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Uber den Abbildungsgrad bei Abbildungen von
Kugeln des Hilbertschen Raumes

von

Erich Rothe
Breslau

Die folgenden Zeilen bilden eine Fortsetzung der in dieser
Zeitschrift erschienenen Arbeit ,,Uber Abbildungsklassen von
Kugeln des Hilbertschen Raumes’ '), deren Kenntnis daher
vorausgesetzt wird. Sie ist dem Beweis der folgenden Satze
gewidmet, auf welche mit Ausnahme des letzten bereits in der
Einleitung zu der genannten Arbeit hingewiesen wurde:

Satz I. h=f(r) =1t + F(x) sei eine Abbildung mit voll-
stetiger Verschiebung der Einheitskugel S* des Hilbertschen
Raumes in sich. Wenn bei der Abbildung § ein Punkt der Kugel
unbedeckt bleibt, so ist der Abbildungsgrad Null.

Satz II (Produktsatz). Ist g =g + ®(r) ebenfalls eine Ab-
bildung mit vollstetiger Verschiebung der S* in sich, so ist der
Abbildungsgrad der zusammengesetzten Abbildung gf %) gleich
dem Produkt der Grade der Abbildungen g und f.

Satz III. Ist die Abbildung g von Satz II gleichmaBig stetig
und eineindeutig, und ist ferner die auf Grund der gemachten
Voraussetzungen stetige3) inverse Abbildung g-! auch gleich-
méifig stetig, so ist der Grad von g gleich + 1.

1) Compositio Mathematica 4 (1937), 294—307. Im Folgenden mit A. zitiert.

%) Man beachte, daB mit §(£) =¢ + F() und g(r) =t + ®(r) auch

8f®) =t + {F @) + 8(r+F(2))} eine Abbildung mit vollstetiger Verschie-
bung ist.

3) Erfiillt in der Tat
(I) )y =g(t) =t + 6
die Voraussetzungen von Satz III und schreibt man ¢! in der Form
(I1) t=5@®) =y + HO),

so ist § vollstetig. DaB niamlich die Menge der $(§) kompakt ist, folgt wegen
H(Y) = — ®(r) aus der vorausgesetzten Vollstetigkeit von @. Es ist weiter zu
zeigen, daB aus
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Satz IV. (Satz von der Gebietinvarianz). §) = g(z) sei eine
auf einer abgeschlossenen Punktmenge It der S*® erklirte
Abbildung, die I eineindeutig auf eine ebenfalls auf der S*
gelegenen Punktmenge 9 abbildet. g sei gleichmiaBig stetig und
die Funktion &(r) =1 — r sei vollstetig. Von der auf Grund
der genannten Voraussetzungen stetigen ?) inversen Abbildung
g~! wird ferner vorausgesetzt, dal sie auch gleichmiaBig Stetig
ist. Wenn dann g, ein innerer Punkt von I ist, so ist §, = g(x,)
innerer Punkt von .

Beim Beweis der Séitze III und IV wird wesentlich ein Hilfssatz
von J. Schauder ) benutzt.

§ 1. Beweis der Sdtze I und II.

Hilfssatz 1. Ist § = f(r) = ¢ + F(z) eine in einer abgeschlosse-
nen Punktmenge M der S® definierte Abbildung, ist $(z) voll-
stetig und f(z)CS”, so ist die Menge der Bildpunkte 1 ab-
geschlossen.

Beweis. 1) sei ein Haufungspunkt von Bildpunkten. Es ist
zu zeigen, daB3 T selbst Bildpunkt ist. Sei Y, =, + F(zL,)
(n=1,2,...) eine gegen Y konvergierende Folge von Bild-
punkten und I, eine — auf Grund der Vollstetigkeit von &

(1) limb, =§

o—> 00
die Konvergenz der Folge $(Y,) mit
(Iv) lim $(y,) = H(h)
a—>o

folgt. Wiirde aus (III) nicht die Konvergenz der () folgen, so enthielte die
Folge der Y, wegen der Kompaktheit der $(f)) zwei Teilfolgen Y, D, fiir die die

Folgen (D), 9(H,) gegen von einander verschiedene Limites §, § konvergierten.
Die Folgen T, = §(9,) und I, = §(,) wiirden dann nach (II) und (III) gegen
die ebenfalls voneinander verschiedenen Limites T =5+ 9 und I =§ + H
konvergieren. Hieraus wiirde sich aber ein Widerspruch gegen die Eineindeutig-
keit von g ergeben, da auf Grund der Stetigkeit von g aus (I) und (III) sowohl
§ = g(f) als auch § = g(£), also ¢(f) = a(%) mit I £ I folgen wiirde. Somit
konvergiert die Folge der (y,)- Wegen (II) und (III) konvergieren dann die
Ty = h(hy) gegen T =0 + lim H(Y,). Anderseits folgt wegen der Stetigkeit von
o—> 0
® aus I und III § = T + (%), also § =9 + H(§), so daB sich (IV) ergibt.
4) Uber den Zusammenhang zwischen der Eindeutigkeit und Losbarkeit
partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus [Math.
Anpalen 106 (1932), 661—721], Hilfssatz 6. Im Wesentlichen der gleiche Satz
findet sich bei dem gleichen Verfasser bereits in seiner Arbeit ,,Invarianz des
Gebiets in Funktionalriumen” [Studia Mathematica 1 (1929), 123—139], Hilfs-
satz II.
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gewil3 existierende — Teilfolge der t,, fiir welche die Folge der
%(z,) konvergiert. Setzt man dann Y, = I, + (T,.), so ist wegen
der Konvergenz der ), und (z,) auch die Folge der T, konver-
gent. Thr Limes T gehort wegen der Abgeschlossenheit von Mt
zu N und wegen der Stetigkeit von ¥ ist §) =71 + F(x), d.h.
7 das Bild von 7.

Beweis von Satz I.  Aus Hilfssatz 1 folgt: ist ) nicht Bildpunkt
bei der Abbildung {, so gibt es ein positives ¢ <<1, so da3 kein
Punkt § CS®, fir den |§ — y| = 2¢ gilt, Bildpunkt ist, also
fir jedes t CS® die Ungleichung

(1.1) |9 —i(x)| > 2

gilt. Nach A., Hilfssatz 1 konstruieren wir nun eine Schichten-
abbildung 3(z), fiir welche

(1.2) [f(x) —38(x)| <e<1

ist. Nach A., Hilfssatz 8 ist dann der Abbildungsgrad y(f) von f
gleich dem Grade y(8) von 3. Es sei nun A" eine n-dimensi-
onale Kugel, die Aquatorkugel fiir 3 ist und den Punkt ) enthilt.
Durch 8 wird eine Abbildung 8" der Kugel 4™ in sich geliefert,
deren Grad p(8") nach der am Schlu3 von A. gemachten Bemer-
kung gleich y(8) ist. Es geniigt daher, y(3") = 0 zu beweisen.
Hierzu ist es nach einem bekannten Satz aus der Topologie
der endlich dimensionalen Kugeln hinreichend, zu zeigen, da@
bei der Abbildung 8" ein Punkt von A" unbedeckt bleibt. Ein
solcher Punkt ist aber §; denn da 3(z) =3(g) fur t CA™ ist,
so folgt aus (1.1) und (1.2) fir jedes rCA™:

9 —8"(2)] =9 — @) —[§(x) —8"(z)| > 2e —&>0.
Beweis von Satz II. Zunichst setzen wir die gleichméiBige

Stetigkeit von ¢ voraus. Unter dieser Annahme gibt es eine
positive Konstante 6 < 2, so dal die Ungleichung

(1.3) |y — 9| <d6<2
die Ungleichung
(1.4) la(n) — a(v,)| <1

nach sich zieht. Nach A., Hilfssatz 1 konstruieren wir eine
Schichtenabbildung Y, = 3,(x), fiir welche

(1.5) [f(z) —8.(2)] =9 — | <&
gilt, sowie eine Schichtenabbildung 8,(Y), fiir welche
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(1.6) la(y) —8:(p)| <1
gilt. Nach A., Hilfssatz 8 ist dann
(1.7) () =761), 7(8)=7(),

wenn wir allgemein den Abbildungsgrad einer Abbildung § mit
y(h) bezeichnen. Aus (1.8)—(1.6) folgt weiter

la(f(z)) —8:(3:(2))] =
|8(F(x)) — 8(3:(x))| + [a(81(2)) —52(3:(x))| =
=|a(h) — a(9,)] + [8(91) — 8a(y)] <1 +1,

so dal wiederum nach A., Hilfssatz 3

(1.8) 7(8f) = v(8:51)

gilt. Sei nun A™ ein gemeinsamer n-dimensionaler Aquator fiir
die Schichtenabbildungen 3,, 3,. 87, 37 seien die durch 3, 3, ge-
lieferten Abbildungen von A” in sich. Beachtet man, daB3 die
zusammengesetzte Abbildung 8,8, ebenfalls eine Schichten-

abbildung mit A™ als Aquator ist, so folgt aus der Bemerkung
am Schlufl von A.

(1.9)  y(1) =vG1); v(E) =v(); v(E381) = v(3:31) -

Nach dem Produktsatz aus der Topologie der endlichdimen-
sionalen Kugeln ist nun y(3587) = y(37) - ¥(37). Aus dieser Glei-
chung im Verein mit den Gleichungen (1.7)—(1.9) folgt, wie
behauptet, y(gf) = y(g)- ()

Nunmehr haben wir uns von der Voraussetzung, dal g gleich-
maBig stetig sei, zu befreien. Zu diesem Zweck beachte man,
daB jede Abbildungsklasse auch gleichmaBig stetige Abbildungen
enthilt, da ja jede Abbildungsklasse Normalabbildungen (A., §1)
enthilt und jede Normalabbildung offenbar gleichméBig stetig ist.
Ist also g selbst nicht gleichmaBig stetig, so sei g*(y) =19 + &*(y)
eine der gleichen Abbildungsklasse wie g angehoérende gleich-
miBig stetige Abbildung. Nach dem bereits Bewiesenen ist dann
7(g*f) = v(g*) - ¥(f) = 7(g) - 7(), und es ist nur noch zu zeigen,
daB y(g*f) = y(gf) ist, d.h. daB sich g*j und gf (im Sinne der
in A., §1 gegebenen Definition) stetig in einander iiberfiihren
lassen. Da nun g* und g zur gleichen Klasse gehoren, gibt es
eine Uberfithrungsfunktion (A., § 1) 1(y, t) mit 11(y, 0) = *(p)
und (Y, 1) = G(Yy). Setzt man u(y, t) =y + U(Y, ¢), so ist

u(f(z), 1) = ¢ + {3 + U + F@), 1)},

und der in der geschweiften Klammer stehende Ausdruck ist
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offenbar ebenfalls eine Uberfithrungsfunktion.. Da nun uf fir
t =0 mit g*f und fir £ =1 mit gf {ibereinstimmt, so werden in
der Tat die beiden letztgenannten Abbildungen durch uf stetig
ineinander iibergefiihrt.

§ 2. Beweis der Sdtze III und IV.

Wir formulieren zunichst folgende selbstverstidndliche Tat-
sache als

Hilfssatz 2. A™ sei die n-dimensionale Einheitskugel, 1), einer
ihrer Punkte und o eine positive Zahl < 2. Projiziert man
dann die Punkte r C A™ stereographisch auf die Punkte f der
Tangentialebene im Diametralpunkt von Y,, so gibt es zwei
nur von o, nicht von n, abhéngige Zahlen y, M von folgender
Eigenschaft: gilt fiir die Punkte ¢’, ¢’ von 4™

(2.1) |E'—t)1!>°‘: |§”—U1|>°‘>
so gilt fir ihre Projektionen t’, "

(2.2) [u|gr_gnl<|E/_"EI/I<Mlg/_gu

Hilfssatz 8. t, und 1, seien zwei von einander verschiedene
Punkte der S®. B sei eine positive Zahl < |y, —z,| und U
die durch

(2.3) lt—xl =8 (=1
definierte Umgebung von g,. « sei eine positive Zahl, fiir die
(2.4) |t —19;| >a fir zCU

gilt. 8(z) sei eine jedenfalls in 1l erklirte Schichtenabbildung ?),
und es gelte

(2.5) [8(r) — 1] >« fiir rCU.

Sind ferner u, M die in Hilfssatz 2 eingefiihrten Zahlen, so
besitze 3(r) noch folgende Eigenschaften:

a) es gibt eine positive Zahl h, so daB
h ..
(2.6) Ié(g)—é(go)l > 3 fir |’é—§o| =
ist.
5) D.h. es sei 3(£) CS® und es gebe eine endlichdimensionale Ebene, der die

Verschiebungsvektoren 6(r)—¢t parallel sind. (In A. wurden nur solche Abbil-
dungen betrachtet, die fiir alle t C S* definiert waren.)
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b) es gibt eine Zahl m > 0, so daB aus
’ 1 h
(2.7) [8(z") —8(x"")| > %
die Ungleichung
(2.8) ¥ = >
folgt.

¢) es gibt ein Paar positiver Zahlen ¢, <%und dp <—:~, SO
daB3 aus

(2.9) |t — 1" > 5
die Ungleichung

’ r 60
(2.10) |5(') —3(x")] > %
folgt.

Ist schlieBlich ¥ die durch
h

(2.11) |5 —8(20)] < o

definierte Umgebung von 8(%,), wobei & die in a eingefiihrte Zahl
ist, so sei

(2.12) [) — py| > fiir HCB.

Unter diesen Voraussetzungen wird behauptet: jeder Punkt
) von B ist bei der Abbildung 3 Bild eines Punktes von 1.

Ist iiber die genannten Voraussetzungen hinaus 3 fiir alle
tCS® definiert und gilt (2.6) fiir |z — z,| = f, so ist der Ab-
bildungsgrad von 3§ gleich -+ 1.

Beweis. 9* sei ein beliebiger fester Punkt aus 8. 4™ sei eine
n-dimensionale Kugel, die Aquator beziiglich der Schichten-
abbildung 3 ist und die Punkte z,, Y, und h* enthilt. Fir t C A"
setzen wir 8(x) = 8%(x). Es ist dann 8"(x) C A®. Wir fiihren nun
von Y); aus die in Hilfssatz 2 geschilderte stereographische Pro-
jektion aus, wobei wir allgemein die Projektion eines Kugel-
punktes r mit I = (r) bezeichnen. N*, B"* seien die Durch-
schnitte von U bzw. B mit A, und U,, B, die stereographischen
Projektionen von " bzw. B". Der Abbildung t) = 38"(t) auf der
Kugel A™ entspricht in der Projektionsebene die Abbildung
§ = o™(z) =P3"P1(), die jedenfalls in U™ definiert ist. Fiir
.’ CUu”, dh ¢, T’ CU" gilt wegen (2.4), (2.5) und wegen
o™(f) = 3*(x) nicht nur (2.2) sondern auch
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(218) p|8M(z) —8"(x")| <|o"(T) —om(T")| <M|8"(¢') —5(z")] -

Unter Benutzung von (2.2) und (2.18) ergeben sich aus den
Eigenschaften a, b, und ¢ der Abbildung 8"(x) = 3(z) die
folgenden Eigenschaften der Abbildung ¢"(Z):

a) Ist T auf dem Rande von %, so ist |o™(Z) —o™(T,)| > h.
b) aus |o®(Z)—0"(z”)| >k folgt |'—T"| >m — =
B) aus |o"(F) —o(F")| gt |7 %] }(g,, £ Ciny.
¢) aus [T —T7|>e, folgt |[o™(T) —o™(T")| > b

Nach einem Satz von J. Schauder ¢) ziehen diese Eigenschaften
nach sich, daB jeder Punkt ) der Kugel |j — o(z,)| <k Bild
eines Punktes T CT1" bei der Abbildung o(%) ist. Da nun wegen
(2.12) die Ungleichung (2.2) gilt, wenn in ihr " =3(z,) und
fiir ¢’ ein Punkt 1) von 8" gesetzt wird, so folgt, daB B" in der
Kugel |§ — o(%,)| <& enthalten ist. Somit ist jeder Punkt von
¥" Bild eines Punktes T CU* bei der Abbildung o*(f) und
daher jeder Punkt von 8", insbesondere also h* Bild eines Punktes
¢t CU” bei der Abbildung 3%(xr) =3(r). Da p* ein beliebiger
Punkt von B war, ist der erste Teil der Behauptung bewiesen.

Zum Beweise des zweiten Teils der Behauptung beachte man,
daB nach der Bemerkung am Schluf3 der Arbeit A. der Abbildungs-
grad von 8 gleich dem von 3" ist. Da nun nach Voraussetzung (2.6)
fiir | — Lo| = B gilt, so liegen alle Punkte g, fiir die 8(z) = 8(z,)
ist, innerhalb U”. Der Grad von 3" ist daher gleich dem von
o”, wenn man bei der letzteren Abbildung nur 11" als Original-
menge betrachtet. Aus dem Beweise zu dem in Anm. (4) er-
wahnten Satz von Herrn Schauder folgt aber wegen der Eigen-
schaften a, b, ¢ von o¢”, daB dieser Grad -4 1 ist?).

Nachdem Hilfssatz 8 somit bewiesen ist, gehen wir zum
Beweis der Satze III und IV iiber, der zunichst fiir beide gemein-
sam gefiihrt wird. Wir benutzen daher vorerst nur die Voraus-
setzungen fiir Satz IV.

I, ist innerer Punkt von M. Da g eindeutig ist, gibt es gewill
einen von p, und Y, = g(z,) verschiedenen Punkt y, der S*
sowie eine positive Zahl «, fiir welche

6) Siehe Anm. 4).

7) In der Formulierung des Satzes wird das nicht besonders hervorgehoben;
daf3 es aus dem von Herrn Schauder fiir seinen Satz gegebenem Beweise folgt wird
auch bei Leray-Schauder (Topologie et équations fonctionnelles [Ann. Ec. Norm.
51 (1934), 45—78], § 9) erwihnt und benutzt.
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(2.14) |20 — 91| > 2
(2.15) |8(20) — 1] > 8«

ist. Wegen der gleichméBigen Stetigkeit von g gibt es eine positive
Zahl B, so daB fiir alle ¢ der durch

(2-16) IE - Eol é /3
definierten Umgebung 11 von g,
(2.17) |8(x) — 8(zo)| <=

ist. Wir diirfen dabei noch § so klein annehmen, da U C I
und

(2.18) 0 < B < Min («, 1)
ist. Dann folgt aus (2.14) und (2.16)

(2.19) [t — 9| >« (rCu)
und aus (2.15) und (2.17)
(2.20) lg(x) — 9uf > 20 (zCU).

Da g umkehrbar eindeutig ist, ist fiir alle nicht im Innern von
1 gelegenen g, d.h. fiir

(2.21) [t — x| =8

a(z) von g(x,) verschieden. Daraus folgt auf Grund der Abge-
schlossenheit der Menge (2.21) sowie der Vollstetigkeit von
®(zr) = g(r) — ¢ die Existenz einer positiven Zahl, die wir mit

i—h bezeichnen 8), so daf3
h ..
(2.22) |9(x) — a(x0)] > = fir [ — 1o =8

ist (Eigenschaft a’). Da fiir | — x,| = p sowohl (2.17) wie (2.22)
gelten, so ist

(2.28) 37" <a.

Wegen der gleichmiBigen Stetigkeit von g gibt es ferner zu A
eine positive Konstante m, so da3 aus

’ rn h
(2.24) la(z") — 8(z") > 55"
die Ungleichung

8) u, M sind die in Hilfssatz 2 eingefiihrten Zahlen.
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’ ’" m
(2.25) lr"—¢ |>7

folgt (Eigenschaft b’). Ist weiter ¢, eine positive Zahl <-Zi, so
gibt es wegen der gleichmiBigen Stetigkeit von ¢! eine positive
Zahl é,, die wir kleiner als % annehmen diirfen, so da3 aus

’ 14 €o
(2.26) |t — ¢ |>_ﬁ
die Ungleichung
(2.27) l8(z') — g(x")] >

folgt (Eigenschaft c’).
Nunmehr sei % eine beliebige der Ungleichung

30,
7

. k8

(2.28) 0 <7 < Min (m, 7)

geniigende Zahl und 3(x) eine in 11 definierte Schichtenabbildung?),
fiir welche fiir alle zCU

(2.29) la(x) —38(x)| <7

gilt?). Fir 38 sind die Voraussetzungen des Hilfssatz 3 erfiillt:
aus (2.22), (2.29) und (2.28) folgt wegen u <M (2.6) fir
|t — 2| = B. Aus der Eigenschaft b’ von g folgt ferner die
Eigenschaft b von 8; denn aus (2.7) folgt wegen (2.28) die
Ungleichung (2.24), aus dieser nach der Eigenschaft b’ die
Ungleichung (2.25), d.h. (2.8), womit b bewiesen ist. Entsprechend
ergibt sich c¢) aus c¢’). Schliellich gilt auch (2.12). Denn nach
(2.15), (2.29), (2.28), (2.11) und (2.23) folgt unter Beachtung
von <M

19— 94| = 91— a(&o) + 8(zo) — 8(Zo) + 8(x0) — )
= (91— 8(%o)| — [8(20)—3(zo)| — [3(k0)—9| > B0 —a—ar.

%) Im Hilfssatz 1 der Arbeit A., der die Existenz einer beliebig gut approximie-
renden Schichtenabbildung beweist, wurde vorausgesetzt, da3 die zu approximieren-
de Abbildung fiir alle £ CS* definiert ist. Wihlt man aber die im Beweise dieses
Hilfssatzes auftretende Aquatorebene Emn+! so, daB sie I, enthilt, und wihlt fiir

1—
die ebenfalls dort auftretende positive Konstante § eine Zahl < Tﬁ, wo B die

im obigen Text angegebene Bedeutung hat (vgl. 2.18), so kann fiir £ C U der
dortige Fall 2 nicht auftreten und man sieht ohne Weiteres, daB3 die dort gegebene
Konstruktion auch im Falle einer die Voraussetzungen von Satz IV erfiillenden
Abbildung g bei vorgegebenem 7 > 0 eine in 11 definierte Schichtenabbildung 3
mit der Eigenschaft (2.29) liefert.



[10] Abbildungen von Kugeln des Hilbertschen Raumes. 175

Somit kénnen wir Hilfssatz 8 anwenden. Um zunidchst Satz
IIT zu beweisen, wihlen wir fiir # eine Zahl, die nicht nur die
Ungleichung (2.28) erfiillt, sondern auch kleiner als 2 ist. g und
8 sind dann (fiir alle £ C S® definierte) Abbildungen der S® in
sich mit vollstetiger Verschiebung, die nach den Hilfssatz 3 der
Arbeit A. den gleichen Abbildungsgrad haben. Da nach Hilfs-
satz 8 der vorliegenden Arbeit 3 den Grad 4 1 hat, g\ilt also das
Gleiche von g. Hiermit ist Satz III bewiesen.

Zum Beweise von Satz IV wollen wir zeigen: jeder Punkt
der durch

(2:30) |y — a(xo)] <5

definierten Umgebung B von ¢(x,) ist Bildpunkt bei der Ab-
bildung g. Sei also y* ein beliebiger fester Punkt von . Wir
wihlen dann eine Folge positiver gegen Null konvergierender
Zahlen 7, n,, . . ., die neben (2.28) noch die Ungleichung

(2.31) 0 <7, <ae—|0* — 8(o)]

erfiillen. Fiir v =1, 2, . .. seien 3,(¢) =t +&,(r) in U definierte
Schichtenabbildungen, fiir welche

(2.32) la(z) —8,(x)] =|6(x) —&,(z)] <m,

gilt 19). Nach Hilfssatz 38 ist dann fiir jedes » jeder Punkt der
durch (2.11), d.h. durch

definierten Umgebung B, von 8,(x,) Bild eines Punktes von U
bei der Abbildung 8,. Nun ist aber nach (2.82) und (2.31)

|t)* - 5,,(20)|
< [v* — a(xo)| + |8(x0) —5,(Z,)]

h h
<|9* — g(zo)| +{"ﬁ_ ID*—Q(Eo)l} =%

d.h. es ist * CL,. Daher ist y* Bildpunkt bei der Abbildung
8,, d.h. es gibt einen Punkt g,, fiir den die Gleichung

(2'33) * o= Qv(gv) =1+ @v(gv)

besteht. Wegen der Vollstetigkeit von ®(x) = ¢(z) — r konnen
wir nun aus der Folge der g, eine Teilfolge t,, so auswihlen,

10) Vgl. Anm. *).
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daB die Folge der @(Iy,) gegen einen Limes ®&* konvergiert. Da
nach (2.33)

5, = 9* — 8(,) +{6(,,) —6,,(x,)}
ist, so folgt wegen (2.82), daB8 die Folge der g, ebenfalls konver-

giert, und zwar gegen r* = p* — @*. Wegen der Stetigkeit von
® ist &* = @(r*), so daB y* = ¢* + G(z*) = g(z*), also Bild
von r* bei der Abbildung g ist. Da y* ein beliebiger Punkt von
W war, ist Satz IV hiermit bewiesen ).

(Eingegangen den 2. Januar 1937.)

11) Man kann Satz IV auch beweisen, indem man ihn auf den von Herrn
Schauder (siehe die in Anm. %) sowie auch § 9 der in Anm. ?) zitierten Arbeit) fiir
gewisse lineare Funktionalriume bewiesenen Satz von der Gebietsinvarianz zuriick-
fiihrt. Die in der Topologie endlichdimensionaler Kugeln fiir solche Zuriickfithrung
von der Kugel auf die Ebene iibliche stereographische Projektion, ist hierfiir
allerdings nicht brauchbar, da die Eigenschaft einer Abbildung von der Form
T + ®(z) mit vollstetigem ® () zu sein, gegeniiber der stereographischen Projektion
nicht invariant ist, wie man leicht an Beispielen sehen kann. Man gelangt aber
zum Ziel, wenn man eine Umgebung von g, normal auf die Tangentialebene in g,
und ebenso eine Umgebung von ), =, + &(L,) normal auf die Tangentialebene
in 1), projiziert und die zweite Tangentialebene in die erste dreht. —

Wie bei dieser Gelegenheit bemerkt sei, ist die erwiihnte Nicht-Invarianz ge-
geniiber der Zentralprojektion auch der Grund, warum nicht wie im Endlich-
dimensionalen mit dem Abbildungsgrad fiir Abbildungen mit vollstetiger Verschie-
bung von Kugeln des Hilbertschen Raumes aufeinander zugleich der Begriff der
Ordnung eines Punktes in Bezug auf das Bild einer Kugel gegeben ist. Dal man
aber auf anderem Wege auch den Begriff der Ordnung auf Abbildungen im Hil-
bertschen Raum der Form z 4 &(z) mit vollstetigem & iibertragen kann, werde
ich in einer weiteren Arbeit zeigen.



