Soit le groupe , où est un corps localement compact non-archimédien, et son immeuble de Bruhat-Tits. Nous construisons un complexe simplicial , doté d’une action de et d’une projection propre simpliciale -équivariante . Nous démontrons qu’en dimension supérieure la cohomologie à support compact contient comme sous-quotient toutes les représentations cuspidales irréductibles de niveau zéro.
Let the group , where is a non-archimedean locally compact field, and its Bruhat-Tits building. We construct a simplicial complex , equipped with an action of and with a -equivariant proper simplicial projection . We prove that the cohomology with compact support in higher dimensions contains as subquotients all irreducible cuspidal level zero representations.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.47
Mots-clés : Representations of the general linear $p$-adic groups, Bruhat-Tits buildings, Cohomology with compact support.
Rajhi, Anis 1
CC-BY-NC-ND 4.0
@article{CML_2018__10_1_95_0,
author = {Rajhi, Anis},
title = {Cohomologie \`a support compact d{\textquoteright}un espace au-dessus de l{\textquoteright}immeuble de {Bruhat-Tits} de ${\protect \rm GL}_{n}$ sur un corps local. {Repr\'esentations} cuspidales de niveau z\'ero.},
journal = {Confluentes Mathematici},
pages = {95--124},
year = {2018},
publisher = {Institut Camille Jordan},
volume = {10},
number = {1},
doi = {10.5802/cml.47},
mrnumber = {3869012},
language = {fr},
url = {https://www.numdam.org/articles/10.5802/cml.47/}
}
TY - JOUR
AU - Rajhi, Anis
TI - Cohomologie à support compact d’un espace au-dessus de l’immeuble de Bruhat-Tits de ${\protect \rm GL}_{n}$ sur un corps local. Représentations cuspidales de niveau zéro.
JO - Confluentes Mathematici
PY - 2018
SP - 95
EP - 124
VL - 10
IS - 1
PB - Institut Camille Jordan
UR - https://www.numdam.org/articles/10.5802/cml.47/
DO - 10.5802/cml.47
LA - fr
ID - CML_2018__10_1_95_0
ER -
%0 Journal Article
%A Rajhi, Anis
%T Cohomologie à support compact d’un espace au-dessus de l’immeuble de Bruhat-Tits de ${\protect \rm GL}_{n}$ sur un corps local. Représentations cuspidales de niveau zéro.
%J Confluentes Mathematici
%D 2018
%P 95-124
%V 10
%N 1
%I Institut Camille Jordan
%U https://www.numdam.org/articles/10.5802/cml.47/
%R 10.5802/cml.47
%G fr
%F CML_2018__10_1_95_0
Rajhi, Anis. Cohomologie à support compact d’un espace au-dessus de l’immeuble de Bruhat-Tits de ${\protect \rm GL}_{n}$ sur un corps local. Représentations cuspidales de niveau zéro.. Confluentes Mathematici, Tome 10 (2018) no. 1, pp. 95-124. doi: 10.5802/cml.47
[1] Abramenko, Peter and Brown, Kenneth S. Buildings : Theory and Applications (Graduate Texts in Mathematics), Springer, Softcover reprint of hardcover 1st ed. 2008. | DOI
[2] Brown, K.S. Cohomology of Groups (Graduate Texts in Mathematics, No. 87), Springer, 1st ed. 1982. Corr. 2nd printing 1994. | DOI
[3] Broussous, P. Representations of PGL(2) of a local field and harmonic cochains on graphs, Annales de la Faculté des Sciences de Toulouse, vol XVIII, 541â559 (2009). | Zbl | MR | DOI
[4] Broussous, P. and Courtès, F. Distinction of the Steinberg representation, IMRN. International Mathematics Research Notices, 11, 3140–3157 (2014). | Zbl | MR | DOI
[5] Borel, A. and Serre, J.P. Cohomologie à support compacts des immeubles de Bruhat-Tits, applications à la cohomologie des groupes S-arithmétiques, C.R.Acad.sc.Paris, 1971. | Zbl
[6] Bredon, G.E. Introduction to compact transformation groups, Volume 46 (Pure and Applied Mathematics), Academic Press, 1972. | Zbl | DOI
[7] Carayol, H. Représentations cuspidales du groupe linéaire, Annales Scientifiques de l’École Normale Supérieure. Quatrième Série, 17, 191–225 (1984). | Numdam | Zbl | DOI
[8] Garrett, P.B. Buildings and Classical Groups, Chapman and Hall/CRC, 1997. | Zbl | DOI
[9] Munkers, J.R. Elements Of Algebraic Topology, Westview Press, 1996.
[10] Murnaghan, F. Representations of reductive p-adic groups, "http://www.math.toronto.edu/murnaghan/courses/mat1197/", 2009. | Zbl
[11] Rotman, J. An Introduction to Homological Algebra (Universitext), Springer, 2008 | DOI
[12] Spanier, E.H. Algebraic Topology, Springer, 1994. | DOI
[13] Schneider, P. and Stuhler, U. Representation theory and sheaves on the Bruhat-Tits building, Publications mathématiques de l’I.H.E.S, 85, 97-191 (1997). | Numdam | Zbl | DOI
[14] Tits, J. Buildings of Spherical Type and Finite BN-Pairs (Lecture Notes in Mathematics), Springer, 1986. | Zbl | DOI
[15] Wagoner, J.B. Homotopy Theory for the p-adic Special Linear group,Commentarii Mathematici Helvetici, 50, 535–559 (1975). | Zbl | MR | DOI
Cité par Sources :





