,ron !k[ Zl’ h(Zl’ t, l) J, t const, 1 akV(t) 1 T. (Man kann
natürlich (8.1) als die Anzahl der Schnitte von F k(z, t) mit

t = const, 1 z 1  r definieren.)
Als die Bliitterzahl von lJl§ 1,n dem analytischen Hyperfliichen-

2n 2n

stück t) - cf $§ (s e’° ) [nlit der Mantelfläche 62 (r, s ) = cS 1] (se%’ )
1p=o y=o

(vgl. (2.5)) ] bezeichnen wir den Mittelwert 

Einige Eigenschaften von &#x3E;i [ r, F-’(z, S(r)eiy und von

A[ ?, S( r ), J-l ] 15
i. für jedes 1’1  oo, SI  c,o gibt es ein C, so dafl

A ( r, s, fk-1)  C + ] log l fk( 0, 0) ] I ausfâllt. wenn r  Tl’ s Ç SI Íst.
Deun, wie wir l1achtraglich zeigen werden (s. IIa, S. [26] 330 ), ist

da nach (8.1) und § 2 Fk(0, sei1p) =fk(0, sei’P) ist. Da j’k(ZI’ Z2) eine
ganze Funktion ist, existiert ein C, so daß 1 F k(kOTeiCfJ, seiV’) 1 SeC,
für T  rl, s  sl, ausfällt.

2. Sei 11 = E[1,,(1)  r  1’(2)] ein Intervall, das keine Aus-

nahmekoordinaten Rk enthâlt. (Wegen Ausnahmekoordinaten
vgl. § 4.) Sei ferner 22 das Rechteck r(1)  r  T(2), 0  11’  2n
der ry-Ebene.

ist, genûgt es, unsere Behauptung für die rechtsstehende Grbl3e
zu beweisen. Für jeden festen Wert S(r)e"’ ist dieser Ausdruck

. 15) Wegen S(r) vgl. § 3.
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als Anzahl der Nullstellen einer in 1 z 1  r2&#x3E; regulâren Funktion
Fk(z, S(r)eitp) beschränkt. Da S(r) eine monoton wachsende und
stetige Funktion von r ist, nimmt S(r) für r(1)  r  r(2) alle

Werte eines Intervalles, etwa des Intervalles [S(1), S(2)], an.

Wäre nun n[r(2), F-’(z, Seitp)] il1 dem Rechteck 5(1)  S  5(2),
o  1p  2n, nicht beschrànkt, so mül3te eine Folge {sm&#x3E;, 1p(m)},
m 3, 4,..., existieren, so do lim n[r(2)@ F k l(z, S( ) itp(m»)] =00

m-¿. 00

wird ; diese Folge mül3te einen Häufungspunkt, etwa {S(O), V(0)1,
haben. Es müùte deswegen ein Punkt z, z’ und eine Funk-
tionenfolge Fk[Zll S(mp) eitp(mp)], p = 1, 2, ..., existieren, so daB

Fk[Zl,s(mp)eitp(mp)] für genügend groBe p in î =: E’ L 1 z, - z’I 1 : el]
1(el hinreichend klein) beliebig viele Nullstellen besitzt. Anderer-
seits kann F k[Zl’ S(O)eitp(O)] nicht identisch verschwinden, da sonst
Fk[zl,S(O)e1, .tp(O) ] =0 wäre. Der Schnitt *. 3.E[Pk(Zl,S(0)e1,tp (°) )===OJ
würde eine Kurve bilden, so da13 fl*l - (y = 1p(O») eine ganze Kurve
enthalten hâtte, was aber unmôglich ist, da ja nach den Aus-
führungen im § 4 (vgl. S. [12] 316 ) f*1 (y = y°» aus endlich vielen
isolierten Punkten besteht. Da nun F k[ Zl’ S(O)e i1p (0)] nur endlich
viele Nullstellen hat, ist es möglich, eine geschlossene, lll( ent-
haltende Kurve gl zu ziehen, auf der 1 Fk(Zl, S(O)e1,tp . (0) ) 1 &#x3E;a &#x3E; 0

ist (a hinreichend klein). Infolge der gleichmäßigen Stetigkeit
von Fk(Z1, t) existiert eine Umgebung 0’ 2 E t - S (")eiy e2J
(g2&#x3E; 0, hinreichend klein), so daB für zi C gl, t C 33 j 1 F k(Zl’ t ) &#x3E; a
ist. Da Fzi (Zi, t), FZl ,FB in g1 x 2 beschränkt und die Anzahl v(t)
der Nullstellen von Fk(Zl, t), t const, innerhalb von gl durch

1 F.,(zl, t)dz, gegeben ist, ist v (t) für t C 02 kleiner als eine1 jfz (zi, t)dzi nt Fk(zi, t)
g2

feste Konstante, was im Widerspruch damit steht, dal3

lim v[s(mp)eitp(mp)] = oo ist. n[r, FK(ZI S(r)eÍV’)] muB nun somit
p-* 00
in 22 beschränkt sein, w.z.b.w.

3. In jedem Intervall Il = E[r(1)  r  r(2)] das keine Aus-
nahmekoordinaten enthiilt, ist A [r, S (r), f-1] eine Funktion von be-
schränkter Schwankung. Um dies zu beweisen, wollen wir für
die Schwankung von n[r, Fk l(z, S(r)e’y)] eine von y unab-

hângige obere Schranke angeben.
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ist eine in l’- abteilungsweise stetige Funktion. Sie erleidet nul’ für
diejenigen Werte von r einen Sprung, für welche n’ = W’- (V2 = 1p)
die Flâche ë* ’ (y = y") durchsetzt, d.h. ,venn für das betreffende
"Po und r sich auf 

ein Punkt von f*l befindet. Nach den Ausfûhrungen des § 4 ist
1

Ï = cV p) + e, wobei ,p durch (4.7) gegeben ist. Dabei ist 1’(1’) (1p°)
v=1

eine umkehrbar eindeutige Funktion von 1p, so da13 in der Um-
gebung fj§, wo diese Darstellung gilt, jedem gegebenen r nur
ein Punkt von 1§/ entspricht. Andererseits ist die Anzahl der

Umgebungen f endlich, etwa q, so da13 auf der Kurve tJl(r, 1p) hôch-
stens q Punkte von f:l liegen. In jedem Punkte von 1§* erleidet
(8.4) einen Sprung, der gleich + 1 oder - 1 ist, so da13 die Ge-
samtschwankung von (8.4) in 11 hôchstens gleich q ist. Nach

(8.2) folgt, daß auch die Gesamtschwankung von A[r, S(1’),f-lJ
beschränkt ist, w.z.b.w.

Mittlerer logarithmischer Abstand L[r, s,I-1] zwischen 2i==0
und dem Durchschnitt lJl§ . t[(7°, s). (Wegen vgl. (2.5).) So
bezeichnen wir dcn Ausdruck

wo av(t), ’V = 1, 2, ..., die Nullstellen von f[zi, h(Z1, t, l)], t const,
die  r sind, bedeuten.

§ 9. Das À-te Moment DÂ[r, S(r), j-lJ der Kurve t§ .
Betrachten wir ein Intervall (r0, r} in dem etwa k Ausnahme-

koordinaten Ru, x = 1, 2, ... k, liegen. Wir verstehen unter

dem A-ten Moment DÂ[r, S(r), f -1 desjenigen Teiles von 1§, für
dessen z1-Koordinaten r°  [ zl [  ?. gilt :

wo sf das Stieltjessche Integral bedeutet.
Wir wollen zeigen, daß der Ausdruck (9.1) von der Art des
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Grenzüberganges (d.h. von der Art, wie die 6k gegen 0 konver-

gieren) u11abhangig ist. Durch partielle Integration erhâlt man
nâmlich

so daß

ist. Da nach § 8, 1 (vgl. S. [18] 322) A gleichmäßig beschrankt ist,

existiert für (9.2) der Limeswert unabhângig von dem Grenz-
übergang der ex - 0.

Bemerkung. A[r, S(r), f-1] braucht offenbar nicht für jeden
Ausnahmewert Rx unstetig zu sein. Dementsprechend werden
wir Rx als Ausnahmekoordinaten erster Art bezeichnen, wenn

A[r, S(r), f-1] in Rx einen Sprung erleidet, als zweiter Art, wenn
Alr, S(r),f-1] in dem betreffenden Punkte Rx stetig bleibt. Es
genügt offenbar in dem zweiten in (9.1) auftretenden Ausdruck
die Summation über die Ausnahmekoordinaten erster Art zu
erstrecken.

S 10. Interpretatiort von

(9.1) stellt eine Summe von zwei Ausdrücken dar. Wir wollen
in diesem Paragraph eine Interpretation für den ersten dieser
Ausdrücke geben. Er besteht (für jedes feste r) aus einer end-
lichen Anzahl von Integralen, wobei die Integration Hings Inter-
vall [R,, + Gx’ R"+l - 8u+l1 erstreckt ist, die keine Ausnahme-
koordinaten Ru enthalten. Wir werden zeigen, daß diese I ntegrale
gewissen Kurvenintegralen gleich sind, welche längs desjenigen
Teiles von f erstreckt sind, für dessen z1-Koordinaten r(0)  1 zll r,
] zi [ G [R,, - Ex Ru + s], oa = 1, 2, k gilt.
Wir beginnen damit, daB wir zeigen, dal3 man in dem zwei-

fachen Integral
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falls [rU), r(2)] keine Ausnahmekoordinaten enthâlt, die Integrations-
reihenfolge vertauschen darf.

lm § 8, 2, S. [181 322, haben wir gezeigt, daß n[r, F-1(z, S(r)eitp) ]
- das wir in die sem Paragraphen zur Abkürzung mit n(r) bezeich-
nen werden - in 22 = E[r(I)  r  r(2), 0  y ç 2n] beschrânkt
ist, etwa kleiner als ju. Sei nun r(1) = rl, r2, ..., r m =: r(2) irgend
eine Unterteilung des Intervalles [r(l), r(2)]. Es ist

d.h., es existiert für- die betrachteten Summen eine obere von y
und m unabhângige Schranke. Nach einem bekannten Satz von
Lebesgue ist

d.h. in dem zweifachen Integral (10.1) darf die Integrations-
reihenfolge vertauscht werden. Es ist also

Für jedes feste 1p = 1p° ist n[r, F-1(z, S(r)eÚpO)] eine abtei-

lungsweise stetige Funktion. Sie erleidet für diejenigen Werte von
r einen Sprung, für welche auf

nI = lJl§ . (y = y0 ) die Fläche @ = 9*3 . (y = ’lp0) durchstößt,
d.h. wenn auf bl (r, 1p°) Punkte von Q liegen. Die Größe des
Sprunges (mit entsprechenden Vorzeichen) wird nach (5.5)
gleich à(r, "PO). Die Anzahl dieser Sprungstellen ist beschrânkt
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(und zwar gleiclimäßig in 1p), denn nach § 4 kann es für ein festes
1p = y° hôchstens bL P Punkte (z1, t ) von f§* geben, für die

arc t = y0 ist. Bezeichnen wir diese Sprungstellen mit rUJ) (1p°),
fl - ] , 2, ..., y(y°), so ist somit 16)

Nach (5.4) ist es weiter

wo

die auf tJl[ r(3) (1p), v] liegenden Punkte von i§’ bedeuten.
In § 4 haben wir [0, 2n] in b Teilintervalle t« = [1prx’ +1]

oc = 1, 2, ..., b, zerlegt, so da13 auf jedem Hyperflâchenstûck
m3 [vgl. (4.17)] der darauf liegende Teil von Iri1 aus arx Kurven-
stücken p§ , v = 1, 2, ..., arx, 17) besteht. Dabei wird durch die
Zuordnung 1p  P{ ZlrxV) (1p), S( IziCtV) (1p)/ ) eiV’} eine umkehrbar ein-

deutige Abbildung von tâ auf pk geleistet. Die Punkte

sind somit mit

(abgesehen von der Reihenfolge) identisch, und da definitions-
gemaß (vgl. S. [12] 316) 1 zi0153v) (vP)1 dem entsprechenden rUJ) (1fJO) gleieh
ist, kônnen wir

ersetzen. Da die Anzahl der Punkte VJa endlich ist, so daB man
bei der Integration diese y-Werte vernachiassigen kann, ist

16) Für jeden von r(p)(Ipo) verschiedenen Wert von r ist Ô[r, VOI = 0.
17) Wir schreiben weiter der Kürze halber IP (,,(C, ) (,P), y) anstatt
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Berücksichtigen wir, daB { z(C(v( ( 1p), 5 ( 1 Zl (C(V) ( 1p) 1 )ei1p} das Kurven-
stück .pv durchiauft, ,venn 1p das Interv all [«, V’tX+l] durchlàuft,
wobei p[P(Z(C(V) (V’), V’)] gleich + 1 bezw. 20131 ist, je nachdem
die Bewegung im Sinne der wachsenden bzw. abnehmenden y
geschieht, und daß die Kurve âv dementsprechend orientiert

wurde, so erhalten wir weiter

Da (abgesehen von der Menge der Punkte von t§, deren

1p-Koordinaten die Werte "Prx’ x = 1,..., b, haben) 1;1 = cS’ cS’ §§
ist, erhalten wir aus (10.8) schliel3lieh o

Der erste auf der rechten Seite von (9.1) auftretende Aus-
druck setzt sich aus endlich vielen Integralen DÂ[r, S(r),f-1]
zusammen, wobei in jedem die Integration lângs eines Inter-
valles erstreckt ist, das keine Ausnahmekoordinaten Rx enthâlt.
Nach dem in (10.9) erhaltenen Ergebnis ist DÂ[r,S(r),f-1] in

diesem Falle ein Linienintegral lângs desjenigen Teiles von 11, für
dessen z1-Koordinaten

gilt.
Wir haben bis jetzt stets im z1t-Raume operiert. Man kann

natürlich die Integration an Stelle längs der Kurve f’ 0 des

z1t-Raullles, längs ihres Bildes bl 0 des zlz,-Raumes erstrecken, da die
21-Koordinaten in den entsprechenden Punkten {Zl’ tl von

f’ 0 und l zl, Z2 = h(Zl’ t, 1)) von bl 0 die gleichen sind. Da h(Zl’ t, l)
eine eindeutige Funktion ist, kônnen wir auf bl 0 den Umlaufssinn
festsetzen, der dem im § 8 angegebenen Umlaufssinn von fl 0 ent-
spricht. Wir müssen nur noch eventuell berücksichtigen, dal3

h(zl, t, l) nicht überall umkehrbar eindeutig ist. (Vgl. die Aus-

führungen auf S. [8] 312). Unter Umständen müssen wir

deshalb einzelne Punkte von bl als mehrfach überdeckte Punkte
betrachten.
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Bemerken wir schliel3lich, daß durch eine geeignete Festsetzung
der Art, wie die e, gegen 0 konvergieren sollen, man erreichen
kann, daß lim DÂ S(e), ]’(.) r durch DÂ,[ e, S(e), f-l JO) ersetzt

7’- 00

werden darf.

Eine Interpretation des zweiten auf der rechten Seite von

(9.1) auftretenden Ausdruckes, der mit dem Verhalten von f5
der Umgebung der Punkte mit zi = Rx verbunden ist, ist bis
jetzt nicht gelungen.

§ 11. Beziehungen zwischen N, A und DÂ,.

la. Ist für jedes e &#x3E; 0

so existiert für jedes Â &#x3E; u

Zu jedem Â &#x3E; p kônnen wir ein e so finden, daß Â &#x3E; IÀ + B ist.
Nach (9.2) ist somit

woraus folgt, daB D)Je, S(e),f-lJ(0) (gleichmäßig in r) beschrânkt
ist. Wâhlt man r(0) genügend groB, so wird der in (11.3) rechts
stehende Ausdruck beliebig klein, woraus die Existenz von

(11.2) folgt.
Ib. Existiert (11.2), so ist

auper hochstens in einzelnen Punlcten und in Intervallen, deren

logarithmisches Mafl 18) endlich ist.
Um Ib. zu beweisen, nehmen wir an, dai3 A[r, S(r), f-1] &#x3E; Cy

in Intervallen gilt, deren logarithmisches MaB unendlich ist.

Man kann dann eine Folge von Intervallen [î-,, r2l’ [r3l r 4]’ ...,
[r2n-l’ r2n]’...’ rn  r n+l’ mit unendlichem logarithmischem

l’) Unter logarithmischem Mal3 der Folge von Intervallen [rI, r2l, [r3l r4l,
N

[r2N-I’ r2N] versteht man bekanntlich E [log r2k - log r2k-l].
k=1
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MaB finden, in denen die angegebene Ungleichung gilt, wobei
die [r2n-l’ T2n] und die [Rx - e,, Ru + t’x], für genügend kleine t’x’
keine gemeinsamen Punkte haben. Da A[r, S(r),f-1J &#x3E;0 ist,
würde dann nach (9.2)

und es ist somit lim D[é, S(é), f-1]§o&#x3E; = oJ im Gegensatz zu
r--&#x3E;oo

der gemachten Voraussetzung.
lia. Sei k(r) &#x3E; k0 &#x3E; i. Es ist dann

Da n[e, F-1(z, t)], F(z1, t ) =f[z1’ h(zl, t, t)] eine nichtabnehmende
Funktion von e ist, folgt aus

die Ungleichung

Indem man t = setp setzt und auf (11.7) die Operation 1/203C0f... dy203C0
0’

anwendet, erhâlt man nach (8.2) und (7.5) die Ungleichung

woraus (11.5) folgt, da nach ist.

9 12. Beziehungen zwischen de1n Wachstum von T und D;..

I. Sei k(r ) &#x3E; k° &#x3E; 1, und f(Z1’ Z2)’ f(0, 0) # a, eine in

1 Zk 1  oo, k = 1, 2, meromorphe Funktion d. k. V. Zl, Z2, die im

Koordinatenanfang regulâr ist. Existiert fü.r jedes e &#x3E; 0 eine

Konstante C ==- C(e), so da/3
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ausfällt, so existiert für jede a-A ’llrVC 1§ - E[ f(zi, Z2) = a] der

Klasse B (vgl. § 4, S. [91 313), die auf tl - S(r) liegt, das À,te Moment

falls Â &#x3E; Il ist.

Denn nach (11.5), (7.8) und (7.9) ist

woraus nach (11. la) die Existenz von (12.2) folgt.
I I . Es môgen ü ber k(1’) und f auBer den in 1 angegebenen die

folgenden Voraussetzungen gelten:
1. k(r) ist so gewählt, dafl die Hyperfliiche t 1 = S( r )allenim § 3 angegebenen Voraussetzungen genügt. 

k(r)

2. Fiii. f gilt

Existieren jÜT drei am-Kurven der Kla8se B,

liegen, die Â ten Momente

und ist

so ist

hôchstens mit Ausnahme einzebîeî- Punkte und Intervalle, deren

logorithrnisches Map eiidlich ist.

Aus (12.5) und (11. Ib) folgt, daf3

gilt auùer in den erwähnten Mengen.
Da nach (12.4) F(01, Z2) = f [ 01 h (0 t, t ) = f(0,t) = const ist,

erhalten wir aus (11.9) und (12.6) somit, daß aul3er in der er-
wàhnten Menge

gilt. Nehmen wir zunächst an, daB die erwah11ten Werte a1 = 0,
a2 == 1, a3 = oo sind. Nach der Formel von Valiron-Milloux



332

gibt es dann zu jedem k° &#x3E; 1 die Konstanten c und c,, so daB

ist. Nun ist

so daB man für r &#x3E; r(0) Cl(r, s, y) durch eine geeignete Kon-
2?G1 J2nstante C ersetzen kann. Die Anwendung der Operation 2n ... dtp

auf (12.10) ergibt nach (7.3) und (7.5) 0

da f(O, z) == const und

Sind uns drei von 0, 1, oo verschiedene Werte am, m = 1, 2, 3,

gegeben, so betrachten wir die Funktion,

welche die Werte 0, 1, oo ausläßt. Für g

sind die Bedingungen (12.4) erfüllt, und, da b1 #o ist, ist

gZl[ 0, h(o, t, t)] = const # 0.
Nach (12.7) ist somit

Andererseits sind definitionsgemäß die Wachstumsordnungen

dem Satz aus § 7 entsprechend gilt das gleiche für

so da13 aus (12.15) die Ungleichung (12.7)

folgt w.z.b.w.

19) Aus (12.4 folgt, daß f(z1, Z2) = d + zl Q;(Zl’ Z2) ist, deshalb ist



333

§ 13. Eine Interpretation für T[r,S(r),fJ im Falle ganzer
Funktionen f.

Im Falle einer komplexen Verânderlichen und ganzer Funk-
tionen f sind das Wachstum von T[r,f] und dasjenige von
max [f(reit?) J gleich. Unter gewissen zusàtzlichen Bedingungen

O;g 92 g m

gilt etwas Analoges in dem von uns betrachteten Falle.
Wir setzen

Ist f eine ganze Funktion, so ist

Eine obere Schranke für M[r, s, f ] erhalten wir unter folgender
Annahme:

Die im § 1 eingeführte Funktion h(zi, t, i) soll, neben der früher
angegebenen, die Eigenschaft haben, daB

ist. Dabei sind C1 C2, (3 absolute Konstanten und W(Z2, Zl )
(w(0, Z1 ) = 0, w’ (0, Z1) &#x3E; 0) bedeutet die im § 6 eingeführte
Funktion, die 2 2 (Z 1) [s. (2.1)] auf den Kreis vom Radius s = S(r)
abbildet. Aus (13.4) folgt, dal3 [vgl. (6.2)]

ist. Dabei wâhlen wir immer k(&#x3E; 1) so groli, daB k{3 &#x3E; C2 wird.
Es ist somit nach (6.7) und (13.3)

woraus in üblicher Weise

folgt.

§ 14. Schluflbenierkungen.

1. Es dràngt sich die Frage auf, was für Abschätzungen man an
Stelle von (12.14) erhâlt, wenn man anstatt der Valiron-Milloux-
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schen Formel die zweite Nevanlinnasche Ungleichung heran-
zieht 20). wir wollen in diesem Paragraphen andeuten, wie man
in diesem Faite vorgehen mul3. Man geht von der Formel (N. 3)
aus. (Vgl. B, S. 609, Zeile 11 von oben). Dabei 111u13 man für
T[ e, F(z, seÍ1f’) J, F [z1, t] = f[ Z1, h(ZI’ t, l) J, eine von ’ljJ ul1abhangige
obere Schranke bestimmen. Eine solche Abschâtzung ist mir

aber nur gelungen unter der in § 13 angegebenen Voraussetzung.
Wiederholt man dann die auf S. 607 und 608 von B angegebenen
Rechnungen, so erhâlt man eine obere Schranke für T[ RI, F(z, se’y) ]
(vgl. [2.6]). Unter Verwendung dieses Ergebnisses erhâlt man

durch die Anwendung der Operation 2,-r jfÔ. dy auf (N. 3) eine2n
0

obere Schranke für m [r, 8, .z.&#x3E;] (S. 609, [2.7]).
Durch analoge Betrachtungen wie im Falle 1 k. V. erhâlt man

dann die Ungleichung [2.13] für den verallgemeinerten Fall,
wobei für S(r, s ) eine der [2.12] analoge Ungleichung gilt. Die
obere Schranke hangt darin mur von log r, log s, log T ab.
Aus dieser Ungleichung, die man an Stelle von (12.14) benutzen

kann, erhâlt nlan, âhnlich, wie es inl g 12 geschieht, aus der
Existenz von lim D).[ek(,o), S (é ) , (f-a1n)-1 J(O) für drei ver-

r ---¿. 00

schiedenc Werte ara’ m = 1, 2, 3, eine obere Schranke für das

Wachstum von T[r, S(1’), f].
Aber, abgesehen davon, daß dièse Betrachtungen zu auBer-

gewöhnlich umfangreichen Rechnungen führen, treten in diesem
Falle an Stelle von (12.4) die viel komplizierteren Voraus-
setzungen des § 13.

2. Es bietet keine Schwierigkeiten, analoge Betrachtungen,
wie in der v orliegenden Arbeit, für den Fall durchzuführen, dal3
an die Stelle des gesamtcn zlz2-Raumes ein Bereich JR (vgl.
§ 2) tritt. Ein Bereich M ist aber die Regularitàtshülle jedes
Bereiches 6), den man aus 9K dadurch erhâlt, daß man in geeigneter
Weise Teile von 8R entfernt, ohne die ausgezeichnete Ral1dflaehe
zu besehädigen.

20 ) Dieser Weg wurde in dem zweiten Teil der an der zweiten Stelle in 2 ) S. [2]
306, zitierten Arbeit in dem Spezialfall h (zi, t, tt t eingeschlagen. Wir werden diese
Arbeit im folgenden als B zitieren, die Formeln aus B durch eckige Klammern
kennzeichnen. Mit (N.3) bezeichnen wir die Formel (3), S. 59, aus R. NEVAN-
LINNA, Le théoreme de Picard-Borel et la théorie des fonctions meromorphes
[Paris, 1929], Ch. IV.
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Da wir auf Grund des Benehmens einer meromorphen Funktion
f in einer Hyperfh,che ê3 gewisse Aussagen über die Eigen-
schaften von f in 3R machen kônnen, erlauben diese Betrachtungen
(falls #3 in 6) liegt) bestimmte Aussagen über die Fortsetzung
der meromorphen Funktionen in Regularitâtshüllen dieser Art
zu machen.

(Eingegangen den 8. Juli 1938.)


