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Uber meromorphe Funktionen von zwei
komplexen Verinderlichen

von

Stefan Bergmann

§ 1. Einleitung.

In der Theorie der meromorphen F.v.2k.V. (Funktionen
von zwei komplexen Verdanderlichen) liegt es nahe, zwei Fragen
zu untersuchen:

1. die Beziehungen, die zwischen den Wachstumsverhalt-
nissen einer meromorphen F.v.2k.V. f einerseits und den
Eigenschaften des Durchschnittes der Fliche f=a mit vor-
gegebenen Mannigfaltigkeiten andererseits, bestehen,

2. die Beziehungen zwischen den Wachstumsverhiltnissen
von f in verschiedenen Mannigfaltigkeiten.

Zu den einfachsten Aufgaben des unter 1 angegebenen Problem-
kreises gelangen wir, wenn wir denjenigen Fall betrachten, in
dem die erwiahnten Mannigfaltigkeiten analytische Flichen sind,
z.B. Flichen z, = const, 21 = const usw. In diesen Féllen handelt

2
es sich eigentlich um Untersuchungen von meromorphen Funk-
tionen einer komplexen Verinderlichen, die von einem Parameter
abhéngen.

Will man analoge Fragen im Falle von nichtanalytischen
Flichen betrachten, so wird man zwar zu einer sehr wichtigen
Aufgabe der Theorie gefiihrt '), doch sind mir keine Methoden
zur Untersuchung dieser Probleme bekannt.

Demgegeniiber stellt sich heraus, dafl im Falle von dreidimen-
sionalen nichtanalytischen Mannigfaltigkeiten spezieller Art die
Theorie der ausgezeichneten Randflichen gewisse Sitze auf-
zustellen erlaubt, die zu dem unter 1 angegebenen Problemkreis
gehoren.

1) Es sei besonders der Fall erwihnt, wo die angegebene Mannigfaltigkeit
die reelle Ebene darstellt.
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306 Stefan Bergmann. [2]

Den Ausgangspunkt dieser Untersuchungen bilden die folgenden
Betrachtungen:

Wie in einigen in den letzten Jahren 2) erschienenen Arbeiten
gezeigt wurde, lassen sich die Satze aus dem Ideenkreis des
Schwarzschen Lemmas auf den Fall F.2.k.V. dann verall-
gemeinern, wenn man gewisse spezielle Bereiche betrachtet,
nidmlich Bereiche mit einer ausgezeichneten Randfldche. Diese
(2wetdimensionale) Flache, die auf dem (dreidimensionalen) Rande
des Bereiches liegt, spielt in funktionentheoretischer Hinsicht
eine analoge Rolle wie die Randkurve im Falle 1 k. V. Betrachtet
man insbesondere an Stelle der biharmonischen Funktionen (d.h.
der Real- und Imaginidrteile der F.v.2k.V.) eine geeignet
gebildete crweiterte Funktionenklasse, so hat das verallgemeinerte
Dirichletsche Problem stets eine Losung: es existiert namlich
zu jeder auf der ausgezeichneten Randfliache gegebenen stetigen
Funktion eine im Bereiche reguldre Funktion der erweiterten
Klasse, die auf der ausgezeichneten Randfliache die vorgegebenen
Randwerte annimmt. Man kann ferner eine der Jensen-Nevan-
linnaschen analoge Formel aufstellen und ausgehend hiervon
Satze iiber die Werteverteilung der meromorphe F.v.2k.V.
erhalten, die zu dem unter 1 angegebenen Problemkreis gehoren.

Es gestalten sich dabei die Verhiltnisse in zweierlei Hinsicht
anders als im Falle der F.1k. V.

I. Wihrend die Gesamtheit < ¢}(r) der Randkurven ci(r)
r=0
der Kreise |3| < r die volle Ebene iiberdeckt, ist die Vereini-

gungsmenge einer einparametrigen Schar von ausgezeichneten

2) Vgl. dazu ,,Zwei Sitze aus dem Ideenkreis des Schwarzschen Lemmas iiber
die Funktionen von zwei komplexen Veridnderlichen [Math. Ann. 102 (1934),
324—348] und ,,Zur Theorie der meromorphen Funktionen von zwei komplexen
Veranderlichen” [Compositio math. 3 (1936), 136—173 und Recueil Mathématique
2 (44) (1987), 599—616].

Ein Versehen aus der letzten Arbeit moge hier berichtigt werden: Auf Seite

k(e
140, Zeile 15 von unten, mufl unter 2(r; g-(2, g)) nicht Z)IogIa,(Q)l sondern
s=1
kg)log |as(e)| — T 6,(g) log () verstanden werden. Dabei bedeutet r(*)(g) die-
s=1 rOe)=r
jenigen Werte von r, wo die Anzahl der Nullstellen v(r, g87(z, g)) von g(2, 0) =0
einen Sprung erleidet, J,(0) die Grofle dieses Sprunges mit dem entsprechenden
Vorzeichen. Dementsprechend muB3 auf S. 163 in Z. 22 und Z. 28, auf S. 164 in
Z. 24 und auf S. 602 in Z. 14 von oben und in Z. 2 von unten mehrfach X, log |ak(z2)|
durch [, log |ax(z,)| — X O,(@.) log {9)(g,)] ersetzt werden.
) (g,) =7
Die iibrigen Betrachtungen werden dadurch nicht beeinfluBt.
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Randfliachen eine dreidimensionale Mannigfaltigkeit (im folgenden
mit & bezeichnet). Dementsprechend stellt es sich heraus, daf3
wihrend man im Falle 1 k. V. das Wachstum der Funktion in
der gesamten Ebene betrachten muf3 (die Ordnung 1 des Wachs-
log T'(r)
log r
definiert), man wm Falle der F.v.2k. V. nur die Wachstums-
verhdltnisse von f auf &° zu betrachien braucht.

II. f(z) nimmt einen konstanten Wert (etwa a) im Kreise
|2| =< rin einer diskreten Punktmenge n® an, die aus n[r, (f — a)~]
Punkten {z")(a)}, » =1, 2, .. ., n[r, (f — a@)~1] besteht, und es liegt
nahe, der Punktmenge n? die Summen

tums einer meromorphen F.1k.V. wird durch Iim

alr, (f-a)™'] —3
Difr,(f—a) = X [Ma)|"

y=1
zuzuordnen. Die Sitze aus dem Ideenkreis des Schwarzschen
Lemma liefern gewisse Aussagen iiber die Zusammenhinge
zwischen dem Wachstum der Funktion f und dem Verhalten
der angegebenen Grofe.

Im Falle der F.v.2k.V. nimmt f(2;, 3,) einen konstanten
Wert auf einer zweidimensionalen Flache 2 an; der Schnitt
von N2 und 8* ist im allgemeinen eine eindimensionale Menge
L =E/[z ==z(p), % ==2(y)], und es liegt nahe [nachdem
auf f! ein Umlaufssinn definiert ist], dem Teil £ von ., fiir
dessen z;-Koordinaten ’zl(cp)[ < r gilt, die GroBen 3)

[law) | ayp, k=12 (1.1)

k1
tll

zuzuordnen und den Zusammenhang zwischen dem Wachstum
dieser GroBen (als Funktionen von r betrachtet) und dem
Wachstum der Funktion f andererseits zu untersuchen.

In einem speziellen Falle, ndmlich wenn 8% eine Vereinigungs-
menge der ausgezeichneten Randflichen von Bizylindern ist,
erlaubt die Anwendung der geschilderten Methode die erwidhnten
Beziehungen aufzustellen.

In der vorliegenden Arbeit wenden wir sie in einem allgemeineren
Falle an. Wir nehmen an, daB3 8 eine Vereinigungsmenge der
ausgezeichneten Randfldchen von Bereichen viel allgemeineren
Charakters ist. Es zeigt sich, da3 auch in diesem Falle zwischen

3) Diese Grolen werden im weiteren in einer priizisen Art definiert. (Siehe § 9.)
v hingt nur von der Hyperfliche § ab. Uber ! miissen dabei gewisse Voraus-
setzungen gemacht werden (vgl. § 4).
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dem (geeignet definiertem) Wachstum einer Funktion auf 83 einer-
seits und einer Art von Integralen der unter (1.1) angegebenen
Gestalt Beziehungen bestehen.

Im Zusammenhang mit diesen Untersuchungen steht natiirlich
die unter 2 aufgeworfene Frage — die Zusammenhénge zwischen
dem Wachstum einer F. v. k. V. auf verschiedenen Hyperflichen.
Aus diesem Problemkreis wurde bis jetzt — wiederum ausgehend
von der Betrachtung der Gebiete mit ausgezeichneter Randfliche
— die folgende Frage untersucht.

Man betrachtet die Vereinigungsmenge <5 ®2(r) wo ®&2(r) eine

Fliche des Bereiches (r) mit ausgezeichneter Randfliche
F2(r) bedeutet; mit Hilfe der verallgemeinerten Jensenschen
Formel kann man dann aus den Wachstumsverhiltnissen auf

oS F%(r) auf die Wachstumsverhaltnisse auf < &%(r) schlieBen.
r=7r0 r=r0

Dabei kann man zeigen, dal den Flichen &2%(r) einige (fir
diese Problemstellung) charakteristische Groflen*) zugeordnet
werden konnen, so daBl man im Falle von ganzen Funktionen

obere Schranken fiir das Wachstum der Funktion f erhilt, welche

nur von dem Wachstum der Funktion auf <§ §?(r) und den er-
r=r0
wihnten fiir ®?%(r) charakteristischen GroBen abhéingt. 5)

Was die in der vorliegenden Arbeit benutzten Bezeichnungen
anbetrifft, so werden wir mit gotischen Buchstaben die Mannig-
faltigkeiten bezeichnen, dabei gibt fiir 0 << k << 4 der obere Index
k die Dimension der betreffenden Mannigfaltigkeit an. Der Rand
der Mannigfaltigkeit wird im allgemeinen durch die gleichen
Buchstaben bezeichnet, so z.B. ist m® der Rand von M usw.
Es sei bemerkt, da3 die Aussage ,,eine Funktion f sei in einem
Bereiche £"°, n << 4, ,,reguldr” stets so zu verstehen ist, daf
ein £” im Innern enthaltender vierdimensionaler Bereich existiert,
in dem f regulir ist.

4) Vgl. dazu auBer der ersten die in der Fufinote 2) zitierte Arbeit (Zusatz,
S. 847), ,,Uber eine Abschitzung von meromorphen F. v. 2k. V.” [Travaux de
PInstitut mathématique de Tbilissi 1 (1937), 187—204], insbesondere S. 202,
und P. LELONG, ,,Limitation d’une fonction analytique de deux variables com-
plexes” [Bulletin de sciences mathématiques 73 (1938), 199—204], wo die in
den oben zitierten Arbeiten eingefiihrten ,,charakterischen GroBen’ fiir einen
bestimmten Fall berechnet wurden.

5) Beziiglich des Problems 2 wollen wir uns mit diesem Hinweis in der vor-
liegenden Arbeit begniigen.
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Die Zeichen <, + (Vereinigungsmenge), - (Durchschnitt),
% (topologisches Produkt von Bereichen), — (Differenzmenge)
sollen in iiblicher Weise angewendet werden. ¢) So soll die Ver-
einigungsmenge einer Schar von einem Parameter « abhéngigen
Mengen €"(«), wenn o eine Menge R™ durchliuft, durch <5 €*(«)

a CRm
bezeichnet werden. Mit E [...] bezeichnen wir die Mengen von
Punkten, deren Koordinaten den in der Klammer angegebenen
Gleichungen oder Ungleichungen geniigen.

Ich méchte noch die Gelegenheit benutzen, Herrn N. Aronszajn
fir mannigfache Ratschlige meinen besten Dank auszusprechen.

§ 2. Der Bereich W und seine Eigenschaften.
Sei 2, = h(2y, 1, 1), h(0, 1, I) =1, 2;, = ;. + iy, eine fiir |2z | < p(|t])

analytische und eindeutige Funktion der Veréinderlichen z,, ¢, %.
Dabei ist p(g) eine fiir o < ¢ =< o0 positive Funktion, welche

geniigend rasch mit g ins Unendliche wichst, so daB fiir jedes ¢

X, %23
. 2,
1.} er—% 1)
2

11 -‘]Z{ZI)X/(

7
- % . /
2%) L3 (%)
P e F=°

Fig. 1.7) Der Bereich m.

h(2y, t, f) reguldr ist in einem Bereich der 2;-Ebene, der so gro3
sei, wie es dies unsere weiteren Betrachtungen verlangen.
Fiir jedes feste z, = 2{¥ und jedes s moge die Menge

(2") = E[z, = h(0, 8, 7), [t] <] (2.1)

¢) Wegen der Regeln beim Operieren mit diesen Symbolen vgl. z.B. Hausdorff,
Mengenlehre, 2. Aufl. [1928], § 1.

7) Veranschaulichung der hier angegebenen vierdimensionalen Gebiete ge-
schieht in der Weise, da3 man die Koordinate Im (3,) als Zeit interpretiert. Die
einzelnen Figuren sind Schnitte der betrachteten Gebiete mit dem Raum Im (3,)=
const. (Im = Imaginirteil). Vgl. dazu ,,Uber die Veranschaulichung der Kreis-
korper und Bereiche mit ausgezeichneter Randfliche’ [Jber. deutsch. Math. Ver.
42 (1933), 288—252]. Aus Versehen wurden in den Zeichnungen an Stelle von
gedruckten gotischen Buchstaben, die im Text auftreten, geschriebene gotische
Buchstaben benutzt. Es wurde ferner in den Abb. 1 und 2 ¢, anstatt ¢ geschrieben.

*
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einen einfachzusammenhidngenden Bereich der Ebene z, = 2{”)
bilden, der von der differenzierbaren (geschlossenen) doppelt-
punktlosen Kurve

2(z") = E[z, = h(0, s €%, se™™¥), 0 <y <2n] (2.2)
berandet ist. Sei
M=E[z,=h(z,1,1), |3]|<r, |t|<8]—-c5’ 2= 1)—6’8(0 (2.8)

< [
WO

Nt) =E[z, = h(z, 8, 1), |2] <] (2.4)

bedeutet. Den Rand E[z, = h(1¢'%, t,1), 0 < ¢ < 2x] von {3(t)
werden wir mit i}(¢) bezeichnen.

Die Berandung von 9 besteht aus zwei analytischen Hyper-
flachen

32 (1) und & = 8 T2 (2). (2.5)
|z1'=" |t|=s :
Der Schnitt
F=8eg= IICY i1(2) -I Qly i3(21) = !
s 2. =7
CE[s— bt D), =l =s]  (20)

bildet die ausgezeichnete Randfliche von M. Wir werden namlich
zeigen:

1. jede in M a.F. g(z,,2) v.2 k. V. nimmt ihr Maximum
beziiglich I auf F? an,

2. fiir eine in geeigneter Weise erweiterte Klasse von Funk-
tionen (welche die in WM biharmonischen Funktionen als eine
Unterklasse enthilt) existiert eine der Poissonschen analoge
Integraldarstellung, wobei die Integration lings $? erstreckt ist.

BewEIs von 1. Ist g(z;, 3,) in M regulir, so muB | g| sein Maxi-
mum am Rande annehmen, also entweder in einer ,,Lamelle”
J2(1), [t®| =5, oder in einer Lamelle $Z(2\?), |2 =7.
Im ersten Falle ist in J3(29), g(zy, 25) = g2y, A2y, £, )] =
= g*(2y), |#| =r, eine analytische Funktion von 2z, und muB
deshalb des Maximum beziiglich J2(¢) in einem Punkte der
Randkurve i}(¢®)C %2 annehmen.

Im zweiten Falle ist g(z, 2?) in J2(2{”) eine analytische
Funktlon von 2, und |g(zl, zz)[ mubBl sein Maximum beziiglich

32(21”) in einem Punkte von il(z{”) C ¥2 annehmen.

Die Konstruktion der Funktionen der erweiterten Klasse und
die Aufstellung der in 2 angekiindigten Integraldarstellung wird
im § 6 erfolgen.
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§ 8. Die Hyperfliche 8.

Im Weiteren werden wir eine Schar von Bereichen % betrach-
ten, indem wir annehmen, daB r von 7° bis <o variiert und
s = S(r)[ = (= 7)), S(0) =0, ist. S(r) ist eine fiir alle r positive
wachsende, fiir 0 < r < 7@ stetig differenzierbare, fiir 1@ < r << 0
analytische Funktion der reellen Verdnderlichen 7 8).

Wir werden im folgenden anstatt 9, {32, ... unter Umsténden
WM(r, s), F*(r,s), ... schreiben.

Die Vereinigungsmenge

8% = c} Fr, S(r)] =E[zg=h(z, 8, 1), [t]|=S(|z]), ®=r<w] (3.1)
=

T

bildet eine dreidimensionale Mannigfaltigkeit, deren Gleichung

in dem z,-Raume dic Gestalt .
|t — S(|m]) =0 (.2)
hat.
2;2,-Raum z,i-Raum
Retx), S, )]
g Rerty)
K g
] S lsy
¢
jJ J"«’/z" /j/]
J/n//{‘)
7; nte) 4 e
Re (%) b
Fig. 2a. Der Schnitt von & Fig. 2b. Der Schnitt von &3
mit dem Raum ¢, = 0. mit dem Raum %, = 0.

Es liegt nahe, die Gleichung von &% auch in den Verdnderlichen
2y, %, aufzustellen, was darauf hinauskommt, aus den Gleichungen
(8.2) und 2, = h(z, t,I) die Veranderlichen ¢, f zu eliminieren.
Nach dem Satz tber die impliziten Funktionen ist dies in der
Umgebung jedes Punktes @, C & moglich, wo die Funktional-
determinante des Systems nicht verschwindet. Man erhilt dann
einen Ausdruck, der in geniligend kleiner Umgebung des Punktes

Q, gilt.

8) Fir r0 < | 2, | < co ist somit 5’ (2, %) eine analytische Funktion von zwei
komplexen Verinderlichen z,, 2;.
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Um eine Gleichung H,(2;, 23, £, 25) = 0 von &% in der Umgebung
eines Punktes Q, zu erhalten, kann man auf verschiedene Weise
aus (8.2) und 3, = h(z, t, I) die Verdnderlichen ¢, 7 eliminieren.
In jedem Falle erhalten wir eine Ungleichung, deren Bestehen
in einem Punkte @, eine hinreichende Bedingung darstellt fiir
die Existenz der Darstellung H (2, 25, %1, £;) = 0 von §3 in der
Umgebung von Q,. Z.B.

e b D) P |k, 1, 1) |
L Vilh)=|——|—|— \ #0. (3.3)
D(h, h)
= V,(k); nach dem Satz iiber implizite

Dt 1)
Funktionen erhalten wir

t=g1(21, %2 81> Bp)s U= gy(2y, 29, &y, %), (3.4)

woraus nach (3.2)

[P(20, &)]° = (21 s B B) Eal20s 200 By B) (3.5)
folgt.
dh _oh
I1. ts; ‘—lgt: # 0. (3.6)
Wir setzen in diesem Falle 7 = [Qy(z” z‘)] . Es ist

dhfz t, Sz, 2 )] b e z)d 1 [ Dk
dt A %t

ti”‘ti] #0,

wir kénnen somit ¢ = g(2y, 2 %1, Z,) und

S (2 51) = | (2, 2, B, B) | (8.7)
schreiben.

Beispiel. Sei 8 = E[|t| — |#[2 =01, 2, = h(zy, t, ©) =t +|¢|} 2.
Die zweite Methode ergibt =3z, —|z,|z,, woraus

(21%1)? = (=5 — | 21| 21) (B2 — | 21| %) dh. 28— \/ﬁ(zlﬁz +%%,)=0
folgt. ‘
§ 4. Die Nullinie ¥,.

Sei uns eine ganze a.F. f(z,2,) v.2k.V. gegeben und
setzen wir )

FN(z, t, 1) = fV[2, bz, £, 1)], NE=E[FM(z, t,)=0]. (4.1)

Den Schnitt von & mit N3 bezeichnen wir mit fi.
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Nach (8.2) und (4.1) ist f} in Polarkoordinaten durch die
Gleichungen

&, = FO [re"?, S(r)et¥, S(r)e %] =0,

YF()

— . . . 4.2
D, =FD [re™*?, S(r)e™*¥, S(r)e'¥] =0 (42]
gegeben.
In jedem Punkté Q C £}, wo keine der drei folgenden Relationen
(1) _
Fl=o, (4.8)
D(®,, D,) . 2 T ilo— =) 4
Doy = — #{2| Fg)l + 2S,Re[Fg) (FO&@-9 4 FOg@+v)]} —0, (4.4)
1 D@y, Py) FOr B iy- ),
- Do) = 2S, Im {FU[FN =9  Fle=i@+9)]} =0, (4.5)
(1) (1
Re = Realteil, Im = Imaginérteil, F;;lc) E%{;—l, S, = ‘;, FV = a—I;T, W=
k

3

besteht, gilt in einer geniigend kleinen Umgebung W, bzw. {2
erstens fir N} die Darstellung

2 =2, T) (4.6)
zweitens fir ¥ die Darstellung

r=1"0), ¢=9¢"(),

Zg = h[,,-(v) (w)eiw(v)(tp)’ S(r(v) (w))eiw, S(’r(v’('zp))e—i'l’], (4'-7)

wobei 7 (p), ® () regulire Funktionen der reellen Verinder-
lichen y sind. r® () ist dabei eine umkehrbar eindeutige Funktion
von .

Diejenigen 7 = |z, fiir welche Punkte {re??, s¢*¥} von f auf-
treten, wo mindestens eine der drei Gleichungen (4.8), (4.4),
(4.5) erfiilllt ist, wollen wir kurz Ausnahmekoordinaten von F}
nennen und stets mit R, bezeichnen. (Es kénnen natiirlich zu
einem R, mehrere Punkte {Rke""’(’), S(R,)et¥™ Lhp=12...,
gehoren, fiir welche eine der angegebenen drei Gleichungen
erfiillt ist.)

Die Voraussetzung beziiglich i, auf die wir bereits im § 1 hin-
gewiesen haben, besteht nun darin, daf die Menge der Ausnahme-
koordinaten hichstens aus abzihlbar vielen Ry,  k=1,2,...,
Ry < R,y besteht, die sich mirgends im Endlichen haufen. Wir
werden in diesem Falle kurz iiber eine 0-Kurve der Klasse B
sprechen.

Beispiel. Sei
#=E[s=1r, zn=t+ Itl%zl’ JM (2, ) = €¥WEF2) —1. (4.8)

a5’
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Es ist dann F®
F(z, t, f) = e2rirt+aVith _y,
N=E[2+t+zV|t|]=», v=0,4+1,+2,...]. (4.9)
In jedem Punkte von f} existiert die Darstellung (4.6), denn
aus (4.9) folgt

5= — [ V[t] + V]|t| — 4t + 4] (4.10)
Die Verzweigungsstellen (auBler t=0) befinden sich aufBlerhalb
von |[t| =12, denn der unter der Wurzel stehende Ausdruck

verschwindet nur fiir t:%v, und dann haben wir || = 472, d.h.

diese Punkte befinden sich auBlerhalb 3.

Um zur Darstellung (4.7) zu gelangen, ersetzen wir in (4.9)
2, durch 7¢'?, t durch r2*¥. Trennt man dann den Real- und
Imaginarteil, so erhilt man

G, = cos 2¢ + cos ¢ + cos p = 0, (4.9)
Gy = 7%(sin 2¢ + sing + sin p) —» =0, )
woraus

4

p=1ln

— ————, (4.7a)
[ 14 V9 _8cosy+ ) —6—8cosy+2V9_8cosy)

/ 8y
r= — —
V 8 sin p + V6+8 cos y + 24/9—8 cos 1/)[—1 4+ v/9—8 cos w]
folgt.
Fir cosp = — 1, sinyp = 41 verschwindet der Ausdruck

(648 cos yp — 2V 9—8 cos p). Man erhilt somit als Ausnahme-
koordinaten ‘

r=4% v=0,1,2, ... (4.10)

Fiir alle anderen Werte von o sind die Ausdriicke (4.7a) regulére
Funktionen von %, und wir miissen nun noch feststellen, fiir
welche r der zweite in (4.7a) auftretende Ausdruck nicht um-
kehrbar eindeutig ist.

Zu diesem Zweck wollen wir feststellen, fiir welche Werte

D(G,, G* . G
DGy ) verschwindet (G;“ = _2)
D (g, y) r2

Wir miissen somit Werte — bestimmen, fiir die simultan die
Ty

drei Gleichungen
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G,=2cos2p+cosp +cospy —1=0

GF=2singpcosp + sing +siny —% =0
(4.11)
DG, GY

27 D(p,y)

= cos ¢ (2 cos ¢ sin ¢ + sin ¢) —
sin (2 cos? ¢ — 2sin%? ¢ 4 cosp) =0

bestehen. Aus G; = 0 erhalten wir

cos y(2 cos ¢ + 1)sinp = (4cos2p + cosp — 2) V'1 — cos?y.

Ersetzt man aus G, =0 cosy durch — (2 cos? p+cos p—1),
so erhalten wir
[2 cos? p - cos ¢ — 1]2 [4 cos ¢ + 1]2 [1 — cos2p) =

[4 cos? @ 4 cos ¢ — 2] [1 — (2cos? @ 4 cos ¢ — 1)2].
Man erhilt als Losungen dieser Gleichung
cosg = —0,9; =0,26; = 0,536.
Berechnet man nun aus G, =0 die entsprechenden w, so

erhilt man aus G¥ =0 neben den in (4.10) angegebenen die
folgenden Ausnahmekoordinaten R,

V1,980 V'1,792v, V1,299,

L v—=1,2,... (4.12)
70,761 /0,4205v, V0,369, ’

Betrachten wir ein Intervall »® < < 7@, das keine Aus-
nahmekoordinaten R, enthilt, und bezeichnen wir
e
8% = o F[r, S(r)] =
r=rt)

=E[z, = h(z, 4, 1), [t] =S(|z1])s 70 Z|zy| < r@]!

(4.18)

Nach dem Heine-Borelschen Satz gibt es zu jedem Punkt’
Q, {r%?’, S(r°)e™¥’} von £f! = f-8* eine Umgebung

B=Elr—r<e lp—¢"|=® [p—y"|=¥ (414)

so daf} fir f§ [bzw. N2] in {5 [bzw. in N,] die Darstellungen (4.7)
[bzw. (4.6)] gelten und durch diese Darstellung alle Punkte,
die in dieser Umgebung liegen, erschopft werden. (Dabei sind
0, @ und ¥ > 0 und unabhdngig von der Wahl des Punktes.)
Insbesondere werden auch die Flichen E[r =" + po],
p=0]1,..,P—1,Po=7? W E[lp=Id],1=0,1,...,.L —1,
L® = 2x, durch £ in einer endlichen Anzahl von Punkten ge-
schnitten, deren Projektionen auf die y-Achse wir (der Grofle
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nach geordnet) mit y® bezeichnen. Indem wir ev. zu groBe
Intervalle [y, »®*V] in endlich viele Teile t} = [y, ¥y i1l
Yo < Y4, unterteilen®) (wir brauchen die neue Einteilung nur

,Z(
e
v 7 } - —_— o
29 e g
Y [ y,r_y}gﬂ}g“fyf”’)/u&*fy/"” Yours

Fig. 3.10)

so zu wihlen, daB die Linge der t. <¥ wird), erreichen wir,
daB &*3 in endlich viele Teile

hy=BElOSp=(+1)0, 9, <y<yy., r+pesr=r®+(p+l)e] (415)
1=0,1,2,....,L—1, a=1,2,...,b, p=0,1,..., P—1,

zerlegt wird, und daB fj - f3,, entweder leer ist oder einen Kurven-
zug pl, bildet, der in §},, die Darstellung
+

Voo =Elzx =2 (y), t=S([5W)])e¥]  (4.16)
zulaBt, wobei |2 ()| eine wmkehrbar eindeutige Funktion von
y, p C tl ist. (Dabei existiert eine Umgebung W, ,, i, C Wy, WO
%2 die Darstellung z, = 2\ (¢, {) zulaBt.)

In jedem Hyperflachenstiick

%) Sowohl die alten Teilpunkte ¥ wie die neuen werden durchweg mit 1,
bezeichnet.

10) In der Abb. 3, wo ein Stiick E[0 < ¢ < 27, yo <9 < pars, 1V <2y <7(®)] der
Hyperfliche 8 auf einem rechtwinkligen Parallepipedon des rgy-Raumes abge-
bildet wurde und vorausgesetzt wird, daB L = P = 2 ist, wurden die Schnitte
von f! mit den Flichen |z| = o, ¢ = & mit kleinen Kreisen angedeutet.’ Ihre
Projektionen auf die y-Achse sind die Punkte PO = Py ) =y,
p¥+2) — gy, .. Da aber die Projektionen der durch diese Einteilung entstandenen
Teilstiicke von f; groBer als ¥ sind, wurde weitere Zerstiickelung vorgenommen,
so daB das Intervall [y, ¥uss] durch die Punkte g, k = 1,2, 3. 4, unterteilt
wurde. Die Kurvenstiicke py, wurden punkt-strichliert, p&ﬂ’l volldick, Pg4sa
volldiinn, P,, . ¥ = 1,2, wellenartig, px+y, ¥ = 1,2, punktiert ausgezogen.
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L—-1 P-1
Wl = o f,=E[r®<r<r®, 0<¢=2n, y,<p<y,,,] (4.17)
=0 p=0

wird somit eine endliche Anzahl, etwa a,, von Kurvenziigen p,,

v=1,2,...,a, liegen, von denen jeder ein umkehrbar eindeu-
tiges Bild des Intervalles t} = [y, ¥y 1] ist. Es ist

b Qg
Br=o & ppyte (4.18)
a=1 r=1

wo ¢ die Menge von (endlich vielen) Punkten von f#! bedeutet,
deren y-Koordinaten die Werte y,, «=1,2,...,b haben.

§ 5. Einfiihrung eines Umlaufssinnes auf f.

Den Betrachtungen des § 4 gemifl [vgl. insbesondere (4.6)]
koénnen wir 02 in der Umgebung W, 1) (vgl. § 4, S. [12] 816 von {3 in
der Form z; = 2" (s¢'¥, se~*¥) darstellen. Fiir n! = N2 - (yp = y°)
gilt dementsprechend die Darstellung 2, = 2{*) (s¢™¥°, se~*¥"). Auf
jedem nl = n' -1, fithren wir einen bestimmten Umlaufssinn ein,
namlich denjenigen, der den wachsenden s entspricht. Die so
orientierte Kurve n} werden wir mit T} bezeichnen.

Sei y £ yu. (v, bedeuten die im § 4, S. [12], 816 eingefiihrten
Endpunkte der Intervalle tl.)

Da 7" (y) [s. (4.7)] eine umkehrbar eindeutige Funktion von
p ist und f, =W, -8*3 ist, liegt auf n} nur ein Punkt P von .
P zerlegt vy, in zwei Teile, von denen der eine in |t| — S(|z|) > 0,
der andere in |t| — S(|2,]) <0 liegt1?). Denn im Punkte P ist

s — S[| 2 (se™¥, se=¥)|]=0 (5.1)
und nach (4.4) ist

%{s — S[|a" (se*¥, se”W¥)|1} =

dzﬁ")

=" .
=1 +%5f'[d—§e“"’ Pt e

A & (5.2)
1 ,—iy—p) T tlp+y) |
+ @ ¢ + a ¢ ]
2Ilel2 + ZSr’ Re[le(Ftei(W"’l’) + Fiei(¢+w))]
= 2 #09
2| F,|

1) Wir benutzen in diesem Paragraphen der Kiirze halber an Stelle des Doppel-
indexes (av) bzw. anstatt (lap) den Index (v).

12) Vgl. Abb. 2a oder 2b, in der allerdings bei n' die Bezeichnung ‘J?’o steht,
eine Bezeichnung, die sich auf die Vereinigungsmenge aller n! bezieht, die auf-
treten, wenn y im Intervall [0, 2r] variiert.
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= F, & Fy
da nach (4.1 Lo L = 2 ysow. nachdem
(4.1) dt F, > ooodt F ist. Je

in einem Punkte P C £ (5.2) positiv oder negativ ist, definieren
wir in dem entsprechenden Punkte P auf ¥f' denjenigen Um-
laufssinn, der den wachsenden bzw. abnehmenden v, entsprichi.
[Vgl. die Darstellung (4.16) von pj, (£ =S p; +e).]

[Im ersten Fall befindet sich derjenige Teil von T, der den
kleineren Werten von s= |t| entspricht, in s— S(|z]) >0,
der andere Teil in s — S(|z|) <0, d.h. die Kurve 1}, fithrt aus
s — S(|2;|) > 0 heraus, im zweiten Falle ist es umgekehrt, d.h.
die Kurve T} fithrt in s — S(|2,|) > 0 hinein.]

Die so orientierte Kurve ff! werden wir mit ! bezeichnen,

die einzelnen Kurvenstiicke, aus denen f¥! besteht, entsprechend

mit P! [vgl. (4.16)]. Wir ordnen schlieBlich £}! die Funktion
u(P) zu, wobei u(P)= -+1, wenn in P der Ausdruck (5.2)
positiv, u(P) = — 1, wenn in P (5.2) negativ ist.

Nach den Ausfiihrungen im § 4(3 S [9] 313) entspricht jedem
r =g ein einziger Punkt {z; = 0¥, t = S(p)e™’} von p}. Auf
der Kurve

b0, y°) = {z = 0", t=S(0)e™', 0 <p=2a}  (5.3)

konnen deshalb hochstens ¢ =0 PL Punkte Py (o, v°), k=1,2,...,p,
p =g, von ! liegen. (Im allgemeinen werden sich auf vl(p, »°)
iiberhaupt keine Punkte von f5! befinden.)
Wir setzen
(0, zpo)
6(0, ¥°) = ; JU’[PL (0w ):! . (5.4)
Bezeichnet man mit d;(e, 9°) [bzw. d,(g, v°)] die Anzahl der

Punkte von f'},, die auf p'(o, °) liegen, und in welchen f(l, dem
wachsenden [bzw. abnehmenden] y entsprechenden Umlaufssinn
hat, so ist

o(o, ¥ )"5(0’#’)—52(9:'/))

Unseren Ausfithrungen geméif treten in Punkten P, P, C b(p, °),
0.(0, ¥°) Zweige p} in |t| — S(|21]) > 0 ein und dy(p, y°) Zweige
pl aus [t] — S(|2;|) > 0 aus. Andererseits ist der Unterschied der
Anzahl der Nullstellen von F[z, S(r)e'¥] im Kreise |z| =< r fiir
r=p+¢ und r=p —¢ bei geniigend kleinem ¢, gleich dem
Unterschied, der die Flache §3- (y=1%°) in Punkten P, P, Cb(o,y°),
durchstoBenden, in |#| — S(]|2;]|) > 0 eintretenden und aus
|t| — S(|z|) > 0 austretenden Zweige pl (s. Abb. 2b), so daB
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man die Beziehung

»(0, ¥°)
ki_ll u[Prlo, ¥°)] = 8(e, ¥°) = 6;(0, ¥°) — d5(0, ¥°) =
=lim{n[o+& F;l(z S(o+e)e¥)] — (5.5)
e—>0

—nlo—s Fpl(z S(r— s)ei"’o)]}
erhalt.

§ 6. Erweiterte Funktionenklasse. Die Integraldarstellung.

Die Funktionen H(z,, 2,) der erweiterten Klasse mogen dadurch
definiert werden, da3

1. H(2, ;) in jedem analytischen Flichenstiick §5(2;), [2,| <7
eine harmonische Funktion der Verdnderlichen x,, y, bildet;

2. H(z,3) in jeder Lamelle §%(¢), |t| =s [vgl. (2.4)] eine
harmonische Funktion der Verinderlichen z; bildet, m.a.W.
H[z, h(2y,t)] fiir jedes feste ¢, |t|=s, und |z;| <7 eine har-
monische Funktion der Verinderlichen #,, y, ist.

Wir gehen zur Aufstellung der Integralformel tiber und wollen
zunéchst einige Abkiirzungen einfiihren.

Sei w(z,, 27), w(0,%)=0, w'(0,2)>0 diejenige Funktion,

5, g XCH
[ i e Y [ \
SLet¥ w o %)
FKiZ)
t-Ebene z,-Ebene (2, = Z,) w-Ebene

Fig. 4.

welche das Gebiet J5(2;) auf den Kreis vom Radius s abbildet
und (2, 2,) = arc w(=2y 2;). [arc w = Argument von w.]
Wir setzen
2 __ 2
P,[re'®, Rye'®:] = %! T _’271 R’f;os " (6.1)

Pylw(rye'®s, Z,), w(Rye'P:, Z,)] =
! st — |w(Rye' P2, 2,)|2 ,(6.2)
T 2781 + w(Rye P, Z,) |t — 2s|w (Rye* P2, Z,) | cos[x(rse’ P2, Z,)— g (R P2, 2,))]
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rz—ﬁRleidjl
r(a— Rlei@l)
Y, [, w(Ree'®P2, Z,), w( Ay, (Z,), Z1)] =
S (A4 (Z1), Z,)w(Ree' P2, Z,) (6.4)
s[w (A (Z,), Zy) —w(Re™ P, 2,)] |
Dabei is 7,62 = h[ Z,, se™¥, se~™], Rye'P:=h[Z,, Se¥, Se~¥].
4,,(Z,), k=1,2, sind die Null- bzw. Polstellen von f[Z;, z],

Z, = const.
Nach der Jensenschen Formel ist 13)

log lf(ZI’ Zz)l =
o7
:f log | f(Z1, 23) | Po[w (20, Z1), w(Zs, Z1)]dy (30 Z1) +
0

¥, (r, R1e"P1, a) = log , (6.8)

=lo

(6.5)
2

+kZ (=1 X W, [ s, w(Zy Z4), w(A(Z4), Z1)]s Z, = Ry,
=1 »

In jedem {%(¢) ist wieder nach der Jensenschen Formel (der
Annahme 2 gemil)

log | /(Zy, 2,) | = log | f{ Zy, B(Z3,1,8)]| =
27
= [ log| Tz hiz, t, ]| Pilzy, Zy]dp +
0

3 (— 1S B[r, Zyy ap(t)],

k=1
wo a,(t), k=1,2, die Null- bzw. Polstellen von f[z, h(z, ¢, 7)],
t const., bedeuten, die <r ausfallen. Aus (6.5) folgt:

log |£(Zy, Zo) = | | log| [z hlaw t,D)]]-

(6.6)

0
Pl[zl’ Zl] * Pz[w(zz’ Zl)’ w(Zz, Zl)] d(de(zm Zl)+
"5 (1) . (67)
+[ 2 (1) S E[r, 2, 4 (0)]
0 = v

. Polw(zy, Z1), w(Zy, Z1)]dx(2y Z1) +
+ 2 (=1 T W, w(Zy Z2), w(44(21), 21)]

§ 7. Die verallgemeinerte Jensen-Nevanlinnasche Formel.

Setzt man in (6.7) Z; = Z,=0, so erhdlt man mit Riick-
sicht darauf, daBl %(0,¢,7) =t und y(z,, 0) = yp ist,

13) Falls das Gegenteil nicht hervorgehoben wird, sind die Integrale im Lebes-
gueschen Sinne zu verstehen.
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»

1 27T ~27T . . . .
log |f(0, O)I == _[ J. log ]f[re“”, h(re'?, se'?, se““”)]| dpdy +

(7.1)

2 k Ty
+2<—1> f [ZlogI | +3 (-1) Slog

Wir setzen nun f= ;—1, wo f; und f, zwei ganze teilerfremde
2

Funktionen sind, und fiihren die folgenden Bezeichnungen ein:

F(zp, t)=f[21, h(z1, 1, 1)), Fr(zp, )= filz1, h(21,8,0)], k=1,2, (7.2)

m(r, s, f) 14):— f j 1og]F(rew s¢'%)| dg dy, (7.3)

N(r,s,f)——f [ZlogI =W)|]d1P+§IOg|T:(0_)|: (7.4)

Il

[J log | Fy(re'?, se™)| dp — log | F,(0, sei’/’)\] dy +
' 1 (= .
+ L [Tlog 1400, 5e)| dy — log |£,(0, 0)] =
0

— ;—,,f NI, Byt se)] dy + Nis, f740,5)]. (7.5)

Unter Benutzung dieser Bezeichnungen schreibt man (7.1)
log |f(0, 0)] + m(r, 5, f1) + N(r, 5, 1) = T(r, 5, f), (7.6)
T(r, s, f) =m(r, s, f) + N(r, s, f) . (7.7)
Indem man in iiblicher Weise vorgeht, gelangt man zu dem

Satz: Sei f(z, 2,), f(0,0)#a, eine in |z| <o, k=1,2,
meromorphe Funktion, die im Anfang regulir ist. Dann ist

m(r, s, (f—a) '] + N[r, s, (f—a) ] =T, s, f) + h(r,s). (7.8)
wo

|k(r, 5)| < |log | f(0, 0) — al| 4 log|a] 4 log 2 (7.9)
18t.

14) Diese und andere GroBen, sofern sie sich auf den Fall der F. v. 2 k. V. bezie-
hen, bezeichnen wir mit fetten Buchstaben im Gegensatz zu der Bezeichnung
mit gewohnlichen Buchstaben der entsprechenden GroBen im Falle der F.1k. V.
Wird der Operator N, n, m bzw. T bei einer F. v. 2 k. V. gebildet, wobei eine der
Verinderlichen als ein fester Parameter auftritt, so wird diejenige Verinderliche,
auf welche sich der angegebene Operator bezieht, stets mit z bezeichnet.

21
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§ 8. Bldtteranzahl einer Fliche in einem analytischen
Hyperfldchenstiick.

Sei fi (21, 2,) eine ganze a. F.v. 2k. V. z;, 2, und

n[ry, Fil(z, t)] Fi(s t) = fr (2 h(z1, £, )], (8.1)

die Anzahl der Schnitte der Fliche M = E[ fi(zy, 3;) = 0] mit

der Lamelle J3(¢) [vgl. (2.4)], d.h. die Anzahl der Nullstellen

ap(t) von filz, h(z, t,f)], t const, |a(t)] <7 (Man kann

natiirlich (8.1) als die Anzahl der Schnitte von F(z,¢) mit

t = const, |z| = r definieren.)

Als die Bldtterzahl von %5 in dem analytischen Hyperflachen-

27 27T

stiick € = JE(s e'¥) [mit der Mantelfliche F(r, s) = o5 il(sc®¥)
w

=0 p=0
(vgl. (2.5))] bezeichnen wir den Mittelwert

Alr, s, fi1]l= 21_7]“ nlr, F;1(z, se'¥)]dy. (8.2)
0

Einige FKigenschaften wvon nlr, F;'(z, S(r)e'¥)] und won
Alr, S(r), £ 1]1).

1. Fir jedes r, << oo, s;<< o0 gibt es ein C, so daf
Arys, i)y =C+ l log | f.(0, 0) H ausfdllt. wenn r < ry, s < s, ist.
Denn, wie wir nachtriglich zeigen werden (s. Ila, S.[261330 ), ist
A(r, s f77) < (log k) "IN (K%, s, fi'1), 10 > 1. AuBerdem ist nach
(7.3)

27T 27T
N (Ko, s, fi') = a2 f f log |F(k0re'®, se™)| dpdy — log | (0, 0)]
0 0
da nach (8.1) und § 2 F,(0, se’¥) = f,(0, se'¥) ist. Da f,(zy, ;) eine
ganze Funktion ist, existiert ein C, so daB | F,(k%re'®, se™¥)| < ¢°,
fur » < ry, s < 8, ausfallt.

2. Sei B=E[r® <r <r®] ein Intervall, das keine Aus-
nahmekoordinaten R; enthalt. (Wegen Ausnahmekoordinaten
vgl. § 4.) Sei ferner &% das Rechteck rV' < r <7, 0 S p < 27
der ry-Ebene.
nlr, FY(z, S(r)e™®)] ist eine in £ beschrinkte Funktion. Da

nlr, Fil(z, S(r)e™)] = n[r®, Fi'((z S(r)e®)]  (8.3)

ist, gentligt es, unsere Behauptung fiur die rechtsstehende GroBle
zu beweisen. Fiir jeden festen Wert S(r)e™' ist dieser Ausdruck

15)  Wegen S(r) vgl. § 3.

-
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als Anzahl der Nullstellen einer in |z| < r® regulidren Funktion
F,(z, S(r)e*¥) beschrinkt. Da S(r) eine monoton wachsende und
stetige Funktion von »r ist, nimmt S(r) fir »@ < r < @ alle
Werte eines Intervalles, etwa des Intervalles [SM, S®], an.
Wire nun n[r®, F;(z, Se'¥)] in dem Rechteck SO < S < 5@,
0 < v = 27, nicht beschriankt, so miilite eine Folge {S(m), (™},

m =8, 4,..., existieren, so daBl lim n[r®, F;1(z, S‘m’e"’/’(m))] =00
wird; diese Folge mii3te einen mH_é)i:;fungspunkt, etwa {S©, ¢},
haben. Es miiite deswegen ein Punkt z; =2 und eine Funk-
tionenfolge F,[z, S(™») e“"’(m”)], p=12,..., existieren, so daB
F [z, S2e®™] fiir geniigend groBe p in B2 = El|z, —2 < 04]
(o, hinreichend klein) beliebig viele Nullstellen besitzt. Anderer-
seits kann Fylz;, S ©¢i#™)] nicht identisch verschwinden, da sonst
Fy[z, S©¢¥"] =0 wiire. Der Schnitt %2 E[ Fj(z,, S@e¥") =0]
wiirde eine Kurve bilden, so daB £ - (y = y®) eine ganze Kurve
enthalten hitte, was aber unmoglich ist, da ja nach den Aus-
fiihrungen im § 4 (vgl. S. [12] 316) £ - (p = »®) aus endlich vielen

isolierten Punkten besteht. Da nun F,[z;, S®e ¥ @) ] nur endlich
viele Nullstellen hat, ist es moglich, eine geschlossene, B} ent-

haltende Kurve g' zu ziehen, auf der | Fy(z,, S‘O’ei’/’(o))| =Za>0
ist (e hinreichend klein). Infolge der gleichméfigen Stetigkeit

von F, (2, t) existiert eine Umgebung B =E[|t—S ‘O’eiw(o)[ = 02]
(05> 0, hinreichend klein), so daB fiir z; C g', ¢ C 82, | Fy (2, 1)| = %

ist. Da F, (zy, t), lezba—fk, in g' X B3 beschrankt und die Anzahl »(t)

der Nullstellen von F(z,¢), ¢t const, innerhalb von g' durch

L [Inln D% eben ist, ist w(z) fir ¢C B2 Keiner als ei
Py fm gegeben ist, ist »(t) fiir ¢ C B; kleiner als eine

g2
feste Konstante, was 1m Widerspruch damit steht, daB

lim v[S‘ma)e“/’(m”)] = o0 ist. nfr, Fy(z, S(r)e¥)] muB nun somit
p—>®
in 82 beschrankt sein, w.z.b.w.

3. In jedem Intervall 1 = E[r?V) < r < r®] das keine Aus-
nahmekoordinaten enthdlt, ist Alr, S(r), f~] eine Funktion von be-
schrankter Schwankung. Um dies zu beweisen, wollen wir fiir
die Schwankung von n[r, F;1(z, S(r)e?¥)] eine von o unab-
hangige obere Schranke angeben.

nlr, Fi(z, S(r)e™")], v° const, (8.4)
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ist eine in I! abteilungsweise stetige Funktion. Sie erleidet nur fiir
diejenigen Werte von r einen Sprung, fiir welche nj = 93 - (y, = 99)
dic Fliache 8*3 . (p =y°) durchsetzt, d.h. wenn fiir das betreffende
® und r sich auf :

ol(r, p°) = K[z, = re'?, t = S(r)e?¥’, 0 < ¢ < 2x]
ein Punkt von f*! befindet. Nach den Ausfithrungen des § 4 ist
= cS’ pL + e, wobei p! durch (4.7) gegeben ist. Dabei ist 7*)(y°)

y=1
eine umkehrbar cindeutige Funktion von ¢, so dafl in der Um-
gebung ), wo diese Darstellung gilt, jedem gegebenen r nur
ein Punkt von ff! entspricht. Andererseits ist die Anzahl der
Umgebungen {3 endlich, etwa ¢, so daB auf der Kurve b(r, y) héch-
stens ¢ Punkte von {7 liegen. In jedem Punkte von f erleidet
(8.4) einen Sprung, der gleich 4 1 oder — 1 ist, so da3 die Ge-
samtschwankung von (8.4) in I* hochstens gleich ¢ ist. Nach
(8.2) folgt, daB auch die Gesamtschwankung von A[r, S(r), f71]
beschriankt ist, w.z.b.w.

Mittlerer logarithmischer Abstand Lr, s, f~'] zwischen z; =0
und dem Durchschnitt 9 -ei(r, s). (Wegen e} vgl. (2.5).) So
bezeichnen wir den Ausdruck

L[r, s, f 1]_—j { Y logla,(se®)}dy,  (8.5)

lay(se?)| =7

wo a,(t), v=1, 2, ..., die Nullstellen von f[2;, h(2,, ¢, {)], ¢ const,
die < r sind, bedeuten.

§ 9. Das i-te Moment D;[r, S(r), f*] der Kurve ;.

Betrachten wir ein Intervall {9, r} in dem etwa k Ausnahme-
koordinaten R,, » =1,2,...k, liegen. Wir verstehen unter
dem A-ten Moment D7, S(r), f~'] desjenigen Teiles von fj, fiir
dessen zl-Koordinaten 0= |2 <o gilt:

- . s R—eldA k 18 (R, (148 dA S [TdA
DA[Q,S(Q)’f_l]T":hm f =] e ]+

e,,—>o Y 4
Ry+6x R.+&;
E [A(Re+ee S(Ry+6,), 1Y) A(R,—e, S(R,—e), )
+ [%2;41[ ey — Y ]] ; (9.1)

r# R, A= A[@’ S(e), f ]
wo ° f das Stieltjessche Integral bedeutet.
Wir wollen zeigen, dal der Ausdruck (9.1) von der Art des
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Grenziiberganges (d.h. von der Art, wie die ¢, gegen 0 konver-
gieren) unabhéngig ist. Durch partielle Integration erhélt man
namlich

szK+1—8%+l dA [e’ S(Q), f—l] — A[Rn+1*“8n+1’ S(Ryp1—8x41)» f_l] .

Qz (Rn+1_‘€x+1)}'

R, +&y

ARt SEate [T ) T~ Alg, S(o), ] dt
(Rn"'ez)l 1+1 ?
R, +¢&,

so daB

R, —¢
1T Ao, S(e), S
D;[0, S(e); I 1]7‘(0) = Alim {f —['QAT_]dt—l—

Ex—>0 (0)

Ryr1—x+1 Ao, S(o), f* Alp, S(o), [
+Zf ”‘[W—]dt‘f“f =L T g Jdt} (9.2)

R, +&x Ryt+e,
ist. Danach § 8,1 (vgl. S. [18] 322) A gleichméBig beschrinkt ist,

existiert fiir (9.2) der Limeswert unabhéngig von dem Grenz-
iibergang der &,— 0.

Bemerkung. A[r, S(r), f*] braucht offenbar nicht fir jeden
Ausnahmewert R, unstetig zu sein. Dementsprechend werden
wir R, als Ausnahmekoordinaten erster Art bezeichnen, wenn
A[r, S(r), f*] in R,, einen Sprung erleidet, als zweiter Art, wenn
Alr, S(r), f*] in dem betreffenden Punkte R, stetig bleibt. Es
geniigt offenbar in dem zweiten in (9.1) auftretenden Ausdruck
die Summation iiber die Ausnahmekoordinaten erster Art zu
erstrecken.

§ 10. Interpretation von D;[o, S(o), f1], .

(9.1) stellt eine Summe von zwei Ausdriicken dar. Wir wollen
in diesem Paragraph eine Interpretation fiir den ersten dieser
Ausdriicke geben. Er besteht (fiir jedes feste 7) aus einer end-
lichen Anzahl von Integralen, wobei die Integration lings Inter-
vall [R, + ¢, R, ,—&,,,] erstreckt ist, die keine Ausnahme-
koordinaten R, enthalten. Wir werden zeigen, da3 diese Integrale
gewissen Kurvenintegralen gleich sind, welche lings desjenigen
Teiles von i% erstreckt sind, fir dessen z-Koordinaten r® < |z | <7,
|2 |Q[R, —&p R+ &) x=1,2,..., k gilt.

Wir beginnen damit, daB3 wir zeigen, dal man in dem zwei-
Jachen Integral



326 Stefan Bergmann. [22]

lld {f nn[g, F~Y(z, S(o0)e™¥)]dy ¢, (10.1

14

r(2)
(z _ 1
Dile.S(e). /10 = 1 |

r(1) 0

Jalls [r®), y@] keine Ausnahmekoordinaten enthdlt, die Integrations-
reihenfolge vertauschen darf.

Im § 8,2, S. [18] 822, haben wir gezeigt, daB n[r, F~1(z, S(r)e?)]
— das wir in die sem Paragraphen zur Abkiirzung mit n(r) bezeich-
nen werden — in ¥ =E[r® =< r < 7®, 0 < yp < 2x7] beschrinkt
ist, etwa kleiner als u. Sei nun vV =7y, r,, ..., r, = r? irgend
eine Unterteilung des Intervalles [rV), ], Es ist

m—1 n(7v+1)_‘"(7v)

vt T
m1n(r,,,) n(r,) M1l n(r,.,) (Typq)
= E[ — ]"I‘ 2[ —m—]é 10.2
=1 Tﬁ-{-l v V=1 ,',1" "f;n ( )
_n(r) ”(Tm) 1 1 1 1
< [ _ i

d.h., es existiert fiir die beirachteten Swummen eine obere von
und m unabhdngige Schranke. Nach einem bekannten Satz von
Lebesgue ist

m—1 (2% .
lim _L z I:n( 1) n(rv):l d'l/«' _

m—> o 7 r=1 po 1':

(10.3)
1 7 n(r )—n(r,)
_ [hm 2 et dy,

27 m—> ® P=1 Tf: B

d.h. in dem zweifachen Integral (10.1) darf die Integrations-
reihenfolge vertauscht werden. Es ist also

T( ) 1 27T (o 1‘(2) dn[T, F—l(z, S(T)gﬂﬂ)]
D[, S(r), {10 = dy. (10.4)
0

27 %
(1)
Fiir jedes feste = y° ist n{r, F(z, S(r)e'¥’)] eine abtei-
lungsweise stetige Funktion. Sie erleidet fiir diejenigen Werte von
r einen Sprung, fiir welche auf

ol(r, y°) = B[z, = 7¢'?, t = S(r)e®¥’, 0 < ¢ < 2z, » const] (5.8)

— M. (p=y0) die Fliche Gyo==8*.(p=1y°) durchstoBt,
d.h. wenn auf pl(r, °) Punkte von f} liegen. Die GroBe des
Sprunges (mit entsprechenden Vorzeichen) wird nach (5.5)
gleich 4(r, 9°). Die Anzahl dieser Sprungstellen ist beschriankt
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(und zwar gleichméaBig in %), denn nach § 4 kann es fiir ein festes
w = 9° hochstens bLP Punkte (z,,¢) von fj' geben, fir die
arct =19 ist. Bezeichnen wir diese Sprungstellen mit #® (y?),
B=1,2,... y(%°, so ist somit 16)

: VW) o[16) (), )]
D 5‘,4“3:34f PRV gy
l[?‘, (r), f ]1() o ﬁ§1 [T(ﬁ)(w)]/' dy (10.5)

Nach (5.4) ist es weiter

(@) y(w) p[r“”w v u[e (O () M),
D,[r, S(r), 1y =— f —= 2 L dy, (10.6
27 S), f T { D] i (10.6)
WO
P rPy), v], k=1,2,..., p[r®(y), y]

die auf v1[r#)(y), v] liegenden Punkte von £ bedeuten.

In § 4 haben wir [0, 27] in b Teilintervalle t! = [y, Yoi1l,
a=1,2,...,0b, zerlegt, so daB auf jedem Hyperflichenstiick
w3 [vgl. (4.17)] der darauf liegende Teil von £ aus a, Kurven-
stiicken pl,, v=1,2,..., a, '7) besteht. Dabei wird durch die
Zuordnung y — P{z{™ (y) (|z(°“’) (p)|) €%} eine umkehrbar ein-
deutige Abbildung von t}c auf pi, geleistet. Die Punkte

Pk[r(m(wo), WOJ’ k=1,2,..., P[T(B)(w"), ’/)0]’ g=1,2,... y('l)o)’
sind somit mit
P{zﬁ“”)(ip"), S(|z§°“’)(¢°)|)e“/’°}, y=1,2,..., a4 p°CtL,

(abgesehen von der Reihenfolge) identisch, und da definitions-
gemiB (vgl. S. [12] 316) | 2" (y°)| dem entsprechenden r'# (y°) gleich

ist, konnen wir

Vg” p[’(ﬁg"” W u [P (), )] quren S HEET @) )]
B=1 k=1 [P v=1 [ W]
ersetzen. Da die Anzahl der Punkte y, endlich ist, so daB3 man

bei der Integration diese p-Werte vernachlidssigen kann, ist

Yar1 | %a 2 ,
D, 0051 = Ef {;“’,im,::;,:””}dw 107)

16) Fir jeden von 78 (y°) verschiedenen Wert von r ist J[r, y°] = 0.
17)  VWir schreiben weiter der Kiirze halber P(zi"‘”)(zp), y) anstatt

P[z(“”) ) g(| z(ow) (‘P)l) eiw] .
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Beriicksichtigen wir, daB {z/*!(y), S(| z,*" () |)¢¥} das Kurven-
stiick py, durchléduft, wenn y das Intervall [y,, v, ,] durchlauft,
wobei u[P(2(*)(y), p)] gleich 4+ 1 bezw. —1 ist, je nachdem
die Bewegung im Sinne der wachsenden bzw. abnehmenden y
geschieht, und daB die Kurve pl, dementsprechend orientiert
wurde, so erhalten wir weiter

D;[r, S(r), f2 ] =

b a b a
1 = V[P @) )] 1 x f
T 2n e — 2 X 1
2 Z]. v2=:1 |Z(°‘v)(1,0)|l 2n =1 v=1 |z(°"’)( )l;_ ( 0. 8)
’ Yoo

Da (abgesehen von der Menge der Punkte von f!, deren
[

y-Koordinaten die Werte y,, « =1,..., b, haben) £l = c§ o pL,
ist, erhalten wir aus (10.8) schlief8lich x=1v=1
e 1 J’ dy
D;le, S(0), 7w = 3 *—lzl(w)l" (10.9)
1

Der erste auf der rechten Seite von (9.1) auftretende Aus-
druck setzt sich aus endlich vielen Integralen Dy[r, S(r), f-1]
zusammen, wobei in jedem die Integration lings eines Inter-
valles erstreckt ist, das keine Ausnahmekoordinaten R, enthilt.
Nach dem in (10.9) erhaltenen Ergebnis ist D*[r, S(r), f~!] in
diesem Falle ein Linienintegral langs desjenigen Teiles von El,, fiir
dessen z;-Koordinaten

r® <z =7, || [R,—¢& R,+6], x=1,2,...,k (10.10)"

gilt.

Wir haben bis jetzt stets im z;i-Raume operiert. Man kann
natiirlich die Integration an Stelle langs der Kurve ‘f(l, des
z,t-Raumes, ldngs ihres Bildes'f)ﬁ des 2;2,-Raumes erstrecken, da die
z,-Koordinaten in den entsprechenden Punkten {z;,f} von
T und {2, 2, = h(z,, 1, I)} von b} die gleichen sind. Da h(zy, ¢, f)
eine eindeutige Funktion ist, konnen wir auf b’g den Umlaufssinn
festsetzen, der dem im § 8 angegebenen Umlaufssinn von % ent-
spricht. Wir miissen nur noch eventuell beriicksichtigen, daf3
h(z, t, T) nicht tiberall umkehrbar eindeutig ist. (Vgl. die Aus-
fihrungen auf S. [8] 812). Unter Umstdnden miissen wir
deshalb einzelne Punkte von b} als mehrfach iiberdeckte Punkte
betrachten.
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Bemerken wir schliellich, daf3 durch eine geeignete Festsetzung
der Art, wie die ¢, gegen 0 konvergieren sollen, man erreichen

kann, daB lim D;[ e, S(e), f~1]7, durch D;[¢, S(e), f—l]:o) ersetzt
r—> 0
werden darf.

Eine Interpretation des zweiten auf der rechten Seite von
(9.1) auftretenden Ausdruckes, der mit dem Verhalten von £}
der Umgebung der Punkte mit |z,| = R, verbunden ist, ist bis
jetzt nicht gelungen.

§ 11. Bezichungen zwischen N, A und D,.
Ia. Ist fiir jedes ¢ > 0
Alr, S(r), f1] = Cle)r*e, Ce) < o0, (11.1)
so existiert fiir jedes A > p

lim D,[ 0, S(0), /" ]"e)- (11.2)

r—>

Zu jedem A > yu kénnen wir ein ¢ so finden, daBl 2 > u -+ ¢ ist.
Nach (9.2) ist somit

T o dr AC 1 1
e, S(e) f1 ]y =AC f T = T [(T(o))l—,u—e _Ti_w] (11.8)

7(0)
woraus folgt, da8 D;[e, S(e), f‘l];(o) (gleichmiBig in 7) beschrankt
ist. Wahlt man r(©® geniigend groB, so wird der in (11.8) rechts
stehende Ausdruck beliebig klein, woraus die Existenz von
(11.2) folgt.
Ib. Euwistiert (11.2), so st

Alr, S(r), f1]< Crt, C < o0, 1> ro, (11.4)

aufer hichstens in einzelnen Punkten und in Intervallen, deren
logarithmisches Maf38) endlich ist.

Um Ib. zu beweisen, nehmen wir an, daB A[r, S(r), f!] = Crt
in Intervallen gilt, deren logarithmisches MaB unendlich ist.
Man kann dann eine Folge von Intervallen [ry,7,], [73 74l, - -
["2n—15 T9p)s-ss 7, <7,,;, mit unendlichem logarithmischem

18) Unter logarithmischem MaB3 der Folge von Intervallen [ry, 1,], [7y, 74],..-

N
[sn-1> Tan] verstebt man bekanntlich 3, [log 7, — log 7]
k=1
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MaB3 finden, in denen die angegecbene Ungleichung gilt, wobei
die [ry, _;,7,,] und die [R, —¢,, R, + ¢,], fiir geniigend kleine ¢,,
keine gemeinsamen Punkte haben. Da A[r, S(r), f-1] =0 ist,
wiirde dann nach (9.2)

D;lo, S(e), f]jw =

S [T L dr

=1x J. C— = AC[logryy —logryy 4 +logray o —. . . — log r,],
k=1 Top—1

und es ist somit lim D;[e, S(), f]50) = o0 im Gegensatz zu

r—>®
der gemachten Voraussetzung.

IIa. Sei k(r) = k° > 1. Es ist dann

N[rk(r), s, /1]

. -1
A[h S’f ] = log k°

(11.5)
Da n[o, F-(3, t)], F(zy, t) = f[ 2y, h(2,1,7)] eine nichtabnehmende
Funktion von g ist, folgt aus

frk(r)n [Q’ F-1(z, t)] do

- — N[vk(r), F-(2,1)] — N[r, F(, t)] (11.6)

die Ungleichung
N[rk(r), F-Y(z, t)]—N[r, F~(z, 1)]
log k(r) ¢

n[r, F-Y(z, )] < (11.7)

) . oy e
Indem man ¢ = se*¥ setzt und auf (11.7) die Operation %J‘ Loody

0
anwendet, erhidlt man nach (8.2) und (7.5) die Ungleichung

N{rk(r), s, f1]—N([r, s, f~1]
log k(r) ’

Alr, s, 1 (11.8)

woraus (11.5) folgt, da nach (7.4) N[r, s, f1] = 0 ist.
ITb. Wie aus (7.4), (8.2) und (8.5) folgt, ist
N[r, s, f]=logr - A[r,s, f*]—L[r, s, f]+N[r, F-(0,2)]. (11.9)

§ 12. Bezichungen zwischen dem Wachstum von T und D;.

I. Set k(r)Zk®>1, wund [f(2,3,), f(0,0) % a, eine in
|2, | < o0, k = 1,2, meromorphe Funktion d. k. V. 2, 2,, die im
Koordinatenanfang regulir ist. Eaistiert fiir jedes ¢ > 0 eine
Konstante C = C(e), so daf

T[rk(r), S(r), f] < Cr+e, u >0, (12.1)
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ausfillt, so existiert fiir jede a-Kurve .= E[f(2, 2,) = a] der
Klasse B (vgl. § 4, S. [9] 813), dic auf |t| = S(r) liegt, das A Moment
lim Do, S(e). (f—a) ] w, (12.2)

r—> 0
falls A > u ist.
Denn nach (11.5), (7.8) und (7.9) ist
Alr, S(r), (f —a)t] =
N['rk(r), S, (f—a)~ ‘J T[rk(r), S(r). 1]
- log k° log A°

+c
DS CrtteE (12.8)

woraus nach (11. Ia) die Existenz von (12.2) folgt.

II. Es maogen iiber k(r) und f aufer den in 1 angegebenen die
Jolgenden Voraussetzungen gelten:

1. k(r) ist so gewdhlt, daf diec Hyperfliche |t| = S( r) allen
im § 8 angegebenen Voraussetzungen geniigt.

2. Fur f gilt

daf (21, 7y
v )} = b, = const # 0. (12.4)
=0

f(0, 2,) = d = const, I:

31
Egzistieren fiir drei a,-Kurven ¥, = E[f(2, 2,) = a,,] der Klasse B,
m=1,2,8, a, #d, die auf |i| :'S(k—(%) liegen, die A" dMomente

lim Dy ok(0), S(e), (f — @)y m=1,2,8,  (12.5)

r—>®0

und st
L7, S(), (f — ap) ] = — Cy?, m=1,2,8, (12.6)
s0 1ist
T(r, S(r), f] < Crtlog r (12.7)
hichstens mit Ausnahme einzelner Punkte und Intervalle, deren

logorithmisches Maf endlich ist.
Aus (12.5) und (11. Ib) folgt, daB3

A[rk(r), S(r), (f — a,)"t] < Cr* (12.8)
gilt auBler in den erwihnten Mengen.
Da nach (12.4) F(0,, 2,) = f[0, 2(0, ¢, )] = f(0, ) = const ist,
erhalten wir aus (11.9) und (12.6) somit, da3 aufer in der er-
wahnten Menge

N[7k(r), S(r), (f — an)~t] < Cr*logr (12.9)

gilt. Nehmen wir zunichst an, daB3 die erwihnten Werte a; = 0,
a, =1, a,= o sind. Nach der Formel von Valiron-Milloux
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gibt es dann zu jedem £° > 1 die Konstanten ¢ und ¢;, so dal

T[r, F(z, se'¥)] < '

< o{N[rk(r), F-1(3, s¢’¥)]+N[rk(r), (F(z, s¢¥)—1)"1]4 (12.10)
+ N[rk(r), F(z, s¢¥)] + Cy(r, s, ),

Cy(r, 8, ) =4 lgg [ F(0, se'¥) I + 2log le—(lo—g +e¢ (12.11)

2 ,Se“P)'
ist. Nun ist
F(0, s¢') = f(0, s¢%) = const 3 0 (12.12)
Fz [0’ Sei’l’] = [:df[zl’ h(z,, set?, se'—iw)]:| _
1 dz, z,=0 (12'13)

[ LY i s, semi)

= = 19
= =, :L L b, = const £ 0,19)

so da3 man fir r > r©® C,(r, s, p) durch eine geeignete Kon-

stante C ersetzen kann. Die Anwendung der Operation X f 27: dy
auf (12.10) ergibt nach (7.3) und (7.5) 5
T[r, S(r), ] =
< ¢{N[rk(r), S(r), f1] + N[rk(r), S(r), (f — )] + (12.14)
+ N[rk(r), S(r), 1} + C,
da f(0,2) =const und N[s, f1(0,2)] = NT[s, (f(0,2) —1)!] =
= N[s, f(0, 2)] = 0 ist.
Sind uns drei von 0, 1, oo verschiedene Werte a,,, m = 1, 2, 8,
B az— ay

gegeben, so betrachten wir die Funktion g = « 4 , o= ,
f—a, as — Gy

ﬂ — (a; —a,) (a,—a,)
(as—ay)
sind die Bedingungen (12.4) erfiillt, und, da b; 20 ist, ist
gzl[O, h(0,1,%)] = const +# 0.
Nach (12.7) ist somit

T[r, S(r), o +

Andererseits sind definitionsgemaB die Wachstumsordnungen

von T[r, S(r), “+£] und von T[r, S(r), %] gleich;

, welche die Werte 0, 1, oo auslafSit. Fir g

_ﬂa} < Cr*logr. (12.15)

dem Satz aus § 7 entsprechend gilt das gleiche fiir T[r, S(r), ftﬁ;:l
und T[T, S(r), f;ﬁ%], so daB aus (12.15) die Ungleichung (12.7)
folgt w.z.b.w.

%)  Aus (12.4 folgt, daB f(z,. z,) = d + z; @(zy, =,) ist, deshalb ist (df) =0.

2=0
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§ 13. Eine Interpretation fir T[r, S(r), f] im Falle ganzer
Funktionen f.

Im Falle einer komplexen Verianderlichen und ganzer Funk-
tionen f sind das Wachstum von T{r,f] und dasjenige von

max [f(re®?)] gleich. Unter gewissen zusitzlichen Bedingungen
osps2m

gilt etwas Analoges in dem von uns betrachteten Falle.
Wir setzen

M(r, s, f] = max |f[re'®, h(re'?, se™, se~™)]|.  (18.1)

0spsen
o=yp=2n
Ist f eine ganze Funktion, so ist
Tlr,s, fl=mir, s, f] = log Mir, s, f]- (18.2)

Eine obere Schranke fiir M[r, s, f] erhalten wir unter folgender
Annahme:

Die im § 1 eingefiihrte Funktion h(zy, ¢, ) soll, neben der friiher
angegebenen, die Eigenschaft haben, daB

d{arcw[h(Z,, S(r)e™¥, S(r)e~™), Z,] < Cydy, (18.3)
w[k(Zl, s(%)ei'fg S(F)e ™), 1] <Cy (18.4)
ist. Dabei sind C,, C,, § absolute Konstanten und w(z,, Z;)
(w(0, Zy) =0, w'(0, Z;) > 0) bedeutet die im § 6 eingefiihrte

Funktion, die 33(Z,) [s. (2.1)] auf den Kreis vom Radius s = S(r)
abbildet. Aus (18.4) folgt, daB [vgl. (6.2)]

P,[w(h(Z,, Sr)e, S(rie=m), 2,), w(h(Zs, S(E)e, S(E)e )]
K¥+C,

S (13.5)

ist. Dabei wihlen wir immer k(> 1) so gro8, daB k? > C, wird.
Es ist somit nach (6.7) und (13.8)

logM[ 2, 5(%). f]= Clk“”)(',:gic)T[ S(r), £, (13.6)

woraus in ublicher Weise

+ + .
m log log M[, S(r), f ] < Im log T[7, S(r),f]

r—>» log r r—>o log 7

(18.7)

folgt.

§ 14. Schlufbemerkungen.

1. Es dringt sich die Frage auf, was fiir Abschétzungen man an
Stelle von (12.14) erhilt, wenn man anstatt der Valiron-Milloux-
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schen Formel die zweite Nevanlinnasche Ungleichung heran-
zieht 20). Wir wollen in diesem Paragraphen andeuten, wie man
in diesem Falle vorgehen muf3. Man geht von der Formel (N. 8)
aus. (Vgl. B, S. 609, Zeile 11 von oben). Dabei mufl man fiir
T 05 F(z,5¢™)], Fl2y, t] = f[21, h(21, t, T)], eine von y unabhingige
obere Schranke bestimmen. Eine solche Abschitzung ist mir
aber nur gelungen unter der in § 13 angegebenen Voraussetzung.
Wiederholt man dann die auf S. 607 und 608 von B angegebenen
Rechnungen, so erhiilt man eine obere Schranke fiir T Ry, F (2, se'¥)]
(vgl. [2.6]). Unter Verwendung dieses Ergebnisses erhdlt man

. . 1 27 .
durch dic Anwendung der Operation P f ...dy auf (N. 3) eine
0

F,
obere Schranke fiir m[r, s, T‘:\ (S. 609, [2.7]).

Durch analoge Betrachtungen wie im Falle 1 k. V. crhilt man
dann dic Ungleichung [2.18] fir den verallgemeinerten Fall,
wobei fiir S(r, s) cine der [2.12] analoge Ungleichung gilt. Die
obere Schranke héngt darin nur von log r, log s, log T ab.

Aus dieser Ungleichung, dic man an Stelle von (12.14) benutzen
kann, erhalt man, dhnlich, wie es im § 12 geschieht, aus der
Existenz von lim D;[ek(0), S(e), (j'~a,,l)”1]:<o) fir drei ver-

r—>®
schiedene Werte a,,, m =1, 2,3, eine obere Schranke fiir das

Wachstum von T[r, S(»), [].

Aber, abgeschen davon, dal3 diese Betrachtungen zu auBler-
gewohnlich umfangreichen Rechnungen fithren, treten in diesem
Falle an Stelle von (12.4) die viel komplizierteren Voraus-
setzungen des § 13.

2. Es bietet keine Schwierigkeiten, analoge Betrachtungen,
wie in der vorliegenden Arbeit, fiir den Fall durchzufithren, da@
an die Stelle des gesamten z;2,-Raumes ein Bereich I (vgl.
§ 2) tritt. Ein Bereich 9 ist aber dic Regularitétshiille jedes
Bereiches &, den man aus MM dadurch erhalt, dal man in geeigneter
Weise Teile von M entfernt, ohne die ausgezeichnete Randfldche
zu beschadigen.

20)  Dieser VWeg wurde in dem zweiten Teil der an der zweiten Stelle in 2) S. [2]
306, zitierten Arbeit in dem Spezialfall h(z,,t,7) =¢ eingeschlagen. Wir werden diese
Arbeit im folgenden als B zitieren, die Formeln aus B durch eckige Klammern
kennzeichnen. Mit (N.3) bezeichnen wir die Formel (8), S. 59, aus R. NEVAN-
LINNA, Le théoreme de Picard-Borel et la théorie des fonctions meromorphes
[Paris, 1929], Ch. IV.
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Da wir auf Grund des Benehmens einer meromorphen Funktion
f in einer Hyperfliche 83 gewisse Aussagen iiber die Eigen-
schaften von fin 3 machen konnen, erlauben diese Betrachtungen
(falls 8 in @ liegt) bestimmte Aussagen iiber die Fortsetzung

der meromorphen Funktionen in Regularititshiillen dieser Art
zu machen.

(Eingegangen den 8. Juli 1938.)



