The permuton limit of random recursive separable permutations
Confluentes Mathematici, Tome 15 (2023), pp. 45-82

We introduce and study a simple Markovian model of random separable permutations. Our first main result is the almost sure convergence of these permutations towards a random limiting object in the sense of permutons, which we call the recursive separable permuton. We then prove several results on this new limiting object: a characterization of its distribution via a fixed-point equation, a combinatorial formula for its expected pattern densities, an explicit integral formula for its intensity measure, and lastly, we prove that its distribution is absolutely singular with respect to that of the Brownian separable permuton, which is the large size limit of uniform random separable permutations.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.92
Classification : 60C05, 05A05
Keywords: permutons, permutation patterns, random combinatorial structures

Féray, Valentin 1 ; Rivera-Lopez, Kelvin 2

1 Université de Lorraine, CNRS, IECL, F-54000, Nancy, France
2 Department of Mathematics, Gonzaga University, Washington State, USA.
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2023__15__45_0,
     author = {F\'eray, Valentin and Rivera-Lopez, Kelvin},
     title = {The permuton limit of random recursive separable permutations},
     journal = {Confluentes Mathematici},
     pages = {45--82},
     year = {2023},
     publisher = {Institut Camille Jordan},
     volume = {15},
     doi = {10.5802/cml.92},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/cml.92/}
}
TY  - JOUR
AU  - Féray, Valentin
AU  - Rivera-Lopez, Kelvin
TI  - The permuton limit of random recursive separable permutations
JO  - Confluentes Mathematici
PY  - 2023
SP  - 45
EP  - 82
VL  - 15
PB  - Institut Camille Jordan
UR  - https://www.numdam.org/articles/10.5802/cml.92/
DO  - 10.5802/cml.92
LA  - en
ID  - CML_2023__15__45_0
ER  - 
%0 Journal Article
%A Féray, Valentin
%A Rivera-Lopez, Kelvin
%T The permuton limit of random recursive separable permutations
%J Confluentes Mathematici
%D 2023
%P 45-82
%V 15
%I Institut Camille Jordan
%U https://www.numdam.org/articles/10.5802/cml.92/
%R 10.5802/cml.92
%G en
%F CML_2023__15__45_0
Féray, Valentin; Rivera-Lopez, Kelvin. The permuton limit of random recursive separable permutations. Confluentes Mathematici, Tome 15 (2023), pp. 45-82. doi: 10.5802/cml.92

[1] Albert, Michael; Bouvel, Mathilde; Féray, Valentin Two first-order logics of permutations, J. Comb. Theory, Ser. A, Volume 171 (2020) no. 46, 105158 | Zbl | MR

[2] Aldous, David The continuum random tree. III, Ann. Probab., Volume 21 (1993) no. 1, pp. 248-289 | Zbl | MR

[3] Aldous, David Triangulating the circle, at random, Am. Math. Mon., Volume 101 (1994) no. 3, pp. 223-233 | Zbl | DOI | MR

[4] Bassino, Frédérique; Bouvel, Mathilde; Drmota, Michael; Féray, Valentin; Gerin, Lucas; Maazoun, Mickaël; Pierrot, Adeline Linear-sized independent sets in random cographs and increasing subsequences in separable permutations, Combin. Theory, Volume 2 (2022) no. 3, 15, 35 pages | Zbl | MR

[5] Bassino, Frédérique; Bouvel, Mathilde; Féray, Valentin; Gerin, Lucas; Maazoun, Mickaël; Pierrot, Adeline The Brownian limit of separable permutations, Ann. Probab., Volume 46 (2018) no. 4, pp. 2134-2189 | Zbl | MR

[6] Bassino, Frédérique; Bouvel, Mathilde; Féray, Valentin; Gerin, Lucas; Maazoun, Mickaël; Pierrot, Adeline Universal limits of substitution-closed permutation classes, J. Eur. Math. Soc., Volume 22 (2020) no. 11, pp. 3565-3639 | Zbl | DOI | MR

[7] Bassino, Frédérique; Bouvel, Mathilde; Féray, Valentin; Gerin, Lucas; Maazoun, Mickaël; Pierrot, Adeline Random cographs: Brownian graphon limit and asymptotic degree distribution, Random Struct. Algorithms, Volume 60 (2022) no. 2, pp. 166-200 | Zbl | DOI | MR

[8] Bhattacharya, Bhaswar B.; Mukherjee, Sumit Degree sequence of random permutation graphs, Ann. Appl. Probab., Volume 27 (2017) no. 1, pp. 439-484 | Zbl | MR

[9] Borga, Jacopo The Skew Brownian permuton: a new universality class for random constrained permutations, Proc. Lond. Math. Soc., Volume 126 (2023) no. 6, pp. 1842-1883 | Zbl | DOI | MR

[10] Borga, Jacopo; Gwynne, Ewain; Sun, Xin Permutons, meanders, and SLE-decorated Liouville quantum gravity (2022) | arXiv

[11] Borga, Jacopo; Holden, Nina; Sun, Xin; Yu, Pu Baxter permuton and Liouville quantum gravity, Probab. Theory Relat. Fields, Volume 186 (2023) no. 3-4, pp. 1225-1273 | Zbl | DOI | MR

[12] Bose, Prosenjit; Buss, Jonathan F.; Lubiw, Anna Pattern matching for permutations, Inf. Process. Lett., Volume 65 (1998) no. 5, pp. 277-283 | Zbl | MR | DOI

[13] Clement, Philippe; Desch, Wolfgang An elementary proof of the triangle inequality for the Wasserstein metric, Proc. Am. Math. Soc., Volume 136 (2008) no. 1, pp. 333-339 | Zbl | DOI | MR

[14] Curien, Nicolas; Le Gall, Jean-François Random recursive triangulations of the disk via fragmentation theory, Ann. Probab., Volume 39 (2011) no. 6, pp. 2224-2270 | Zbl | MR

[15] Flajolet, Philippe; Sedgewick, Robert Analytic combinatorics, Cambridge University Press, 2009 | Zbl | DOI

[16] Goaoc, Xavier; Welzl, Emo Convex hulls of random order types, 36th international symposium on computational geometry, SoCG 2020, Zürich, Switzerland (virtual conference), June 23–26, 2020. Proceedings (Leibniz Zentrum für Informatik), Volume 164, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 49 | DOI | MR | Zbl

[17] Grübel, Rudolf Ranks, copulas, and permutons, Metrika (2023)

[18] Hoppen, Carlos; Kohayakawa, Yoshiharu; Moreira, Carlos G.; Ráth, Balázs; Sampaio, Rudith M. Limits of permutation sequences, J. Comb. Theory, Ser. B, Volume 103 (2013) no. 1, pp. 93-113 | Zbl | DOI | MR

[19] Janson, Svante Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation, Probab. Surv., Volume 9 (2012), pp. 103-252 | Zbl | MR

[20] Maazoun, Mickaël On the Brownian separable permuton, Comb. Probab. Comput., Volume 29 (2020) no. 2, pp. 241-266 | Zbl | DOI | MR

[21] Molloy, Michael; Surya, Erlang; Warnke, Lutz The degree-restricted random process is far from uniform (2022) | arXiv

[22] Pinsky, R. The infinite limit of separable permutations, Random Struct. Algorithms, Volume 59 (2021) no. 4, pp. 622-639 | Zbl | DOI | MR

[23] Pittel, Boris Note on the heights of random recursive trees and random m-ary search trees, Random Struct. Algorithms, Volume 5 (1994) no. 2, pp. 337-347 | Zbl | DOI | MR

[24] Stufler, Benedikt Graphon convergence of random cographs, Random Struct. Algorithms, Volume 59 (2021) no. 3, pp. 464-491 | Zbl | DOI | MR

[25] The Sage Developers SageMath, the Sage Mathematics Software System (Version 9.4), 2021 (https://www.sagemath.org)

Cité par Sources :